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Abstract— Matching laser range scans observed at different
points in time is a crucial component of many robotics tasks,
including mobile robot localization and mapping. While existing
techniques such as the Iterative Closest Point (ICP) algorithm
perform well under many circumstances, they often fail when the
initial estimate of the offset between scans is highly uncertain.
This paper presents a novel approach to 2D laser scan matching.
CRF-Matching generates a Condition Random Field (CRF) to
reason about the joint association between the measurements
of the two scans. The approach is able to consider arbitrary
shape and appearance features in order to match laser scans.
The model parameters are learned from labeled training data.
Inference is performed efficiently using loopy belief propagation.
Experiments using data collected by a car navigating through
urban environments show that CRF-Matching is able to reliably
and efficiently match laser scans even when no a priori knowledge
about their offset is given. They additionally demonstrate that our
approach can seamlessly integrate camera information, thereby
further improving performance.

I. I NTRODUCTION

Many robotics tasks require the association of sensor data
observed at different points time. For instance, in mobile robot
mapping, a robot needs to be able to accurately determine the
spatial relationship between different laser scans. While this
task is rather straightforward if enough prior knowledge about
the relative location of the scans is given, it becomes more
challenging when no knowledge about the spatial relationship
is available. Given two scans of sensor measurements, the
matching problem can be defined as finding a transformation
that best matches one scan to another. For example, when
laser range finders are used in mobile robotics, such a transfor-
mation corresponds to the movement performed by the robot
between scans. To find the transformation between two scans,
it is necessary to associate the individual measurements inone
scan with the corresponding measurements in the other scan.

The most widely used algorithm for matching range sensors
in robotics is the Iterative Closest Point (ICP) algorithm
[5]. ICP alternates between nearest neighbor association and
least-squares optimization to compute the best transformation
between the laser scans given the most recent association.
Although ICP and its extensions are fast and in general
produce good results, simple nearest neighbor associationhas a
number of drawbacks. First, ICP frequently generates incorrect

transformation estimates when the initial offset between the
scans is large. This is in part caused by the association
cost function that does not take into account higher-level
information from the data, such as shape descriptions. Second,
ICP does not provide adequate means of fusing data collected
by multiple types of sensors to improve matching. Third, ICP
provides only limited support for estimating the uncertainty
of the resulting transformation. Such uncertainty estimates are
important in the context of tasks such as robot localizationor
mapping using Bayes filters [21].

This paper presents CRF-Matching, an alternative procedure
for laser scan matching based on Conditional Random Fields
(CRFs) [8]. CRFs are undirected graphical models that are
very powerful for modeling relational information (spatial data
for example). By directly modeling the conditional probability
of the hidden states given the observations rather than the joint
probability, CRFs avoid the difficult task of specifying a gener-
ative model for observations, as necessary in techniques such
as Hidden Markov Models (HMMs) or Markov Random Fields
(MRFs). As a result, CRFs can handle arbitrary dependencies
between observations, which gives them substantial flexibility
in using high-dimensional feature vectors.

CRF-Matching focuses on the problem of data association
between two laser scans. This is accomplished by converting
the individual measurements of one laser scan into hidden
nodes of a CRF. The states of each node range over all
measurements in the other scan. The CRF models arbitrary
information about local appearance and shape of the scans.
Consistency of the association is achieved by connections
between nodes in the CRF. CRF-Matching learns model
parameters discriminatively from sets of aligned laser scans.
When applied to a new pair of scans, maximuma posteriori
estimation is used to determine the data association, whichin
turn specifies the spatial transformation between the scans.

Extensive experiments show that CRF-Matching signifi-
cantly outperforms ICP when matching laser range-scans with
large spatial offset. Furthermore, they show that our approach
is able to reliably match scans without a priori information
about their spatial transformation, and to incorporate visual
information to further improve matching performance.

This paper is organized as follows. After discussing related



work in Section II, we provide an overview of Conditional
Random Fields in Section III. CRF-Matching is introduced
in Section IV, followed by an experimental evaluation in
Section V. We conclude in Section VI.

