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Abstract

We present a distributed anytime algorithm
for performing MAP inference in graphical
models. The problem is formulated as a lin-
ear programming relaxation over the edges
of a graph. The resulting program has a
constraint structure that allows application
of the Dantzig-Wolfe decomposition princi-
ple. Subprograms are defined over individ-
ual edges and can be computed in a dis-
tributed manner. This accommodates solu-
tions to graphs whose state space does not
fit in memory. The decomposition master
program is guaranteed to compute the opti-
mal solution in a finite number of iterations,
while the solution converges monotonically
with each iteration. Formulating the MAP
inference problem as a linear program allows
additional (global) constraints to be defined;
something not possible with message passing
algorithms. Experimental results show that
our algorithm’s solution quality outperforms
most current algorithms and it scales well to
large problems.

1 Introduction

Undirected graphical models are powerful tools for
modelling many real world problems. They have been
successfully applied to a diverse set of problems such
as: image processing [1], protein design [2], and text
labelling [3]. One desirable operation on such models
is to infer their most probable configuration; the maxi-
mum a posteriori (MAP) problem. For tree-structured
graphs algorithms exist that are guaranteed to com-
pute the globally optimal MAP solution in polynomial
time (see for example: [4, 5]).

Finding the MAP solution for arbitrary graphs has
been proven to be NP-hard [6]. For such graphs ap-

proximation algorithms are required to generate solu-
tions in a feasible time-span. One particularly popular
algorithm is based on Max-Product Belief Propaga-
tion due to Pearl [5]. Max-Product is exact for tree-
structured graphs. For arbitrary graphs the algorithm
has been adapted such that it runs for a number of
iterations and is known as Loopy Belief Propagation
(LBP, see [7]). LBP has (at best) weak guarantees
on convergence and optimality, i.e. local optimality or
guarantees for specific types of loopy graphs. Despite
this, the algorithm has been shown to generate good
results for a large number of problems.

In this paper we propose a novel algorithm for the
MAP inference problem of graphical model G =
(V,E). Starting from a quadratic formulation over
the nodes, s ∈ V (analogous to [8]), the problem
is transformed into an integer formulation over the
edges, (s, t) ∈ E. It is subsequently relaxed into
a Linear Program (LP). The transformation from
quadratic to linear increases both the number of vari-
ables (O(|V |k) → O(|E|k2)) as well as constraints
(O(|V |) → O(|E| +

�
s∈V (|N (s)|− 1)k)). Where for

ease of notation each node has k states, while N (s) are
the neighbours of node s. The resulting LP formula-
tion is equivalent to the standard MAP LP formulation
(see for example [9]). However, defining the LP over
the edge variables has certain advantages as discussed
next.

For problems where the proposed LP relaxation fits
into memory any LP solver may be used to compute
the optimal solution directly. For medium to large-
scale problems there may not be sufficient memory
available to solve the LP. Our algorithm is particu-
larly suited for these cases as we explore the struc-
ture of the constraints to allow the application of the
Dantzig-Wolfe decomposition principle [10]. The de-
composition principle reformulates the LP into a num-
ber of subprograms, one for each edge in our case,
together with a master program. The subprograms
can be solved independently and distributed, while the



master program solves for the optimal solution using
a significantly reduced number of variables. The al-
gorithm is solved iteratively, solutions to the subpro-
grams are used to update the master program and vice
versa. At each iteration the decomposition principle
guarantees that the solution will be closer to the opti-
mal solution, i.e. an anytime algorithm.

The advantages of our algorithm are: 1) it is able to
solve very complex problems that few other algorithms
are able to solve; 2) it scales well for large problems and
allows the use of linear programming even for graphs
where the state space does not fit in memory; 3) it can
be distributed and effectively use the multicore hard-
ware currently available and; 4) it allows the definition
of global constraints which are difficult to enforce in
message-passing based algorithms. This is important
for a number of real-world problems involving graph
matching and data association.

