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Abstract— Matching laser range scans observed at different transformation estimates when the initial offset betwedss t
points in time is a crucial component of many robotics tasks, scans is large. This is in part caused by the association
including mobile robot localization and mapping. While existing ¢4t function that does not take into account higher-level
techniques such as the Iterative Closest Point (ICP) algorithm . f tion f the dat h h d ioti B
perform well under many circumstances, they often fail when the iInformation from _e ala, such as shape es_crlp 10NS.NHRCo
initial estimate of the offset between scans is highly uncertain. |CP does not provide adequate means of fusing data collected
This paper presents a novel approach to 2D laser scan matching. by multiple types of sensors to improve matching. Third, ICP
CRF-Matching generates a Condition Random Field (CRF) to provides only limited support for estimating the uncertyain
reason about the joint association between the measurements ¢ tne resulting transformation. Such uncertainty estasatre

of the two scans. The approach is able to consider arbitrary . tant in th text of task h bot | lizati
shape and appearance features in order to match laser scans.'MpPortant in the context or tasks such as robot localizagon

The model parameters are learned from labeled training data. Mapping using Bayes filters [21].

Inference is performed efficiently using loopy belief propagation. This paper presents CRF-Matching, an alternative proesdur
Experiments using data collected by a car navigating through for laser scan matching based on Conditional Random Fields
urban environments show that CRF-Matching is able to reliably (CRFs) [8]. CRFs are undirected graphical models that are

and efficiently match laser scans even when no a priori knowledge ful f deli lati Lin fi Atitat
about their offset is given. They additionally demonstrate that ou very powerful for modeling relational information (sp a

approach can seamlessly integrate camera information, thereby for example). By directly modeling the conditional proléi
further improving performance. of the hidden states given the observations rather tharoihe |
probability, CRFs avoid the difficult task of specifying ange-
ative model for observations, as necessary in techniques su
Many robotics tasks require the association of sensor datsHidden Markov Models (HMMs) or Markov Random Fields
observed at different points time. For instance, in molileot (MRFs). As a result, CRFs can handle arbitrary dependencies
mapping, a robot needs to be able to accurately determine between observations, which gives them substantial fléyibi
spatial relationship between different laser scans. Whilg tin using high-dimensional feature vectors.
task is rather straightforward if enough prior knowledgewb = CRF-Matching focuses on the problem of data association
the relative location of the scans is given, it becomes mobetween two laser scans. This is accomplished by converting
challenging when no knowledge about the spatial relatignshthe individual measurements of one laser scan into hidden
is available. Given two scans of sensor measurements, tiogles of a CRF. The states of each node range over all
matching problem can be defined as finding a transformatioreasurements in the other scan. The CRF models arbitrary
that best matches one scan to another. For example, wirgiormation about local appearance and shape of the scans.
laser range finders are used in mobile robotics, such a tianstConsistency of the association is achieved by connections
mation corresponds to the movement performed by the rolbtween nodes in the CRF. CRF-Matching learns model
between scans. To find the transformation between two scamsrameters discriminatively from sets of aligned lasensca
it is necessary to associate the individual measurememtsen When applied to a new pair of scans, maximanposteriori
scan with the corresponding measurements in the other scastimation is used to determine the data association, which
The most widely used algorithm for matching range sensdrgn specifies the spatial transformation between the scans
in robotics is the Iterative Closest Point (ICP) algorithm Extensive experiments show that CRF-Matching signifi-
[5]. ICP alternates between nearest neighbor associatidn &antly outperforms ICP when matching laser range-scarts wit
least-squares optimization to compute the best transtomma large spatial offset. Furthermore, they show that our aggro
between the laser scans given the most recent associatisrable to reliably match scans without a priori information
Although ICP and its extensions are fast and in generabout their spatial transformation, and to incorporateialis
produce good results, simple nearest neighbor assoctai®a information to further improve matching performance.
number of drawbacks. First, ICP frequently generates iecor  This paper is organized as follows. After discussing relate

I. INTRODUCTION



work in Section Il, we provide an overview of Conditionahidden states [18]. Due to this structure, CRFs can handle
Random Fields in Section lll. CRF-Matching is introducedrbitrary dependencies between the observatimnsvhich
in Section IV, followed by an experimental evaluation irgives them substantial flexibility in using high-dimensabn
Section V. We conclude in Section VI. feature vectors.
The nodes in a CRF represent hidden states, denoted
Il. RELATED WORK (x1,X2,...,X,), and data, denoted. The nodesx;, along