II. RELATED WORK

ICP has been applied to robotics quite successfully, how-
ever, it does not explicitly account for sensor rotation since it
uses the Euclidean distance to compute the nearest neighbor.
To overcome this limitation, [12] combines the normal NN
with angular constraints in the Iterative Dual Correspondence
(IDC). The algorithm uses two types of correspondences
(translation and rotation) and at each iteration performs two
optimizations. [12] also proposes the interpolation of lines
between laser points to improve robustness for large trans-
formations. Although these extensions improve the basic ICP
algorithm, they do not eliminate the chance the algorithm
reaches a poor local minima.

Methods for computing the transformation uncertainty from
ICP were also proposed [2], [17]. However, they do not
take into account the association uncertainty between pairs of
measurements. This can cause large errors in the uncertainty
estimation for the transformation since weak associationscan
equally contribute to the overall estimate.

Shape matching has been a long-standing problem espe-
cially for the computer vision community (see [22] for a
review). Various techniques have been applied to represent
shape including Fourier descriptors [20], parametric curves
[13], and geodesic distances [9]. We use some of these ideas
in this work to encode shape and image properties.

A similar probabilistic model for 3D matching of non-
rigid surfaces was proposed by [1]. The model is trained
generatively and assumes a large number of range points in
the objects for accurate results. The main feature employed
is the geodesic distance which performs well when there
is a well-defined object structure. However, in unstructured
environments this assumption is not valid. For this reason we
employ several features for shape description with the addition
of image features when convenient.

Loop closure detection in outdoor environments was inves-
tigated in [15]. A combined laser and image matching was
proposed with a vocabulary of features. In this paper, we
also combine laser and camera information for loop closure
detection as a possible application for our technique. The key
benefit of our method is the deployment of a single proba-
bilistic model able to fuse and provide uncertainty estimation
in a natural manner.

III. PRELIMINARIES

A. Conditional Random Fields (CRF)

Conditional random fields (CRFs) are undirected graphi-
cal models developed for labeling sequence data [8]. CRFs
directly modelp(x|z), the conditional distribution over the
hidden variablesx given observationsz. This is in contrast
to generative models such as Hidden Markov Models or
Markov Random Fields, which apply Bayes rule to infer

hidden states [18]. Due to this structure, CRFs can handle
arbitrary dependencies between the observationsz, which
gives them substantial flexibility in using high-dimensional
feature vectors.

The nodes in a CRF represent hidden states, denotedx =
〈x1,x2, . . . ,xn〉, and data, denotedz. The nodesxi, along
with the connectivity structure represented by the undirected
edges between them, define the conditional distributionp(x|z)
over the hidden statesx. Let C be the set of cliques (fully
connected subsets) in the graph of a CRF. Then, a CRF
factorizes the conditional distribution into a product ofclique
potentialsφc(z,xc), where everyc ∈ C is a clique in the graph
and z and xc are the observed data and the hidden nodes
in the cliquec, respectively. Clique potentials are functions
that map variable configurations to non-negative numbers.
Intuitively, a potential captures the “compatibility” among the
variables in the clique: the larger the potential value, the
more likely the configuration. Using clique potentials, the
conditional distribution over hidden states is written as

p(x | z) =
1

Z(z)

∏

c∈C

φc(z,xc), (1)

whereZ(z) =
∑

x

∏
c∈C φc(z,xc) is the normalizing partition

function. The computation of this partition function can be
exponential in the size ofx. Hence, exact inference is possible
for a limited class of CRF models only.

Potentialsφc(z,xc) are described by log-linear combina-
tions of feature functionsfc, i.e.,

φc(z,xc) = exp
(
w

T
c · fc(z,xc)

)
, (2)

wherew
T
c is a weight vector, andfc(z,xc) is a function that

extracts a vector of features from the variable values. Using
feature functions, we rewrite the conditional distribution (1)
as

p(x | z) =
1

Z(z)
exp

{
∑

c∈C

w
T
c · fc(z,xc)

}
(3)

B. Inference

Inference in CRFs can estimate either the marginal distribu-
tion of each hidden variablexi or the most likely configuration
of all hidden variablesx (i.e., MAP estimation), as defined
in (3). Both tasks can be solved usingbelief propagation
(BP), which works by sending local messages through the
graph structure of the model. Each node sends messages to
its neighbors based on messages it receives and the clique
potentials, which are defined via the observations and the
neighborhood relation in the CRF.