2 Related Work

Several variants of Max-Product Belief Propagation
have been proposed. Generalised Belief Propagation
[11] extends the message passing from pairs of con-
nected nodes to higher order cliques resulting in bet-
ter approximations. Tree-Reweighted Max-Product
methods (TRW, [12, 13]) on the other hand decompose
the original graph into a convex combination of tree-
structured graphs. The tree-structured graphs guar-
antee efficient computations, while the convex combi-
nation allows the computation of an upper bound on
the optimal solution. However, Yanover et al. [14]
showed that TRW fails to solve the problems used in
the experiments of section 5.1.

TRW has strong connections to the Max-Product
Linear Programming (MPLP) algorithm proposed by
Globerson and Jaakkola [15]. MPLP is defined as a
block coordinate descent in the dual of a LP relaxation
constrained by the local marginal polytope. MPLP
has all the advantages of message passing algorithms
but it also has strong convergence guarantees. How-
ever, as the problem is solved in the dual, it means
optimising an upper bound and not the MAP prob-
lem directly. As a result, MPLP is also unable to
solve most of the problems used in the experiments
(see section 5.1). The method developed by Sontag et
al. [2, 16] is considered the state of the art in MAP
inference. It extends MPLP by iteratively adding clus-
ters to the MPLP formulation thus approximating the
marginal polytope.

Komodakis et al. [17] solve the MAP problem by de-
composition. Starting from the same LP relaxation
as MPLP, the problem is transformed into its uncon-
strained dual Lagrangian using Lagrange multipliers.

In the dual the problem is decomposed, where each sub
problem is formed by a spanning tree (similar to TRW
methods). The solutions of the sub problems are used
in a projected sub-gradient method to update the po-
tential values. However, their method (Dual Decom-
position, DD) requires all potential values to be up-
dated and communicated to each sub problem. Thus
making this approach sub-optimal for problems with
large state spaces.

Ravikumar and Lafferty [8] formulate the MAP prob-
lem as a Quadratic Program (QP) relaxation. QP re-
laxations are a more natural fit to the MAP problem as
pair-wise potentials are quadratic in nature. For many
practical problems the QP relaxation is non-convex,
thus requiring further approximations in order to pro-
duce an algorithm that is solvable in polynomial time.
The drawback to using a QP relaxation is that it re-
quires memory squared in the number of states. So for
medium to large scale problems this approach quickly
becomes impractical. In addition, the QP relaxation
has been shown to generate poorer results compared
to a LP relaxation [18].

More recently, Kumar and Zilberstein [19] approached
the MAP estimation problem with an interesting mean
field approximation method. Their method approxi-
mates the problem by considering only distributions
that factorise as a product of distributions over in-
dividual nodes. The resulting non-convex problem
is represented by an equivalent mixture of Bayes
nets with one network for each edge. Expectation-
Maximisation (EM, [20]) is subsequently used to derive
a message passing algorithm. The EM message pass-
ing algorithm is computationally efficient but sensitive
to initial conditions.

The performance of message passing algorithms de-
grades significantly for large scale problems. Due to
memory restrictions it may not be possible to keep all
pair-wise potentials in memory. In such cases, poten-
tials will have to be recomputed with each message
sent. This is not an algorithmic issue but a practical
one, nonetheless it adds to the computational cost. In
addition large messages need to be constructed, again
increasing the cost. Our approach does not suffer this
limitation as it is intrinsically distributed. Edge po-
tentials are computed only once for each distributed
subprogram. Furthermore, our approach permits spec-
ification of constraints on the solution; something not
possible with the above methods. Finally, we show
that our algorithm is able to solve graphs that TRW
methods and MPLP ([12, 13] and [15] respectively) are
unable to solve, since our method solves the primal di-
rectly rather than optimise a bound.