ICP has been applied to robotics quite successfully, howith the connectivity structure represented by the undiec
ever, it does not explicitly account for sensor rotatiorcsiit  edges between them, define the conditional distribytiotiz)
uses the Euclidean distance to compute the nearest neighbgér the hidden states. Let C be the set of cliques (fully
To overcome this limitation, [12] combines the normal NNonnected subsets) in the graph of a CRF. Then, a CRF
with angular constraints in the Iterative Dual Correspange factorizes the conditional distribution into a productatifjue
(IDC). The algorithm uses two types of correspondencgstentialse. (z, x.), where every: € C is a clique in the graph
(translation and rotation) and at each iteration perfoms t and z and x. are the observed data and the hidden nodes
optimizations. [12] also proposes the interpolation ofedin in the cliquec, respectively. Clique potentials are functions
between laser points to improve robustness for large tramsat map variable configurations to non-negative numbers.
formations. Although these extensions improve the bask IGQntuitively, a potential captures the “compatibility” amg the
algorithm, they do not eliminate the chance the algorithwariables in the clique: the larger the potential value, the
reaches a poor local minima. more likely the configuration. Using clique potentials, the

Methods for computing the transformation uncertainty frordonditional distribution over hidden states is written as
ICP were also proposed [2], [17]. However, they do not

1
take into account the association uncertainty betweers jodir p(x|z) = Z(z) H Pe(2,Xec), @)
measurements. This can cause large errors in the uncgrtaint ec
estimation for the transformation since weak associateams whereZ(z) = > [[.cc #.(z, x.) is the normalizing partition
equally contribute to the overall estimate. function. The computation of this partition function can be

Shape matching has been a long-standing problem espeponential in the size of. Hence, exact inference is possible
cially for the computer vision community (see [22] for &or a limited class of CRF models only.
review). Various techniques have been applied to represenPotentials¢.(z,x.) are described by log-linear combina-
shape including Fourier descriptors [20], parametric esrvtions of feature functiond,, i.e,,

_[13],_and geodesic distances [9]. We use some pf these ideas be(z,%.) = exp (WCT ] fc(zyxc)) ’ )
in this work to encode shape and image properties.

A similar probabilistic model for 3D matching of non-wherew( is a weight vector, and.(z,x.) is a function that
rigid surfaces was proposed by [1]. The model is traine@ktracts a vector of features from the variable values. @sin
generatively and assumes a large number of range pointdaature functions, we rewrite the conditional distributi¢l)
the objects for accurate results. The main feature employ@gl
is the geodesic distance which performs well when there 1 {

exXp

is a well-defined object structure. However, in unstruaure p(x|z) = 7@
environments this assumption is not valid. For this reasen w
employ several features for shape description with thetaadi B. Inference

of image features when convenient. Inference in CRFs can estimate either the marginal distribu

Loop closure detection in outdoor environments was invegon of each hidden variable; or the most likely configuration
tigated in [15]. A combined laser and image matching wast all hidden variables (i.e, MAP estimation), as defined
proposed with a vocabulary of features. In this paper, W& (3). Both tasks can be solved usiriglief propagation
also combine laser and camera information for loop closufgp), which works by sending local messages through the
detection as a possible application for our technique. Tye Kgraph structure of the model. Each node sends messages to
benefit of our method is the deployment of a single probgs neighbors based on messages it receives and the clique
bilistic model able to fuse and provide uncertainty estiorat potentials, which are defined via the observations and the
in a natural manner. neighborhood relation in the CRF.

BP generates exact results in graphs with no loops, such
N ] as trees or polytrees. However, since the models used in
A. Conditional Random Fields (CRF) our approach contain various loops, we apply loopy belief

Conditional random fields (CRFs) are undirected graphpropagation, an approximate inference algorithm that is no
cal models developed for labeling sequence data [8]. CR§saranteed to converge to the correct probability distribu
directly modelp(x|z), the conditional distribution over the tion [14]. In our experiments, we compute the MAP labeling
hidden variablesx given observationg. This is in contrast of a scan match using max-product loopy BP. Fortunately,
to generative models such as Hidden Markov Models ewen when the algorithm failed to converge, our experiments
Markov Random Fields, which apply Bayes rule to infeshowed reasonable results.

ng : fc(Z,XC)} (3)

ceC
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Fig. 1. Graphical representation of the CRF-Matching motlee hidden states; indicate the associations between the points in the diffeseans. The
observationgz; corresponds to shape or visual appearance informationcéatrdrom the two laser scans.