BP generates exact results in graphs with no loops, such
as trees or polytrees. However, since the models used in
our approach contain various loops, we apply loopy belief
propagation, an approximate inference algorithm that is not
guaranteed to converge to the correct probability distribu-
tion [14]. In our experiments, we compute the MAP labeling
of a scan match using max-product loopy BP. Fortunately,
even when the algorithm failed to converge, our experiments
showed reasonable results.
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Fig. 1. Graphical representation of the CRF-Matching model.The hidden statesxi indicate the associations between the points in the different scans. The
observationszi corresponds to shape or visual appearance information extracted from the two laser scans.

C. Pseudo-Likelihood Parameter Learning

The goal of CRF parameter learning is to determine the
weights of the feature functions used in the conditional
likelihood (3). CRFs learn these weights discriminativelyby
maximizing the conditional likelihood of labeled trainingdata.
While there is no closed-form solution for optimizing (3),
it can be shown that (3) is convex relative to the weights
wc. Thus, the global optimum of (3) can be found using a
numerical gradient algorithm. Unfortunately, this optimization
runs an inference procedure at each iteration, which can be
intractably inefficient in our case.

We therefore resort to maximizing thepseudo-likelihood
of the training data, which is given by the sum of local
likelihoods p(xi | MB(xi)), where MB(xi) is the Markov
blanket of variablexi: the set of the immediate neighbors ofxi

in the CRF graph [4]. Optimization of this pseudo-likelihood
is performed by minimizing the negative of its log, resulting
in the following objective function:

L(w) = −

n∑

i=1

log p(xi | MB(xi),w) +
(w−w̃)T (w−w̃)

2σ2
(4)

Here, the terms in the summation correspond to the negative
pseudo log-likelihood and the right term represents a Gaussian
shrinkage prior with meañw and varianceσ2. Without addi-
tional information, the prior mean is typically set to zero.In
our approach, we use unconstrained L-BFGS [11], an efficient
gradient descent method, to optimize (4). The key advantage
of maximizing pseudo-likelihood rather than the likelihood
(3) is that the gradient of (4) can be computed extremely
efficiently, without running an inference algorithm. Learning
by maximizing pseudo-likelihood has been shown to perform
very well in different domains; see [7], [19], [6].

IV. CRF-MATCHING

A. Model Definition

In order to find the association between a laser scanA

and another scanB, CRF-Matching generates a CRF that
contains a hidden nodexi for each laser point in scanA.
Such a CRF is shown in Figure 1. For now, we assume that
each point in scanA can be associated to a point in scan
B; outliers will be discussed at the end of this section. To
reason about associations between the two scans, each hidden
statexi of the CRF ranges over all points in laser scanB.

The nodeszi in Figure 1 correspond to features associated
with the individual laser points. These features describe local
appearance properties of the laser scans. In order to achieve
global consistency between the individual data associations,
each hidden node is connected to other hidden nodes in the
network. We now describe the individual features used in the
clique potentials of the CRF model.

B. Local Features

CRF-Matching can employ arbitrary local features to de-
scribe shape, image properties, or any particular aspect of
the data. Since our focus is on associating points in scanA

to similar points in scanB, our features describedifferences
between data points. The learning algorithm provides means
to weight each of the resulting features to best associate the
data. The local features are described as follows:
Spatial distance: This feature measures the distance between
points in one scan w.r.t. points in the other scan. This is the
basic feature used in ICP, which rather than representing the
shape of the scan, accounts for small position transformations.
If we denote the locations of individual points in scanA and
B by zA,i andzB,j , respectively, then the featurefd for point
i in scanA can be defined as

fd (i, j, zA, zB) =
‖zA,i − zB,j‖

2

σ2
, (5)

whereσ2 is the variance of the distances in the training data.
Note that the value of this feature depends on the pointj to
which i is associated. The reader may also notice that this
feature is only useful if the initial offset and rotation between
the two scans is small.
Shape difference: These features capture how much the local
shape of the laser scans differs for each possible association.
While local shape can be captured by various types of features,
we chose to implement very simple shape features measuring
distance, angle, and geodesic distance along the scans.