3 LP Formulation

An undirected graphical model G = (V,E) represents
a probability distribution pG(x1, . . . , xN ) overN = |V |
variables. The vertices s ∈ V of the graph index
the random variables xs of the distribution, while the
edges (s, t) ∈ E of the graph capture relationships be-
tween variables xs and xt. Let C be the set of all cliques
of the graph. The distribution must factor as a prod-
uct of clique potentials φc(Xc), where c ∈ C and Xc

are the clique’s variables. Yedidia et al. [11] showed
that, without loss of generality, it is possible to assume
that the graph is a pair-wise Markov Random Field,
i.e. the set of cliques CM = {(s, t) ∈ E}. As a result,
the log of the distribution of X = {x1, . . . , xN}, for
the graph G with potentials Φ = {φc|c ∈ CM} is given
by:

log pG(X;Φ) =
�

s∈V

φs(xs)+

�

(s,t)∈E

φst(xs, xt)− C, (1)

where C is the log of the partition function. In the
remainder we only consider variables xs that take on
values from a finite discrete set Xs. Each xs is a vector
of length |Xs| with elements xi

s ∈ {0, 1} and
�

i x
i
s = 1.

Furthermore, without loss of generality we include the
local potentials in the pair-wise potentials. For dis-
crete graphical models the combined pair-wise poten-
tial may then be expressed as:

Qst = φst + (eφT
s )/|N (s)|+ (φte

T )/|N (t)|, (2)

where N (s) is the set of neighbours of node s. Divi-
sion by the number of neighbours distributes the lo-
cal potential evenly over the pair-wise potentials while
leaving the MAP value unaltered. The vector e is an
appropriately sized vector of 1s. This leads to the fol-
lowing quadratic integer MAP problem,

X
MAP = argmax

X
log pG(X;Φ)

= argmax
X

�

(s,t)∈E

x
T
s Qstxt. (3)

For small scale problems equation 3 may be solved by
a QP relaxation. However, for medium or large scale
problems the resulting relaxation will quickly become
too large to fit into memory. Instead we reformulate
the quadratic objective function into a LP by substi-
tution. The substitution transforms the problem from
an optimisation over the nodes into one over the edges
with a constraint structure that allows the LP to be
solved in a distributed manner.

For each edge (s, t) ∈ E define the edge variable

yst = (xi
sx

j
t |i = 1, . . . , |Xs|,
j = 1, . . . , |Xt|, (s, t) ∈ E) (4)

which, by the discrete nature of xs and xt, has
elements ykst ∈ {0, 1} and

�
k y

k
st = 1 (k =

1, . . . , |Xs||Xt|). Equally, the cost cst can be con-
structed from Qst by ordering the elements of Qst into
a vector corresponding to the elements of yst. The LP
relaxation to the MAP problem is then formulated as:

Maximise�
(s,t)∈E cTstyst

Subject to
Astyst −Asuysu = 0 ∀s ∈ V, t ∈ N (s),

∀u ∈ N (s) \ t�
k y

k
st = 1 ∀(s, t) ∈ E

0 ≤ ykst ≤ 1 ∀(s, t) ∈ E,

k = 1, . . . , |Xs||Xt|.

(5)

The constraints defined by the matrix coefficients Ast

are the consistency constraints. The elements of Ast

are 0 or 1 such that A
i,•
st yst = xi

s, where A
i,•
st is the

i-th row of Ast. Consistency constraints are discussed
in more detail in section 3.1. The second set of con-
straints express a uniqueness of solution for each edge;
only one element of the edge variable yst may be ac-
tive. While the third set of constraints capture the
relaxation from an integer program to a linear pro-
gram.

Equation 5 is equivalent to standard MAP LP formu-
lation (see for example [9]). The advantage of using
equation 5 over the standard formulation is that it
has fewer variables and constraints. The reduction in
variables is straightforward since local potentials (vari-
ables) are included in the pair-wise variables. The con-
straints are less obvious but more important. As shall
be shown in section 4, the communication overhead
is proportional to the number of constraints; fewer
constraints are preferable. For problems with large
state space and small treewidth, equation 5 has signifi-
cantly fewer constraints compared to variables (section
5.2 contains an example). As a result the proposed
method will have a smaller communications overhead
compared to, for example, the Dual Decomposition
method [17].

3.1 Solution Consistency

Equation 5 is defined over the edges. As such con-
straints are required to ensure the solution remains
consistent in the node variables.

