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Abstract

In this paper, we propose a Bayesian optimi-
sation (BO) method to actively learn a model
of a robot’s power consumption and use it to
find energy-efficient paths between two fixed lo-
cations over an uneven terrain. Most of the
prior work in this area relies on models of the
vehicle’s dynamics or on accurate information
about the terrain and its physical properties.
In contrast, our method uses Gaussian process
(GP) regression to predict the power consump-
tion of the robot in configurations along candi-
date paths. We combine this model with a BO
algorithm using an energy-based exploration-
exploitation criterion to select paths between
the given start and goal locations and to find
energy-efficient routes between them. Experi-
ments in simulation with synthetic data evalu-
ate the convergence of the model and the per-
formance of the algorithm in building it and
finding energy-efficient paths. We also demon-
strate the efficiency of our method against other
non-linear optimisation algorithms in the sim-
ulation scenario. Finally, we demonstrate the
method working on a physical robot in a real-
world environment.

1 Introduction

Mobile robots can be applied to a variety of tasks re-
quiring them to traverse rough, uneven terrains multi-
ple times, such as cargo transportation in mining oper-
ations [Brown, 2012, planetary exploration [Carsten et
al., 2007], etc. In such tasks, robots are often required
to operate autonomously under limited resources.
Especially in the case of off-road navigation, an im-
portant constraint that limits the capability of a robot
to operate autonomously is energy consumption. In this
case, most of the limited on-board power supply of the
robot is spent by the traction system. Besides internal

factors such as vehicle dynamics, terrain properties can
directly influence power consumption. Most of these fac-
tors are generally hard to model: for example, variations
in roughness [Molino et al., 2007], terrain slope [Sun and
Reif, 2005], and interactions between the wheels and the
soil [Amar and Bidaud, 1995]. Altogether, these terrain-
related complexities introduce noise and uncertainty in
power-consumption models. A large part of the research
into energy-efficient path planning, however, assumes
that the model of the terrain and its associated energy
costs are known.

In this paper, we present a method that learns a
model to predict the energy cost of paths connecting
two locations over a possibly-uneven terrain and uses
this model to find energy-efficient paths between those
locations. The only information required by our method
is the robot’s localisation and the power-consumption
measurements collected by the robot as it moves. The
model is built using an active perception approach in
which the robot executes paths between the given loca-
tions that are selected according to their expected energy
consumption and the uncertainty in this estimate. With
such a model, energy-efficient paths can be obtained for
use in future tasks. In this work, we make the following
contributions:

1. a model to estimate the power consumption of a
robot moving at constant linear speed given its lo-
cation and heading direction based on Gaussian pro-
cess [Rasmussen and Williams, 2006] regression;

2. a path-planning method that explores paths be-
tween two fixed locations building a model of the
robot’s power consumption over the terrain using
Bayesian optimisation [Brochu et al., 2010.

The remainder of this paper is organised as follows.
In the next section, we review relevant prior work in this
area. In Section 3, we specify and formulate the problem
of modelling energy consumption, which is followed by a
description of the proposed path-planning algorithm in
Section 4. Then, in Section 5, we present experimental
results in simulation and on a physical robot to evaluate



our approach. Finally, in Section 6, we conclude and
propose some directions for future work.

2 Related Work

In this section, we review some relevant work done in
the area of energy-aware motion planning and Bayesian
approaches applied to planning under uncertainty.

2.1 Vehicle-Dynamics Control

Heavy robots usually spend most of their energy supply
on mobility. Therefore, some research effort has been
put into modelling the power demands of traction sys-
tems to provide cost models for energy-aware path plan-
ners. In this sense, energy efficiency can be achieved
by the vehicle’s motion control strategies, such as avoid-
ing high-cost movements like braking and accelerating
[Mei et al., 2006], turning [Morales et al., 2006, or by
optimising velocity profiles ([Kim and Kim, 2007] and
[Tokekar et al., 2011]). In general, these methods are
dependent on parameters that require extensive evalu-
ation and analysis of the robot in experiments and are
highly vehicle dependent.