To generate distance features, we compute for each point
in scanA its distance to other points in scanA. These other
points are chosen based on their relative indices in the scan.
The same distances can be computed for points in scanB,
and the resulting feature is the difference between the distance
values inA and B. To see, letk be an index offset for the
distance feature. The feature value corresponding to points i



and j is computed as follows:

fdist (i, j, k, zA, zB) =

‖‖zA,i − zA,i+k‖ − ‖zB,j − zB,j+k‖‖
2

σ2
. (6)

In our implementation this feature is computed for index
offsetsk ∈ {−1, 1,−3, 3,−5, 5}. The reader may notice that
this feature is based on the assumption that the two scans
have similar densities. However, even though this assumption
is often violated, we found this feature to be very valuable to
increase consistency of data associations.

Another way to consider local shape is by computing the
difference between the angles of points in both scans w.r.t their
neighbors. The angle of a pointzA,i is defined as the angle
between the segments connecting the point to its neighbors,
wherek indicates the index offset to the neighbor. This feature
is defined as:

fangle (i, j, k, zA, zB) =

‖6 (zA,i−kzA,i, zA,izA,i+k) − 6 (zB,j−kzB,j , zB,jzB,j+k)‖
2

σ2
(7)

As with the distance feature, we compute the difference of
angles for neighbors 1, 3 and 5 points apart.

Thegeodesic distanceprovides additional shape information
as it is defined as the sum of Euclidean distances between
points along the scan. As with the previous features, it can be
calculated for different neighborhoods representing local or
long-term shape information. Given pointszA,i andzB,j and
a neighborhoodk, the geodesic distance feature is computed
as:

fgeo (i, j, k, zA, zB) =∥∥∥
∑i+k−1

l=i ‖zA,l+1 − zA,l‖ −
∑j+k−1

l=j ‖zB,l+1 − zB,l‖
∥∥∥

σ2
.(8)

[1] used such a feature for matching 3D laser scans.
Visual appearance: When camera data is available, it can
be integrated with shape information from the scans to help
with the association. The projection of laser points into the
camera image is used to extract an image patch for each laser
point. We use Principal Components Analysis to reduce the
dimensionality of image features. The feature is then computed
as the Euclidean distance between the principal components
of a patchzI

A,i in scanA andzI
B,j in scanB:

fPCA

(
i, j, zI

A, zI
B

)
=

∥∥zI
A,i − zI

B,j

∥∥2

σ2
. (9)

All features described so far arelocal featuresin that they only
depend on a single hidden statei in scanA (indicesj andk

in the features define nodes in scanB and neighborhood size).
The main purpose of these features is to associate scan points
that have similar appearance. However, in order to generate
consistentassociations it is necessary to define features that
relate the hidden states in the CRF to each other.

C. Pairwise Features

The following features are used to define the clique poten-
tials of nodes connected in the CRF.
Association: The main purpose of this feature is to ensure con-
sistency (avoiding crossover labels for example) and enforce
sequential labeling: If a measurementi in A is associated to
measurementj in B, its neighbori + 1 has a high chance
of being associated toj + 1 in B. To measure consistency,
we define a function∆ = xi+k − xi that determines the
difference between the hidden states of two nodesxi andxi+k.
When∆ = k, then the associations ofxi andxi+k are fully
consistent. We convert∆ into ten different binary features,
corresponding to different∆ values.
Pairwise distance: This feature is very similar tofdist de-
scribed above. However, instead of being defined over asingle
hidden nodexi only, it measures the consistency between the
associations oftwo hidden nodesxi andxj :

fpair (i, j,m, n, zA, zB) =

‖‖zA,i − zA,j‖ − ‖zB,m − zB,n‖‖
2

σ2
. (10)

Here,i and j are the indices of points in scanA, andm and
n are values of their hidden nodes. In essence, this feature
assumes that the two scans have the same shape and scale. In
contrast tofdist, however, it does not assume that the scans
have the same spatial resolution. Such a feature has been
shown to be very valuable for matching camera images [3].