Definition Let ms|t = Astyst be a marginal, for node
variable xs, of the edge variable yst.



Proposition 3.1 The solution for the edge variables
{yst|∀t ∈ N (s)} is consistent in the node variable xs

when the marginals {ms|t|∀t ∈ N (s)} are all equal.

Proof The proof can be obtained by simple substitu-
tion of ykst = xi

sx
j
t and

�
i x

i
s = 1.

Consistency constraints are specified over pairs of
edges, i.e. as the difference between pairs of marginals
ms|t and ms|u. For a given node s one edge is used as
the reference edge; edge (s, t) in equation 5. All consis-
tency constraints are specified relative to the reference
edge resulting in a minimum of constraints generated.
Subsequently solving equation 5 will result in a solu-
tion for the edge variables. The mapping from yst to
the node variables xs is given by the following propo-
sition.

Proposition 3.2 If the linear program of equation 5
has a feasible solution, then the mapping from yst to
xs is given by xs = ms|t for any t ∈ N (s).

Proof The equality xs = ms|t follows directly from
the definitions of Ast, yst and ms|t. Proposition 3.1
permits any t ∈ N (s) provided the solution is consis-
tent. Solution consistency, and therefore proposition
3.1, is ensured by virtue of a feasible solution; all con-
straints are met.

3.2 Additional Requirements

Certain optimisation problems have additional re-
quirements (or constraints) imposed on them. To en-
sure neighbouring nodes xs and xt have distinct (or
equality) solutions for states i and j respectively, add
one of the following constraints to equation 5 for each
such state:

Dst,ijyst ≤ 1 ∀(s, t) ∈ E, ∀(i, j) : xi
s �= x

j
t

Est,ijyst = 0 ∀(s, t) ∈ E, ∀(i, j) : xi
s = x

j
t ,

(6)

where Dst,ij = A
i,•
st + A

j,•
ts ensures a distinct solution,

while Est,ij = A
i,•
st −A

j,•
ts ensures an equal solution be-

tween the states i and j of nodes xs and xt. Note that
the constraints of equation 6 are defined locally. This
approach can easily be extended to global constraints.
However, this is omitted for brevity.

4 Decomposition

The Dantzig-Wolfe decomposition principle [10] allows
a LP with a special block-matrix structure to be bro-
ken up into a number of independent subprograms.
The subprograms are iteratively adjusted to take into
account global state (simplex multipliers) due to a
master program. The reader is referred to [10, Chap-
ter 10] for a detailed discussion and proofs. In this

section we provide an interpretation of the principle in
the context of MAP inference for graphical models.

The block-angular system,

Maximise
cT1 y1 + . . . + cTKyK

Subject to
B1y1 + . . . + BKyK = b

F1y1 = f1

. . .
...

FKyK = fK

yi ≥ 0 i = 1, . . . ,K,

(7)

allows decomposition to be applied to the MAP prob-
lem for K = |E|. The matrices {Bi|i = 1, . . . ,K} form
the coupling constraints, they capture interactions be-
tween subprograms. The constraints unique to each
subprogram are constructed from {Fi|i = 1, . . . ,K}.

The constraints of equation 5 have this block-angular
structure. Bst is constructed from the set {Ast} for
edge (s, t), appropriately padded with 0s to ensure all
B have the same number of rows. If additional require-
ments are specified (see section 3.2) then the sets {Dst}
and {Est} are also included in Bst. The subprogram
constraints are the uniqueness of solution constraints;
Fst =

�
yst.

The decomposition principle exploits the Resolution
Theorem [10]. Briefly, the Resolution Theorem states
that every feasible solution of the convex polyhedral
set Ax = b, x ≥ 0 can be represented as a convex
combination of its extreme points1 (see [10, Theorem
10.5] for more details). Using the Resolution Theorem,
equations of the form of equation 7 can be transformed
into a master program together with K subprograms.
The master program maximises a convex combination
of extreme points, while the subprograms generate ex-
treme points at each iteration.