2.2 Elevation-based Strategies

Another strategy is to model power usage as a function
of terrain properties, approaching it from a mechanical
energy point of view. If the geometry of the terrain is
known a priori, different techniques using grid-based ele-
vation maps can be used to estimate energy consumption
along a path. This approach in general infers the power
costs associated with individual actions over the terrain
as a function of local slope angles and friction coefficients
([Sun and Reif, 2005], [Liu et al., 2008], [Anuntachai et
al., 2014], and [Ganganath et al., 2014]). The energy
expenditure of a path is then computed as the sum of
the individual costs associated with each state transition
on the path. However, these strategies require accurate
information about the terrain type and its characteris-
tics, besides the vast amounts of sensor data necessary to
build the elevation models, which has its own challenges
[Plagemann et al., 2008).

2.3 Bayesian Approaches

Most of the approaches discussed so far depend on de-
terministic cost models that inform path planners when
computing the costs of a path. Alternatively, Bayesian
approaches can be effectively used to learn power-
consumption models for energy-efficient path planning
under uncertainty.

Plonski et al. [Plonski et al., 2013] present a Bayesian
approach to model energy. They use Gaussian process
(GP) regression to build a solar-power map over an area,
and then use this map to plan energy-optimal paths us-
ing empirical cost models to predict the energy spent

on individual actions. Martin and Corke in [Martin and
Corke, 2014] present an approach to map the robot’s
power usage over the terrain via GPs. At each iteration,
their map is used to plan minimum-cost paths using D*
and then updated with measurements collected along the
way. A limitation of these models is that they do not con-
sider uneven terrains, where the robot’s heading affects
the power consumption. Additionally, the uncertainty of
the model’s predictions is not taken into account during
the planning phase.

Marchant and Ramos [Marchant and Ramos, 2014]
present a Bayesian optimisation (BO) approach to plan
continuous paths for robots to monitor spatial-temporal
processes while exploring the environment. They use a
GP to learn a model of the physical phenomena that
the robot is monitoring, while BO is employed to select
the sample-collecting path that yields the highest reward
in each iteration. In this problem, the main goal is to
build a model of the process being modelled throughout
the whole area of the experiment, with less uncertainty
in areas close to peaks of the phenomena. There is no
goal location for the robot to reach. And the robot’s
heading does not affect the readings. However, a similar
framework can be applied to the problem in this paper.

3 Problem Formulation

Our goal is to enable a robot to learn a model that can be
used to find energy-efficient paths in an obstacle-free area
over a terrain with smooth elevation changes. The paths
are taken from a family of parametric curves C and con-
strained by a given fixed starting location A = (zq, yo),
with initial heading angle 6y, and an also fixed goal lo-
cation B = (zy,yy), with free final orientation. Since we
are searching for energy-efficient paths, the model should
provide less uncertainty in the predictions for paths that
will yield better energy savings. In addition, we assume
that the only information we have access to are noisy
measurements of the instantaneous power consumption
w of the robot and its pose, which contains position and
orientation. Therefore, we have no access to informa-
tion about the terrain itself, such as slope, roughness,
elevation maps, etc.

The total amount of energy E needed to execute a
path T can be obtained by integrating the instantaneous
power consumption w along the path over time, i.e.:

" w(x(8)dt. (1)

to

E[T] =

where ty corresponds to the starting time, when the
robot leaves A, ty corresponds to the final time, when the
robot reaches B, and x € T is a state vector comprising
variables that affect the power demands of the traction
system along the path. For our case, this state vector



will simply be the robot’s pose, x = (z,y,0), which is
valid under a set of plausible assumptions to be stated
later in the text.

In this setup, predicting the amount of energy required
to execute a particular 7 is equivalent to providing a
model to predict the expected instantaneous power con-
sumption w(x) at each state x € RP that the robot
will be along the path and then integrating over these
estimates. Consequently, our task is to learn a func-
tion f : RP — R mapping states to power consump-
tion values. We assume this function is a sample from
a Gaussian process and provide a Bayesian optimisation
method to best select paths T from C so that our model
is efficiently improved after executing each path from A
to B.