D. Outlier Detection

So far we assumed that every point in scanA can be asso-
ciated to a point in scanB. However, such an approach cannot
handle changes in an environment or partially overlapping
laser scans. In order to deal with such cases, the hidden state
of each node contains one additional value that corresponds
to “outlier”. Unfortunately, most of the features discussed so
far can and should not be computed if one of the involved
hidden nodes is an outlier. For instance, the pairwise distance
feature fpair cannot be computed if the hidden valuem is
set to “outlier”, since there is no associated laser pointzB,m

to which the distance can be computed. Fortunately, CRFs
are extremely well suited for handling such cases. We simply
define two additional binary feature functions that are true
whenever the value of an involved hidden node is “outlier”
(we get one function for local features and one function
for pairwise features). Whenever such a feature is true, the
values of all corresponding feature functions are set to zero.
When learning the weights of the different feature values, the
algorithm automatically learns weights for the binary outlier
features that result in most consistent data associations.

E. Boosting Features

CRFs are able to directly incorporate the local, continuous
features described above. However, in order to model more
complex, nonlinear relationships between hidden states and
feature values, it is advantageous to discretize the features.
Recently, Friedman and colleagues [6] showed that it is



possible to learn AdaBoost classifiers from labeled training
data and to use the resulting classifier outputs as features in a
CRF. We apply their approach by learning boosted classifiers
that combine the local features described above.

To train Adaboost, each pair of laser points is labeled
as "associated" or "not associated". Adaboost then generates
a discretization of the continuous features and an initial
classification of pairs of laser points (whether or not they
should be associated). The output value of Adaboost, which
is a non-linear combination of the learned features, is used
as an observation in the CRF. Note that this "observation"
is different for each possible hidden state in the CRF (each
hidden state gives a different association of laser points).
The CRF then learns a weight for the Adaboost output in
combination with the other weights (pairwise feature weights
and outlier feature weight). For the experiments Adaboost was
trained with 50 decision stumps.

F. Position estimation

To compute the spatial transformation between two laser
scans, CRF-Matching uses the uncertainty over the association
obtained. The uncertainty is incorporated in a least squared
optimization problem for the non-outlying points:

Err =

n∑

i=1

wi

(
zA,iR + T − zB,a(i)

)2
,

where a(i) is the point in scanB associated with pointi,
andR andT are the rotation and translation matrices respec-
tively. The weightwi corresponds to the probability of the
association for pointi obtained with belief propagation. Using
this approach, points that are more likely to have the correct
association have more importance on position estimation. The
same does not occur in ICP where each point has the same
contribution.

G. Algorithm Overview and Performance

CRF-Matching converts the matching problem into a proba-
bilistic inference procedure on a CRF where the hidden states
correspond to association hypotheses. Outliers are handled
explicitly by an additional “outlier” state. We defined various
local shape and appearance features. Instead of using these
features directly in the CRF, we first train boosted classifiers
in order to model more complex relationships between the
features. The weights of all local and pairwise features are
learned from labeled training scans using pseudo-likelihood
maximization. During testing, we apply loopy belief propaga-
tion (LBP) to compute the maximum a posteriori association
for the complete scan. This association can then be used to
determine the spatial transformation between the two scans.

The computational complexity of loopy belief propagation
is linear in the number of hidden nodes (points in scanA), and
the complexity of computing each message is quadratic in the
number of hidden states (points in scanB). In our experiments
LBP converges in 0.1 second in scans with 90 beams and 1
second in scans with 180 beams.
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Fig. 2. Two examples of the scans used in the experiments. Original pairs
of scans (top) are rotated and translated. CRF matching and ICP are applied
to the new configuration. The bottom pictures show the MAP correspondence
obtained with CRF-Matching.

Offset 1 2 3 4 5 6 7 8 9 10

X(m) 0.1 0.25 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Y(m) 0.1 0.25 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

θ(Deg.) 1 5 10 15 20 25 30 40 50 60

TABLE I

TRANSLATION AND ROTATION OFFSETS USED IN THE EXPERIMENTS.