We now present the steps of the algorithm, each of the
steps are discussed in more detail in the sections to
follow:

1. Initialise the algorithm (section 4.1) to find an
initial basic feasible solution.

2. Solve the master program using columns corre-
sponding to the initial basic feasible solution.
This provides global state in the form of the sim-
plex multipliers (π, γ); see section 4.3 for more
details.

3. Solve all subprograms using the current simplex
multipliers (section 4.2).

1Normalised extreme homogeneous solutions are omit-
ted as our subprograms cannot generate these.



4. Add columns to the master program according
to optimality of subprogram solutions and corre-
sponding column cost. Solve the master program
to obtain new simplex multipliers (π, γ); section
4.3.

5. If the master program has found the optimal so-
lution go to step 6, if not go to step 3.

6. Transform the master program’s solution to the
solution of equation 5 and perform rounding if
required, see section 4.4 for more details.

4.1 Initialisation

The aim of initialisation is to find an initial basic fea-
sible solution. One common approach to initialising
Dantzig-Wolfe decomposition is using a Simplex Phase
1 approach [10, Section 10.2.4]. This involves finding
the maxima of each subprogram using the actual costs.
The resulting solutions are used to start the master
program. However, in our case the subprograms are
trivial. This generally means that the consistency con-
straints are violated, thus preventing the decomposi-
tion from even starting. Instead when no additional
requirements are specified, the procedure of algorithm
1 can be used to find an initial basic feasible solution
in one step.

Algorithm 1 Pseudo-code of algorithm initialisation.

1: Input: Graph G = (V,E), potentials φs, ∀s ∈ V

and φst, ∀(s, t) ∈ E

2: Output: Initial basic feasible solution
{ỹst|∀(s, t) ∈ E}

3: for s ∈ V do

4: φ̃ ← φs

5: for t ∈ N (s) do
6: φ̃ ← φ̃+

�
xt

φst

7: end for

8: x̃s ← argmaxxs
(φ̃)

9: end for

10: for (s, t) ∈ E do

11: ỹst ← (x̃i
sx̃

j
t |i = 1, . . . , |Xs|, j = 1, . . . , |Xt|)

12: end for

As can be seen from algorithm 1, a node’s initial so-
lution x̃s is found by maximising over the sum of lo-
cal and marginalised pair-wise potentials. Once the
initial solutions for each node have been found, they
are mapped to their equivalent subprogram initial ba-
sic feasible solutions ỹst. Since the initial solutions
ỹst are based on node solutions, the consistency con-
straints are always met. The subprograms’ initial ba-
sic feasible solutions are subsequently used to get the
decomposition master program started.

When additional requirements (see section 3.2) are
specified the above procedure is not guaranteed to find
an initial basic feasible solution. In such cases one can
adjust line 8 such that it takes account of additional
requirements. If this is not possible then an initial so-
lution will have to be obtained via other means. This
requires replacing the for-loop on line 3. For exam-
ple, many solution constraints allow a trivial solution,
x̃s can be initialised with this trivial solution. In the
more general case, algorithms that solve Constraint
Satisfaction Problems (see for example [21]) can be
used to find an initial solution for x̃s.

4.2 Subprogram

For inference in a graph, the subprograms maximise a
linear program over the edges as follows:

Maximise
cTstyst −BT

stπ

Subject to�
k y

k
st = 1

0 ≤ ykst ≤ 1 k = 1, . . . , |Xs||Xt|.

(8)

The objective function of equation 8 is the actual cost
of the edge, cst, adjusted by the current state of the
interactions, BT

stπ. Here BT
st are the concatenated con-

sistency constraints (and optional additional require-
ments) while π are the corresponding simplex multi-
pliers (see section 4.3). This adjusted cost finds the
edge’s maximum based on the current global state of
the algorithm. It is however not necessary to invoke
a LP solver for each subprogram. There are two con-
straints for each edge, these express the uniqueness of
solution (ykst ∈ {0, 1} and

�
k y

k
st = 1). A solution to

the subprograms can therefore be found by a simple
maximisation over a vector; i.e. the solution is always
an extreme point.