3.1 Modelling Assumptions

In our model, we assume power consumption to be a
function only of the robot’s pose, which is provided by
the localisation system. The pose alone does not pro-
vide information about other variables that can affect
the power consumption of the robot. However, under
a set of plausible assumptions, it can be sufficient for
the present modelling task. Firstly, the variations in the
power drawn by the traction system when the robot is in
motion are usually much higher than the ones presented
by the other on-board systems in any reasonably-sized
robot. So we can assume that the power demanded by
these other systems is constant. Secondly, we assume a
static environment so that the terrain’s characteristics
do not change over time. Lastly, in our experiments the
robot will travel at a constant linear speed v > 0 with
an angular speed w small enough to not significantly af-
fect the power-consumption values. In addition, the GP
inherently considers the noise of the underlying process,
which allows it to adapt to the noise introduced by these
limitations.

4 Methodology

In this section, we present our method to learn a model
to predict energy consumption and find energy-efficient
paths, which is comprised of two parts: a Gaussian pro-
cess (GP) model and a Bayesian optimisation (BO) al-
gorithm. After a quick overview of the proposed system,
we provide a basic review on GPs and present how we
apply them to estimate energy consumption over paths.
Next, we introduce Bayesian optimisation and present
our path-planning method, which selects paths to exe-
cute and updates the GP model.

4.1 System Overview

Figure 1 shows a simplified diagram of our system. The
GP model is designed to learn the distribution of the ex-
pected power usage of the robot as it traverses the ter-
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Figure 1: System diagram. The GP learns a model of
the power consumption of the robot from the samples
collected as it moves. The BO algorithm maximises a
reward function over the GP estimates and selects the
best candidate path. The robot executes the path, and
the GP model is updated.

rain. The model uses power-consumption measurements
from traversed locations to infer the power necessary to
traverse other locations, taking into account the heading
direction as well. The BO algorithm queries the GP for
individual estimates of power usage along a candidate
path. By maximising a utility function, the algorithm
selects the next path to follow. This path is given to the
robot, which executes it, collecting power-consumption
samples along the way. Finally, these samples are fed
back as observations to the GP, updating the model.
This cycle repeats in each iteration of the BO algorithm.
As iterations are performed, the expected amount of en-
ergy required to execute a path, as predicted by the GP,
converges to the measured amount of energy consump-
tion.

4.2 GP Model for Power Consumption

As a Bayesian non-parametric method, Gaussian pro-
cess (GP) regression [Rasmussen and Williams, 2006]
offers a powerful tool to model non-linear spatial dis-
tributions. For this reason, we utilise this method to
learn a model that estimates the robot’s instantaneous
power-consumption w(x) over the terrain.

Review on GP Regression

Unlike regular non-Bayesian regression methods, a GP
places a joint Gaussian distribution as a prior over the
space of functions that map inputs x to outputs z, where
z = f(x) + € is a noisy observation of the true underly-
ing function value f(x), and € ~ N(0,02) is Gaussian-
distributed noise with zero mean and standard devia-
tion o,. A GP model can be completely specified by a
mean function m(x) and a positive semi-definite covari-
ance function k(x,x’), such as the squared exponential

1

k) = exp (g x- X)L x)T) @)

where o2 is called the signal variance, which measures

how much the function is expected to deviate from the



mean, and L is a D-by-D diagonal matrix with elements
L;; = 1/12, which are length-scale coefficients that regu-
late the rate of change in covariance along each dimen-
sion of x.