C. Pseudo-Likelihood Parameter Learning The nodesz; in Figure 1 correspond to features associated

The goal of CRF parameter learning is to determine tfth the individual Ia_tser points. These features descrioall .
weights of the feature functions used in the condition@PPearance properties of the laser scans. In order to &hiev
likelihood (3). CRFs learn these weights discriminativbly 9lobal consistency between the individual data associsfio
maximizing the conditional likelihood of labeled trainidgta. €ach hidden node is connected to other hidden nodes in the
While there is no closed-form solution for optimizing (3),n(_atwork. We now describe the individual features used in the
it can be shown that (3) is convex relative to the weigh@idue potentials of the CRF model.

w.. Thus, the global optimum of (3) can be found using a
numerical gradient algorithm. Unfortunately, this optiation B- Local Features

runs an inference procedure at each iteration, which can becRF-Matching can employ arbitrary local features to de-
intractably inefficient in our case. scribe shape, image properties, or any particular aspect of
We therefore resort to maximizing thgseudo-likelihood the data. Since our focus is on associating points in stan
of the training data, which is given by the sum of localp similar points in scamB, our features describeifferences
likelihoods p(x; | MB(x;)), where MBx;) is the Markov petween data points. The learning algorithm provides means
blanket of variablex;: the set of the immediate neighbors:af  to weight each of the resulting features to best associate th
in the CRF graph [4]. Optimization of this pseudo-likelittbo gata. The local features are described as follows:
is performed by minimizing the negative of its log, resudtin gpatial distance This feature measures the distance between
in the following objective function: points in one scan w.r.t. points in the other scan. This is the
n (w—w)T( basic feature used in ICP, which rather than representiag th
L(w) = *ZIng(Xi | MB(x;), w) + 572 (4) shape of the scan, accounts for small position transfoomsti
i=1 If we denote the locations of individual points in scdnand
Here, the terms in the summation correspond to the negat®edy z4,; andzp ;, respectively, then the featufg for point
pseudo log-likelihood and the right term represents a Gaiss? in scanA can be defined as
shrinkage prior with measv and variancer?. Without addi- lzai — 254
tional information, the prior mean is typically set to zeho. f4(i,j,24,2B) = ‘4’1723”7 (5)
our approach, we use unconstrained L-BFGS [11], an efficient g
gradient descent method, to optimize (4). The key advantagferes? is the variance of the distances in the training data.
of maximizing pseudo-likelihood rather than the likelildoo Note that the value of this feature depends on the ppitat
(3) is that the gradient of (4) can be computed extremelynich i is associated. The reader may also notice that this
efficiently, without running an inference algorithm. Lei® feature is only useful if the initial offset and rotation een
by maximizing pseudo-likelihood has been shown to perforfie two scans is small.
very well in different domains; see [7], [19], [6]. Shape difference These features capture how much the local
IV, CRE-MATCHING sha_pe of the laser scans differs for each possible asswtiati
While local shape can be captured by various types of fegtures
A. Model Definition we chose to implement very simple shape features measuring
In order to find the association between a laser sdan distance, angle, and geodesic distance along the scans.
and another scam, CRF-Matching generates a CRF that To generate distance features, we compute for each point
contains a hidden node; for each laser point in scad. in scanA its distance to other points in scah These other
Such a CRF is shown in Figure 1. For now, we assume thadints are chosen based on their relative indices in the. scan
each point in scamd can be associated to a point in scaifhe same distances can be computed for points in €&an
B; outliers will be discussed at the end of this section. Tand the resulting feature is the difference between thamiist
reason about associations between the two scans, eacimhid@ddues in A and B. To see, lett be an index offset for the
statex, of the CRF ranges over all points in laser scd@n distance feature. The feature value corresponding to $oint
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andj is computed as follows: C. Pairwise Features

The following features are used to define the clique poten-
tials of nodes connected in the CRF.
124 = za46ll = 1285 — 2B+l 6) Association The main purpose of this feature is to ensure con-
o? ’ sistency (avoiding crossover labels for example) and esfor