Let ŷst,i represents the optimal solution for edge (s, t)
at iteration i. If cTstŷst,i − BT

stπ �= γst then this solu-
tion is globally sub-optimal and it may be incorporated
into the master program, provided it has not previ-
ously been incorporated. In case of a tie (multiple
solutions with the same maximum) standard simplex
tie breaking rules can be applied. In the experiments
we select either the solution with the lowest index k

(analogous to Bland’s rule [22]), or the index k for
which the actual cost is maximal (analogous to the
Largest-Coefficient rule [23]).

4.3 Master Program

The purpose of the master program is twofold. First,
it generates global state in the form of the simplex
multipliers π and γ. Second, any feasible solution to
the master program can be transformed into a solu-



tion of the original LP, equation 5. At each iteration
of the algorithm columns are added to the master pro-
gram depending on optimality of subprogram solutions
(see section 4.2). The added columns allow the master
program to update the simplex multipliers based on
subprogram solutions.

For the MAP inference problem, the master program
is defined as shown in equation 9.

Maximise�
(s,t)∈E

�
i∈Lst

gistα
i
st

Subject to�
(s,t)∈E

�
i∈Lst

G
•,i
st α

i
st = 0�

i∈Lst
αi
st = 1 ∀(s, t) ∈ E

αi
st ≥ 0 ∀(s, t) ∈ E,

∀i ∈ Lst,

(9)

where Lst is the set of iteration indices, of edge (s, t),
for which columns have been added to the master pro-
gram. The element gist = cTstŷst,i is the cost of the sub-
program solution at iteration i. While G

•,i
st = Bstŷst,i

is the column of corresponding consistency constraints.
The elements αi

st are the convexity variables from the
Resolution Theorem. They have a particularly elegant
interpretation for the MAP problem; they represent
the likelihood of the subprogram solutions ŷst,i. Note
that π are the simplex multipliers corresponding to the
consistency constraints while γ are the simplex multi-
pliers of the convexity variables.

Up to |E| columns may be added to the master pro-
gram, one for each sub-optimal subprogram, at each it-
eration. However, not all of these prospective columns
will aid in finding a solution. Quite to the contrary,
often they will add unnecessary complexity to the mas-
ter program. Instead of adding all prospective columns
to the master program, a limited number of columns
may be added at each iteration. In such cases columns
are selected based on their cost. At iteration i only
columns corresponding to maximal costs gist are added
(similar to pivoting in the simplex method).

With each iteration the master program will grow in
size. It is possible that, after a number of iterations,
the master program will become too complex for the
solver to find a solution efficiently. In such situations
the master program can be reduced in size and com-
plexity simply by removing non-basic columns. Re-
moval of non-basic columns does not impact on the
solution quality as a LP solves a convex optimisation
problem. It will however impact on the number of iter-
ations until convergence. With more columns available
the decomposition is able to find the optimal solution
in fewer iterations, but it may take longer to solve each
individual iteration.

Column generation procedures, such as Dantzig-Wolfe
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Figure 1: Monotonic convergence property of the mas-
ter program for the Side-Chain Prediction graph 1ug6.

Decomposition, have the desirable property that both
the size as well as the growth of the master program
can be controlled. As a result even very large problems
can be efficiently dealt with.

4.4 Optimal Solution

Dantzig-Wolfe decomposition is guaranteed to con-
verge in a finite number of iterations [10, Theorem
10.4]. Once converged, the solution to equation 5 can
be found from the convexity variables αi

st and the cor-
responding subprograms’ optimal solutions ŷst,i:

y̌st =
�

i∈Lst

α
i
stŷst,i. (10)

The globally optimal solution y̌st is the sum of the
subprograms’ optimal solutions scaled by their corre-
sponding convexity variables (or likelihoods). The y̌st

can be mapped back to a corresponding optimal node
solution x̌s (see section 3.1).

Rounding may have to be applied to x̌s to find an
integer solution. Instead of applying rounding schemes
such as [24, 25], we construct an Integer Program (IP)
over the non-zeros solution states of x̌s. For each graph
the percentage of nodes for which there is no integer
solution is generally quite low (less than 5% in the
experiments). These fractional nodes generate a set of
probable answers. Analysis also showed that often one
of these probable answers is the true optimal solution.