Given a set of N observations O = {x;,2}¥,, the
GP predicts function values at a given query point x* as
F(x*) ~ N(u(x*),0?(x*)), where:

px’) = mix) + ki(x", X)Kx "z - m(X))  (3)

with X as a N-by-D matrix formed by vertically stack-
ing each x; € O, Kx = K(X,X) + 021, where each
K(X,X);; = k(x;,x;), and k(x*,X) denotes a 1-by-N
vector defined by k(x*, X) = (k(x*,x1), ..., (k(x*,xn)).
The GP also determines the variance of its estimation as

o2(x") = h(x", x") - k(x*, X)Kx K(X,x")  (4)
which measures the uncertainty in the estimation.

Power-Consumption Modelling

To construct our GP model, we utilise a stationary mean
function m(x) = ms V x, where m; is a constant hyper-
parameter optimised during an initial training phase.
We model the covariance between two input poses x and
x’ using a modified version of the squared exponential
kernel in Equation 2:

bxx) = ate (<g20x)). 6

where d(x,x’) is a custom distance metric.

As our inputs contain angles, we can not directly ap-
ply Euclidean distances to compute the distance between
two different poses. To address this, we compute differ-
ences in the angular component as follows:

|6 — 0’| = cos™!(cos(8 — ")) € [0, 7], (6)

which corresponds to the shortest arc between the two
orientation angles. With this, the distance between two
points becomes:

A x) = w:ca:wg(yy'mwze'{ ™

E: i lg
where I, [, lg are positive length-scale hyper-parameters
also learnt from a training set.

With this kernel, the covariance between function
values at two different points x and x’ will smoothly
decay according to their distance. Consequently, this
covariance function is suitable for modelling power-
consumption as a Gaussian process on smooth natural
terrains, which usually do not present abrupt transitions
of surface characteristics.

All in all, our GP model is fully determined by the
hyper-parameters (ms,o,1z, 1,19, 0,). In our imple-
mentation, these values are determined by maximising

the log-marginal likelihood in a training phase on an ini-
tial set of observations. See Chapter 5 in [Rasmussen and
Williams, 2006] for more details on hyper-parameters
learning.

4.3 Energy Integration

With power-consumption estimates from the GP model,
w(x) ~ N (1w (x), 02 (%)), for a finite set of poses {x; }7_
sampled along a candidate path 7, we can predict the
total energy expenditure for that path, which we model
as B~ N(ug,0%), as:

pplT) = 3 jlxi) At 8)
1=0

n—1

0BT = on(xi) AL, (9)
=0

Since we have no access to information about the ter-
rain elevation, we estimate the time interval between two
consecutive poses on a path using a linear 2D motion
model with constant speed v, as:

V(@ir1 — )2 + (i1 — 1:)?
v

This approximation does not consider height differences,
which could lead to errors in areas of high slope. How-
ever, for typical smooth terrains, this should not lead to
significant errors in the estimation of E.

4.4 Bayesian Optimisation for Path
Selection

We propose a Bayesian optimisation (BO) method to
enable the robot to select paths trading off going from
A to B as efficiently as possible with the largest amount
of model improvement.

The BO Strategy

BO [Brochu et al., 2010] allows computing the global op-
timum of unknown functions that are expensive to eval-
uate. The BO strategy applies a Bayesian model, which
is typically a GP, as a prior to internally approximate
the objective function. At each iteration, BO selects
the point to perform the next evaluation of the objec-
tive based on maximising an acquisition function over
the prior. This acquisition function is usually much sim-
pler to evaluate than the objective and provides a utility
value that enables the algorithm to perform a guided
search for the global optimum. After evaluating the ob-
jective, the prior is updated with the new observation,
and the algorithm proceeds to the next iteration, keep-
ing track of the current optimum. As iterations proceed,
the prior approximation converges to the objective func-
tion around the observed regions. Therefore, BO can be
used not only to optimise, but also to build a model of
the objective function.