In our implementation this feature is computed for indexeduential labeling: If a measuremenin A is associated to
offsetsk € {—1,1, 3,3, —5,5}. The reader may notice thatmeas.uremeny in B, its nelghborz + 1 has a high qhance
this feature is based on the assumption that the two scQiP€ing associated tg + 1 in B. To measure consistency,
have similar densities. However, even though this assemptiVe define a functionA = x;; — x; that determines the
is often violated, we found this feature to be very valuable difference between the hidden states of two nodeandx; 1.
increase consistency of data associations. WhenA = £, then the associations of; andx; are fully
Another way to consider local shape is by computing tHePnsistent. .We cor_lvem into ten different binary features,
difference between the angles of points in both scans weit t corresponding to differents values. .
neighbors. The angle of a poiat, ; is defined as the angle Pal'r\lee distance This f_eature is very S|mllgr tcfdist- de-
between the segments connecting the point to its neighbotsioed above. However, instead of being defined owngle

wheref indicates the index offset to the neighbor. This featu@dder_' nodex; only, it measures the consistency between the
associations ofwo hidden nodesc; andx;:

fdist (iaj7 k7 ZA, ZB) =

is defined as:
£ 1 (Z ] k Za ZB)_ fpair (iaj7manva7ZB):
angle \¢y J, vy ’ - 2
za,i — 2A4ll — l12B,m — 2B,
|Z(Zai—kza, Z2Ai24,i+k) — L (ZB,j—kZB.j» ZBﬂljZB,j+k)|¥27) Illza. il O_! ik all . (10)

o2

Here,i andj are the indices of points in sca, andm and

As with the distance feature, we compute the difference gf are values of their hidden nodes. In essence, this feature
angles for neighbors 1, 3 and 5 points apart. assumes that the two scans have the same shape and scale. In

Thegeodesic distancgrovides additional shape informationcontrast tofy;.., however, it does not assume that the scans
as it is defined as the sum of Euclidean distances betwdeive the same spatial resolution. Such a feature has been
points along the scan. As with the previous features, it @n shown to be very valuable for matching camera images [3].
calculated for different neighborhoods representing llara . _
long-term shape information. Given pointg ; and zp ; and D. Outlier Detection
a neighborhood:, the geodesic distance feature is computed So far we assumed that every point in scaran be asso-

as: ciated to a point in sca®. However, such an approach cannot
handle changes in an environment or partially overlapping
foco (1,4, ks 24, 2B) = laser scans. In order to deal with such cases, the hidden stat
;J_rfq zaiss — 2l — E{j/y—l 28141 — 28 lHH of each node contains one additional value that_ corresponds
- ’ i . - ’ ~1l(g) to “outlier”. Unfortunately, most of the features discussm®
ag

far can and should not be computed if one of the involved
[1] used such a feature for matching 3D laser scans. hidden nodes is an outlier. For instance, the pairwise mista

Visual appearance When camera data is available, it cari€ature fy.; cannot be computed if the hidden value is

be integrated with shape information from the scans to he¥gt to “outlier”, since there is no associated laser pojat,

with the association. The projection of laser points inte tHo Which the distance can be computed. Fortunately, CRFs
camera image is used to extract an image patch for each la&& extremely well suited for handling such cases. We simply
point. We use Principal Components Analysis to reduce telefine two additional binary feature functions that are true
dimensionality of image features. The feature is then cdetpu whenever the value of an involved hidden node is “outlier”

as the Euclidean distance between the principal componety¢¢ get one function for local features and one function
of a patchz/, , in scan4 and zéj in scanpB: for pairwise features). Whenever such a feature is true, the

values of all corresponding feature functions are set to.zer
HZI ol H2 When learning the weights of the different feature values, th
Y I\ A B,j . . . . .
fpca (Z,J,ZA,Z ) = (9) algorithm automatically learns weights for the binary mutl

7 features that result in most consistent data associations.
All features described so far ai@cal featuredn that they only

depend on a single hidden statén scanA (indicesj andkx E. Boosting Features

in the features define nodes in sc@rand neighborhood size). CRFs are able to directly incorporate the local, continuous
The main purpose of these features is to associate scars pdi@atures described above. However, in order to model more
that have similar appearance. However, in order to generatamplex, nonlinear relationships between hidden states an
consistentassociations it is necessary to define features tHatture values, it is advantageous to discretize the fesatur
relate the hidden states in the CRF to each other. Recently, Friedman and colleagues [6] showed that it is



possible to learn AdaBoost classifiers from labeled tragnir ) ;Z e—
data and to use the resulting classifier outputs as featras i i s
CRF. We apply their approach by learning boosted classifie il '
that combine the local features described above. ’ H