The IP operates on the same graph but on only those
states i (and corresponding potential values) for which
x̌i
s �= 0. The resulting IP is small and can be solved in

a fraction of the time of the decomposition (typically
less than 10% of the running time). The benefit of
using an IP is that it is guaranteed to always find the
best solution out of the set of probable answers.
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Figure 2: Side-Chain Prediction results. Each figure displays the computed MAP value versus its optimal value
for all 30 graphs for a given algorithm. Points on the main diagonal are graphs for which an optimal solution
is obtained while the horizontal deviation from the diagonal gives a measure of the MAP error. Left to right:
proposed algorithm (DW-LP), TRW-S, MPLP, MPLP-T.

5 Experiments

5.1 Side-Chain Prediction

The performance of the proposed algorithm (DW-LP)
is measured on the Rosetta Side-Chain Prediction data
set [14, 2]. This involves finding the three-dimensional
configuration of rotamers given the backbone structure
of a protein [14]. Following Sontag et al. [2] we apply
our algorithm to the 30 graphs that TRW [12] is unable
to solve. We compare our algorithm against TRW-S
(which improves on TRW, see [13]) and MPLP [15]
as both, like our algorithm, consider only the local
marginal polytope. In addition we also show the result
for MPLP with tightening [2]. This is the current state
of the art, we refer to it as MPLP-T.

Both TRW-S and MPLP are run for 1000 iterations
or until convergence, whichever comes first. MPLP-
T is operated as described in [2]. Like TRW-S and
MPLP our algorithm is run for a maximum of 1000
iterations or until convergence. In addition up to 200
columns corresponding to maximal costs are added to
the DW-LP master program at each iteration. While
no non-basic columns are removed from the master
program (see section 4.3).

Once finished the MAP value is computed from the
node assignments. The MAP values are compared
against their true values, differences smaller than 1e-6
are considered equal. The comparisons are given in
table 1 and figure 2.

As can be seen from table 1 and figure 2, a like-for-like
comparison shows that the proposed algorithm signif-
icantly outperforms both TRW-S as well as MPLP. It
is able to solve more than half of the graphs to their
optimal solution while the MAP error is much smaller
in comparison. Note also that for all 30 graphs our al-
gorithm converged to a solution within 1000 iterations
(TRW-S and MPLP did not converge for all graphs).
MPLP-T is able to solve all the problems as it itera-

tively adds triplet clusters to the LP formulation and
re-solves using MPLP. We believe that our algorithm
can use such an iterative approach as well at the ex-
pense of computational cost.

Table 1: Algorithm performance on 30 graphs of the
Side-Chain Prediction data set.

Optimal µ(MAP σ(MAP
Solution error) error)

DW-LP 16 7.51 24.18
TRW-S 6 72.28 227.66
MPLP 1 274.86 476.96

MPLP-T 30 0 0

Figure 1 displays the monotonic convergence property
of our algorithm for graph 1ug6. At the last itera-
tion, when the master program finds its optimal solu-
tion, the size of the master program consist of fewer
than 70,000 variables. On the other hand, equation 5
for the same graph consists of approximately 650,000
variables; a significant reduction. The average size of
equation 5 is approximately 460,000 variables (for the
30 graphs), the average size of the master program
(upon convergence) is approximately 42,000 variables.

The implementation for TRW-S and MPLP methods
are optimised C++ implementations from the respec-
tive authors’ web-sites. Their average running times
over all 30 graphs are: 2.70s, 37.16s, and 42.75s for
TRW-S, MPLP, and MPLP-T respectively. Our algo-
rithm is fully implemented in Matlab with the excep-
tion of the LP solver (CPLEX). The average running
time for our algorithm is 46.49s when solving equation
5 directly (as all graphs fit in memory). When using
the decomposition (equations 8 and 9) the average run-
ning time increases to 200.74s which is mostly due to
additional overhead added in Matlab. The decompo-
sition takes longer, but its strength is that it can han-
dle large-scale problems with global constraints (which



none of the other methods can) as shown in the next
section.