Acquisition Function

In this paper, we use BO to optimise over a model map-
ping paths to energy-consumption estimates. A func-
tion R[T] works as an acquisition function for BO and
computes the reward for executing a candidate path T
based on its expected energy consumption, modelled as
E ~ N(ug,0%), and the uncertainty about it. In our
case, we use an upper-confidence bound (UCB) [Brochu
et al., 2010] over the negative of the energy estimate, i.e.:

R[T] = —pg[T] + Aog[T]
n—1 n—1 1/2
= —Zuw(xi)Atz‘-F)\ (Z Ufu(xi)Aﬁ) )

=0 1=0
(11)

where A\ is a positive scalar which controls the
exploration-exploitation trade-off. Higher values of A in-
crease exploration giving high reward for paths whose
energy estimate has a higher uncertainty, since obser-
vations along them might provide useful information to
improve the accuracy of the GP estimates. On the other
hand, lower values of A\ favour exploitation, with the
function preferring paths which the model is certain that
will have low energy cost.

Path Parameterisation
We model paths using parametric curves C(u, 3), which
map R to RP with u € [0,1] and coefficients 8. In
our case, we utilise 2D cubic splines, which are simple
to work with and flexible enough to demonstrate the
capabilities of our algorithm.

Poses along a path are computed using the following
equations:

z = Cy(u,B8) = agu® + byu? + cpu + dy (12)

y = Cylu,B)= ayu3 + byu2 +cu+d, (13)
dy _ Oy/ou 3a,u? + 2bu + ¢y

= == = 14
tan Or  Ox/0u  3ayu?+ 2byu+ ¢y (14)

where B = {az, by, ¢z, dy, ay, by, ¢y, dy}. However, since
the starting pose at v = 0 and the final position of
the robot at uw = 1 are fixed, only as,ay,c; remain
as free spline parameters and thus B is reduced to

8= {amv ay»cz}~

The Algorithm

With the above path parameterisation, we are ready to
formulate the BO algorithm, which is outlined in Algo-
rithm 1.

In each iteration, the algorithm starts in line 2 by
choosing the set of spline parameters 3 that maximise
the acquisition function R[C(u,3)] over the GP power-
consumption prior model. Then, the robot executes the
path in line 3, collecting a set of observations O =
{(xi,2i)}1, and updates the GP appending the new
samples to its observations set in line 4.

Algorithm 1: BO Path Planner
Input:
S: spline coefficients sampling domain
N: number of iterations
(20, Yo, 0p): starting pose
(xf,yy): goal location
1 for i =1..N do
2 B* + argmax R[C(u,3)]
BeS
O + Sample along C(u, 3*)
Update the GP with each observation in O

W

5 Experiments

In order to evaluate our approach, we first performed
a set of experiments to test the accuracy of the GP
model estimations and its integration with our BO path-
planning algorithm using synthetic data in simulation.
After that, we performed tests with a physical robot in
an outdoor environment.

To avoid infeasible paths, we added constraints to
the path selection in our experiments. The constraint
functions check if the candidate path stays within the
area specified for the experiment and if the path’s max-
imum curvature would exceed a specific limit. These
constraints are checked for each set of spline parameters
evaluated during the acquisition function optimisation
in Algorithm 1 using algorithms that support non-linear
inequality constraints.

5.1 Simulation

We first present the simulation model we used to com-
pute energy-costs that provide ground-truth values for
a robot’s power consumption before we present our
simulation-based results.

Simulation Setup

In simulation, we model terrains as continuous height
maps generated by means of Perlin noise [Perlin, 1985].
Then we use the following equation to compute synthetic
ground-truth values for the robot’s power consumption:

B (F. + Mgsin ¢(x))v, >0, 5
W)=Y Bt 4 sin o)), <o

where M corresponds to the robot’s mass, g is the grav-
itational acceleration magnitude, ¢(x) is the local ter-
rain slope angle, and F is a constant factor to simulate
the effect of forces independent of the robot’s pose on
the terrain. Overall, this formulation simulates large ef-
forts when the robot is moving uphill, having to over-
come its own weight, and lower, but non-negative, ef-
forts when it is moving downhill. We have also added



Gaussian noise with standard deviation o, to the power-
consumption values provided as observations to the GP.
Table 1 presents the settings used for the tests.