V. EXPERIMENTS

We performed experiments with outdoor data collected
with a modified car travelling at 0 to 40 km/h. The car
performed several loops around the university campus which
has structured areas with buildings, walls and cars, and areas
less structured with bush, trees and lawn fields. 20 pairs
of scans obtained at different points of the trajectory were
used for training and 50 different pairs were used for testing.
The scans of each pair are taken approximately 0.25 second
apart while the car is in movement. To further evaluate the
robustness of the algorithm, the scans are translated and rotated
using 10 different offsets. The translation offsets rangedfrom
0.1m to 4m inx and y direction, and the rotations ranged
from 1o to 60o degrees. Table I shows the ten different offsets
used. Since we know the additional translation and rotation,
the ground truth can be estimated from the association over
the original scans by running ICP multiple times for different
outlier thresholds. For each offset, a CRF model is trained
using the training set with 20 pairs of scans. In all experiments,
90 beams per laser scan are associated (results achieved with
180 beams are virtually identical).

A. Laser-based Matching

In this experiment, we compare the robustness of ICP and
CRF for laser scan matching. We have also tested the IDC
algorithm with mutual closest point and trimming with similar
results to ICP. The experiment is illustrated in Figure 2: a
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Fig. 4. Translation estimate error (top) and rotation estimate error (bottom) for 90-point scans. While ICP error increasessignificantly after the 5th offset,
CRF matching error is constant for all configurations tested.
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Fig. 3. Correspondence error for ICP and CRF matching for 90-point laser
scans. The performance of ICP degrades after offset 5 while CRF matching
remains constant.

pair of scans is obtained during the trajectory and artificially
rotated and translated. ICP and CRF matching are then applied
and compared. To guarantee ICP reaches its best output, the
algorithm is computed twice, for a threshold of 20 metres
and for a threshold of 5 metres (ICP treats nearest neighbor
distances beyond the threshold as outliers). In each case 100
ICP iterations are performed.

Figure 3 summarizes the results of this experiment. For
each offset, it shows the fraction of measurements that are
not identical to the “ground truth” association computed with
ICP on the non-shifted scans. It can be noticed that the per-
formance of ICP degrades significantly for translations larger
than 1.5 meter combined with rotation of 20 degrees (offset
5). In contrast, CRF matching keeps the same performance

independently of the offset. This indicates the main benefit
of our approach; the algorithm is able to associate points by
shape when it is necessary or by distance when this feature is
more relevant.

Figure 4 shows the spatial transformation errors. As can
be seen, for small offsets, the translation and rotation errors
of ICP and CRF-Matching are very low (graphs labeled ICP
and CRF). While CRF-Matching maintains this low error for
larger offsets, the performance of ICP degrades significantly.
In order to evaluate the ability of CRF-Matching to align scans
without prior knowledge about the relative locations of laser
scans, we removed the distance feature defined in (5) from
the feature set of CRF-Matching. The resulting graph, labeled
“CRF nodist” in Figure 3, indicates that CRF-Matching can
globally match laser scans. The graph labeled “CRF noout”
shows the performance when the CRF does not contain the
outlier state. In this case, the association error increases,
which shows that explicit outlier handling is important for
real outdoor laser data.

We also performed experiments removing classes of features
to evaluate the importance of each feature for the overall
performance. When we removed the local shape features or
the image features the performance was 10% worse (measured
by the association error). Removing the pairwise features and
making the matching entirely based on the output of Adaboost
resulted in error rates three times as high as CRF-Matching.
This indicates the importance of the joint reasoning of CRFs.
Overall, the most important component of the network is
the pairwise distance featurefpair, which models the rigidity
of the transformation. Leaving this feature out results in
60% increase in the association error. Removing the pairwise
association features resulted in a relative increase of 30%.

For trajectory estimation, the benefits of CRF matching are
more evident. The key property of weighting each association
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according to their matching probability significantly improves
the performance. It also demonstrates that especially for rota-
tion, ICP suffers a severe degradation for large offsets.