5.2 Shape Matching

Shape matching can be seen as a data association prob-
lem where each point of a curve needs to be uniquely
associated to another point of a different curve. In
[26] Ramos et al. introduce a Conditional Random
Field (CRF) for matching two sets of laser range finder
data using only local shape information. Compared to
the Side-Chain Prediction problem of section 5.1, this
problem is not as difficult to optimise (the distribu-
tion is quite peaked). However, the scan matching
problem is characterised by a very large state space if
formulated as a LP relaxation, up to 362361 possible
combinations. The reader is referred to [26] for further
details on the CRF and its feature functions.

The quality of scan matching solutions improves if all
nodes occupy a unique state (with the exception of
a catch-all outlier state). In [26] LBP is used which
does not allow for such constraints to be considered
in the inference process. We therefore demonstrate
the strength of our algorithm for dealing with both
large-scale problems as well as external global con-
straints. Note that we are unable to apply TRW or
MPLP methods as their implementations require all
pair-wise potentials to be kept in memory. This ex-
ceeds the memory available on our test environment
(4GB). Our LBP implementation overcomes the mem-
ory issue by recomputing the pair-wise potentials with
each message sent.

In [26] 20 labelled data sets are used for training.
Leave one out cross-validation is used on these 20 data
sets to compare the quality of solution of LBP and the
proposed algorithm. LBP will run for a maximum of
10 iterations or until convergence, whichever occurs
first. The proposed algorithm will be run in a dis-
tributed environment. Subprograms are solved by a
cluster of 5 machines with 4 or 8 CPU cores each. At
each iteration all sub-optimal subprograms are added
to the master program. Once the master program
takes more than 2.5 seconds to solve, all non-basic
columns are removed. Finally, the algorithm is run
for a maximum of 250 iterations or until convergence.
The comparisons are given in table 2 while figure 3
shows partial matching results for a single graph.

In figure 3 the blue crosses and red stars represent posi-
tions of an object measured by the laser range finder.
The range finder will measure the same object but
from different poses. The aim is to find unique matches
between blue crosses and red stars represented by the
black lines.

The results of table 2 show that our algorithm pro-
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Figure 3: Scan matching results. Left hand figure
show results from LBP, as can be seen several blue
points (crosses) match to the same red point(s) (stars).
The right hand figure is from the proposed algorithm,
due to its global constraints it has no many-to-one
matches. Note, black lines indicate a match between
a blue and red point.

Table 2: Algorithm performance on 20 graphs of the
scan matching data set.

µ(accuracy) µ(many-to-one matches)

DW-LP 44.99% 0%
LBP 28.88% 16.16%

duces a higher accuracy compared to LBP. The re-
moval of many-to-one matches is particularly impor-
tant for scan matching. However, LBP matches sev-
eral points of an object in one set to the same point in
the other set (figure 3), something not physically pos-
sible with rigid objects. Our DW-LP algorithm per-
mits constraints on the solution, thereby eliminating
all many-to-one matches and preserving object rigid-
ity.

6 Discussion

Many real-world problems are characterised, not only
by the difficulty in solving them, but also by the size
of the problem and constraints on its solution. Such
problems require a different approach in algorithm de-
sign.

This paper presented a novel algorithm for distributed
MAP inference based on LP decomposition. Unlike
other LP (or QP) formulations ours is defined over
edge variables instead of node variables. The advan-
tage of such a formulation is that the LP has fewer
constraints and allows decomposition into a number
of subprograms (one for each edge) together with a
small master program. The subprograms can be dis-
tributed over a network to allow large-scale problems
to be solved efficiently. In addition, the master pro-
gram monotonically converges to its optimal solution



resulting in an anytime algorithm for performing MAP
inference.

Experimental results show that the algorithm finds
solutions comparable to current state-of-the-art and
scales well to large problems. Additionally, the exper-
iments showed that the algorithm can successfully be
applied to problems that involve global constraints; a
difficult task for message-passing based algorithms.
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