F. M g v on
200N | 100 kg | 10 m/s? | 1m/s | 20 W

Table 1: Simulation settings

GP Model Accuracy

In a first test, we evaluated the quality of the GP power-
consumption model predictions using two kinds of train-
ing sets. Figure 2a shows the first kind, with a training
set containing sample poses uniformly spaced 5 metres
apart on an (z,y)-grid pattern and using four values for
orientation § € {—135° —45° 45° 135°}, yielding a to-
tal of 400 samples in the 50-by-50 metres terrain. Fig-
ure 2b shows the second kind of training set, contain-
ing random-walk samples with consecutive poses sepa-
rated by 5 metres and with turns sampled from a uni-
form distribution limited between -30° and 30°. This
set also contains the same amount of poses as the previ-
ous one, 400 in total. In both cases, we queried the GP
with a test-set at a higher spatial resolution, with points
spaced by 1 m over a grid, and at the same angular res-
olution of the first case, but with an offset, such that
6* € {—90°,0°,90°,180°} for the queries. In total, the
query set contains 10,000 query poses. We evaluated the
accuracy in the predictions by computing the relative
error between the predicted and the ground-truth val-
ues for each query pose. The root mean square (RMS)
value of the relative error for the case in Figure 2a was
14.5%, and for the case in Figure 2b, it was 17.2%. In
both cases, we utilised the same values for the GP hyper-
parameters. Since the difference in the error levels be-
tween the ideal lawn-mower path of Figure 2a and the
completely random path in Figure 2b is relatively small
(2.7%) we are confident in the generalisation capabilities
of the proposed GP power-consumption model, and can
proceed with its integration into the BO framework.

Impact of A\ on the Path Planner

We evaluated the performance of our BO path planner
using different starting poses and end positions over mul-
tiple simulated terrains. We also tested the effect that
different values of A (see Equation 11), which controls
the exploration-exploitation trade-off, have in the path
planning. In Figure 3, we present a few test cases with
the robot travelling from A = (40, 40) to B = (10, 10)
and initial orientation 6y = —135°, i.e., the robot starts
at the top-right corner and moves towards the bottom-
left one. In this case, the shortest path is a straight line
from A to B. However, this path goes through a valley,
requiring a high power draw from the motors in the up-
hill area close to the goal. Consequently, in this scenario,

y[m]

x
x
x
x
x
x
x
x

(a) Uniformly-spaced poses (b) Random path

Figure 2: Example sets of sample poses used in tests with
the GP model: on the left, a uniformly-spaced set, corre-
sponding to a sweep pattern over the simulated terrain
in 4 orientations; on the right, a random path where
each pose is separated from the consecutive one by a
fixed-length segment and a random turn angle.

the lowest-energy paths should not be taking a straight
line from A to B, but going around the border of the
valley to reach B spending less energy. The BO method
should then be able to select paths to collect samples
for the GP around that area, yielding better estimates
for low energy-consumption paths. For comparisons, we
computed the optimal spline path using simulated an-
nealing on the noise-free cost function.

In all the test cases in Figure 3, we ran the algorithm
for 10 iterations. For lower values of A, the planner per-
forms more exploitation than exploration. Consequently,
the paths are usually very concentrated around a local
low-energy region. These paths can also vary a lot among
different runs of the test, depending on which low-energy
path the algorithm finds first. However, for high values
of A the algorithm explores using longer paths, which can
accumulate higher variance in the energy predictions.
After 10 iterations, the estimates and the noise-free val-
ues for the lowest-energy paths found by the algorithm
in each setting in Figure 3 are shown in Table 2. Among
these test cases, the setting with A = 5 found the best
path in terms of energy consumption. We also observe
that, due to noise and significant differences in height
along the paths, the estimated energy value is slightly
lower than its true value. However, for the case with
A = 5, the algorithm was still able to find a path close
to the true optimum in terms of energy requirements,
which requires 12396 J.