B. Loop Closure Detection with Laser and Camera Data

Loop closure detection is a key challenge for reliable si-
multaneous localization and map building (SLAM) [16], [15].
In this preliminary experiment, we show that CRF matching
can be employed to detect loop closure in urban environments
using both laser and camera. The data was acquired using an
adapted car travelling at 30 km/h approximately. We use the
approach described in [23] to compute the correct extrinsic
calibration of these two sensors.

To detect the loop closure, a reference scene (camera and
laser data) from the initial position of the vehicle is matched
against a sequence of scenes. To compare different matches,
the log-likelihood from the MAP association is computed. The
maximum of this scoring function indicates the most probable
location where the loop was closed. Figure 5 shows the log-
likelihood for all scenes. The peak is clearly visible at scene
91 which indicates the best match for the reference scene.
Figure 6 shows the reference image and image 91 where the
loop closure was detected. It should be noted that even though
the images look rather similar, the actual laser scans differ
substantially between the two scenes (Figure 7).

VI. CONCLUSIONS ANDFUTURE WORK

We introduced CRF-Matching, a novel approach to match-
ing laser range scans. In contrast to existing scan matching
techniques such as ICP, our approach takes shape information
into account in order to improve the matching quality. Addi-
tionally, CRF-Matching explicitly reasons about outliersand
performs a joint estimation over the data associations of all
beams in a laser scan. By using a Conditional Random Field
as the underlying graphical model, our approach is able to

incorporate arbitrary features describing the shape and visual
appearance of laser scans. The parameters of the model are
learned efficiently from labeled training data. Maximum a pos-
teriori data association computed via loopy belief propagation
is used to determine the transformation between laser scans.

Our experiments show that CRF-Matching clearly outper-
forms ICP on scan matching tasks that involve large uncertain-
ties in the relative locations of scans. Our approach is ableto
consistently match laser scans in real time without any infor-
mation about their relative locations. Additional experiments
using camera information indicate that the performance of our
approach increases as richer sensor data becomes available.

We consider these results extremely encouraging. In future
work we will investigate various extensions to the basic CRF-
Matching described here. In addition to developing different
feature functions, we plan to integrate CRF-Matching into an
outdoor SLAM technique. Since CRF-Matching computes full
distributions over data associations, it is possible to estimate
the uncertainty of the resulting spatial transformations (for
instance by sampling data associations). This uncertaintycan
be used directly by a SLAM approach.

Our current approach considers outliers as the only alter-
native to matching a measurement. However, one can extend
CRF-Matching to additionally model different types of objects
such as cars, buildings, trees, and bushes. Such a model could
also perform improved data association for moving obstacles.
The key advantage of our technique is the development of a
framework for performing all these reasoning steps within a
single model, in contrast to existing techniques.

We will also investigate the application of CRF-Matching to
the more challenging problem of underwater mapping. Here,
the observations are camera images annotated with 3D depth
information provided by sonar. We hope that the ability of our
approach to incorporate arbitrary features and to jointly reason
about complete data associations will allow it to perform
significantly better than current approaches. To make CRF-
Matching applicable to 3D scans with many thousands of
points, we intend to develop a hierarchical technique that
automatically selects increasingly large subsets of points for
matching. Such an approach could include classifiers that are
trained not to associate but to select good points for matching.
Finally, we will investigate the application of Virtual Evidence
Boosting, which has recently been shown to provide superior
feature selection capabilities for CRFs [10].

ACKNOWLEDGMENTS

This work is partly supported by the ARC Centres of
Excellence programme funded by the Australian Research
Council (ARC) and the New South Wales State Government,
by the University of Sydney Visiting Collaborative Research
Fellowship Scheme, and by DARPA’s ASSIST and CALO
Programmes (contract numbers: NBCH-C-05-0137, SRI sub-
contract 27-000968).



Fig. 6. Reference scene (left) and scene 91 (right) with projected laser point (gray/yellow crosses). CRF matching identifies this scene as the best match
indicating the most probable position where the loop closureoccurred. Note that the laser scans are substantially different.
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Fig. 7. Matched laser scans from Figure 6. The black crosses are points
from the reference scene and the gray/green circles are points from scene 91.
The dark lines indicate the camera field of view.
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