A 0 5 10
E[T*] | 14038 J | 12663 J | 16052.8 J
pe(T*] | 134377 | 12313 J | 14584 J
op[T* | 41J 56 J 78)

Table 2: True energy and its estimates for the lowest-
energy paths found by the BO path planner in the test
cases in Figure 3
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Figure 3: Height map of the simulated terrain with executed paths for different reward function X values (see Equation
11). Each candidate path is plotted with a dashed line, with the lowest-energy path found by the BO algorithm
represented by a solid black line in each case. The optimum path, found by simulated annealing over the noise-free
cost function, is also plotted in a solid white line. The robot’s start location A = (40,40) is marked with a white
cross (+) symbol. In all the cases, the robot’s initial heading is § = —135°, facing the diagonal downwards. The goal

point is also fixed, located at B = (10, 10).
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Figure 4: Evolution of the GP estimates for the robot’s
power consumption on poses with # = —135°, main di-
rection of movement, after iterations 1, 5 and 9 for the
test case in Figure 3b. The upper plots show the esti-
mated mean, fi,,(x). The middle plots show the standard
deviation in the estimate, o, (x). The lower plots show
the relative error between the mean and the computed
ground-truth costs, i.e. |1 — 1, (x)/w(x)].

Though choosing a proper value for A can be a trial
and error process, in practice, a few points can be con-
sidered. For example, setting A = 2 allows the algo-
rithm to consider that a candidate path T could require
an amount of energy in between ug[7T] £ 20g[T] to be
executed. This would correspond to a 95% confidence
interval, if the GP model’s hyper-parameters are prop-

erly set and the terrain slopes are not too steep to the
approximation in the energy integration (Section 4.3).
On the other hand, if these assumptions are not valid,
the true energy value can be quite far from the estimate,
then a higher A\ could allow the algorithm to perform
better.

Figure 4 presents how the GP estimates evolve with
the number of iterations in the paths for the above test
case with A = 5 (Figure 3b). As it can be seen in the
error plots, the mean gradually converges to the ground-
truth distribution in the area where the terrain is being
explored. At the same time, the uncertainty about the
estimations also reduces in the explored area. These re-
sults and the differences in paths seen for each setting
in Figure 3 demonstrate that our BO algorithm is effec-
tively exploring the terrain to learn a power-consumption
model and select paths based on their reward, which in-
volves both cost and information gathered.

Comparisons

Here we compare the performance of our BO path plan-
ner at the task of finding energy-efficient spline paths
against the following non-linear optimisation algorithms:

e Improved Stochastic Ranking FEvolution Strat-
egy(ISRES) [Runarsson and Yao, 2005]: a global
optimisation algorithm; and

e Constrained Optimization by Linear Approxima-
tions(COBYLA) [Powell, 1998]: a local optimisa-
tion algorithm.

We used publicly-available implementations of these
algorithms, provided by the package NLopt [Johnson,
2014]. They directly support non-linear inequality con-
straints, which were used to constrain the curvature of
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Figure 6: Examples of the lowest-energy paths found by each algorithm on the different terrains.

the paths and to limit them to the experimental area.
We have set them to optimise spline parameters based
only on the total energy spent for executing each path.
Since both ISRES and COBYLA would have no prior in-
formation about the objective, their initial solution for
the set of spline parameters was set to By = {0,0,0},
which corresponds to a straight line from start to goal.
We have also used simulated annealing in these tests
to find the true optimum spline path directly over the
noise-free cost function for comparisons.

We evaluated the performance of each method on dif-
ferent terrains where the optimal spline path between the
start and goal locations was non-trivial, i.e., not close to
a straight line. This way, we could verify if the non-linear
optimisation methods under comparison (COBYLA and
ISRES) would be able to find paths close to the global
optimum without the help of a GP model. Each method
was configured to run for 20 iterations. The tests were
repeated 10 times to ensure the consistency of the re-
sults. Figure 5 presents the performance of each algo-
rithm in finding low-energy paths on 3 different terrain
models. On average, the pure energy-based optimisation
with COBYLA and ISRES seems to get stuck at a local

minimum and, on average, is not able to find a better
path within 20 iterations. On the other hand, since the
BO planner builds a model of the terrain as it explores
paths, it was able to find paths closer to the true opti-
mum. Figure 6 presents some of the best paths found by
each algorithm on each of those terrains.

5.2 Experiments with a Physical Robot

In this section we present results obtained in experiments
with a physical robot. We utilised a small four-wheeled
skid-steer robot, shown in Figure 7a, as a test platform.
The robot is equipped with an on-board computer run-
ning ROS!. To measure power consumption, the robot
carries sensors measuring battery voltage and total cur-
rent drain. For localisation, wheel odometry, IMU and
GPS data are fused using an extended Kalman filter
(EKF) providing full 6D pose estimates.

The experiments were performed on an open grass
field in an urban park, shown in Figure 8. For the start
poses, we positioned the robot so that it was facing the
north-east direction from within the area in the lower-
left corner of the image. We set the goal location in

'Robot Operating System: http://www.ros.org



the upper-right corner of the image. This region had a
small hill, partly seen in Figure 7b, between the robot’s
starting and end positions, so that paths going over the
hill and paths going around it require different amounts
of energy expenditure. We ran 12 iterations of our BO
path-planning algorithm with the robot moving at a con-
stant 0.7 m/s linear speed and at a maximum of 0.25
rad/s angular speed. For this experiment, we set A = 5.
Figure 9 shows the predictions of our model for the
energy required by each path chosen by BO immedi-
ately before executing the path and the actual measured
energy consumption for the executed path. This mea-
surement was made by directly integrating the instanta-
neous power-consumption measurements from the sen-
sors over time. The plot shows that the predictions with
the GP model gradually approximate the actual energy-
consumption values, indicating that the model is improv-
ing over time, as seen in simulation. In addition, despite
not much improvement due to the relatively simple ter-
rain, towards the end, the paths’ energy consumption are
lower, demonstrating that the algorithm is able to find
energy-efficient paths in the real-world scenario. This
shows that our proposed method can adapt to multiple
sources of noise and uncertainty in the physical world.

(a) Robot (b) Experiments area

Figure 7: Robot used and partial view of the area where
the field experiments were performed

6 Conclusion

In this paper, we presented a Bayesian optimisation
method to actively learn a model capable of predicting
energy costs for paths between a start and a goal location
in off-road terrains. The method does not require infor-
mation about the terrain’s characteristics, requiring only
access to the robot’s localisation and power-consumption
measurements as it executes a path. As the model is
built, the method is able to find energy-efficient paths,
using a utility function designed to balance the trade off
between exploration and exploitation.

Map data 82016 Google Imagery ©2016
@ Scribble Maps 8

Figure 8: Aerial view of the experiments area overlaid
with the paths executed by the robot running the BO
planner.
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Figure 9: Predictions and measurements for the energy
required to execute each path attempted by the algo-
rithm in the field experiments.

In simulation, results demonstrated the performance
of the method in building an accurate model of the
robot’s power-consumption over the terrain. Then, in
comparisons with other non-linear optimisation algo-
rithms, results showcase its capability of finding low-
energy paths close to the global optimum within the
family of parametric curves employed to represent paths.

A path-planning experiment with a physical robot
demonstrated the applicability of our method to real-
world environments, where a lot of the terrain and
the vehicle’s effects on power consumption are hard to
model. Having a framework that does not depend on
predefined models of these processes offers a great ad-
vantage in designing energy-efficient navigation systems.
Therefore, we believe that the contributions in this pa-
per can provide effective adaptable methods for a variety
of outdoor applications where energy consumption is a
major concern.

As future work, we intend to adapt this framework to
include other variables not considered by the proposed
power-consumption model, such as velocities. Other av-
enues include more complex path parameterisations and
the integration of other constraints, such as obstacle



avoidance, into the planning algorithm.
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