To train Adaboost each pair of laser points is Iabele Tl
as "associated" or "not associated". Adaboost then gessere
a discretization of the continuous features and an initi
classification of pairs of laser points (whether or not the =+ == =+ =+ =+ 5 =+ =
should be associated). The output value of Adaboost, whi
is a non-linear combination of the learned features, is us
as an observation in the CRF. Note that this "observatio
is different for each possible hidden state in the CRF (ea_
hidden state gives a different association of laser paint:
The CRF then learns a weight for the Adaboost output
combination with the other weights (pairwise feature wisgh
and outlier feature weight). For the experiments Adaboast w ...
trained with 50 decision stumps.

3

. ) ) Fig. 2. Two examples of the scans used in the experiments.r@rigairs
F. Position estimation of scans (top) are rotated and translated. CRF matching aRdat€ applied

to the new configuration. The bottom pictures show the MARespondence
To compute the spatial transformation between two lasgitained with CRF-Matching.

scans, CRF-Matching uses the uncertainty over the asgociat
obtained. The uncertainty is incorporated in a least sguafeOffset | 1 [ 2 [ 3 [ 4 [ 5[ 6 [ 7 [ 8] 9]10]

optimization problem for the non-outlying points: X(m) ] 01]025]05]10]15)20]25]30]35] 40
Y(m) |01] 025 05| 10| 15| 20| 25| 30| 35| 4.0
n 0(Deg) | 1 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60
2
Err = Z W, (ZAJ-R + T — ZB,a(i,)) R TABLE |

i=1

TRANSLATION AND ROTATION OFFSETS USED IN THE EXPERIMENTS
where a(i) is the point in scanB associated with point,
and R andT are the rotation and translation matrices respec-
tively. The weightw; corresponds to the probability of the V. EXPERIMENTS
association for point obtained with belief propagation. Using We performed experiments with outdoor data collected
this approach, points that are more likely to have the corregith a modified car travelling at 0 to 40 km/h. The car
association have more importance on position estimatite. Tperformed several loops around the university campus which
same does not occur in ICP where each point has the sama@ structured areas with buildings, walls and cars, anasare
contribution. less structured with bush, trees and lawn fields. 20 pairs
of scans obtained at different points of the trajectory were
used for training and 50 different pairs were used for tgstin

CRF-Matching converts the matching problem into a prob&he scans of each pair are taken approximately 0.25 second
bilistic inference procedure on a CRF where the hidden staggart while the car is in movement. To further evaluate the
correspond to association hypotheses. Outliers are héndiebustness of the algorithm, the scans are translated &atedo
explicitly by an additional “outlier” state. We defined vauis using 10 different offsets. The translation offsets ranfyech
local shape and appearance features. Instead of using th®den to 4m inz and y direction, and the rotations ranged
features directly in the CRF, we first train boosted clagsifiefrom 1° to 60° degrees. Table | shows the ten different offsets
in order to model more complex relationships between thmsed. Since we know the additional translation and rotation
features. The weights of all local and pairwise features attlee ground truth can be estimated from the association over
learned from labeled training scans using pseudo-likethothe original scans by running ICP multiple times for diffeire
maximization. During testing, we apply loopy belief propag outlier thresholds. For each offset, a CRF model is trained
tion (LBP) to compute the maximum a posteriori associatiamsing the training set with 20 pairs of scans. In all expernitag
for the complete scan. This association can then be usedd®beams per laser scan are associated (results achieved wit
determine the spatial transformation between the two scan480 beams are virtually identical).

The computational complexity of loopy belief propagation i
is linear in the number of hidden nodes (points in séanand A Laser-based Matching
the complexity of computing each message is quadratic in theln this experiment, we compare the robustness of ICP and
number of hidden states (points in sc&h In our experiments CRF for laser scan matching. We have also tested the IDC
LBP converges in 0.1 second in scans with 90 beams andlgorithm with mutual closest point and trimming with siaril
second in scans with 180 beams. results to ICP. The experiment is illustrated in Figure 2: a

G. Algorithm Overview and Performance
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Fig. 4. Translation estimate error (top) and rotation esgn&ator (bottom) for 90-point scans. While ICP error increasgsificantly after the 5th offset,

CRF matching error is constant for all configurations tested.
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Fig. 3. Correspondence error for ICP and CRF matching for @atpaser
scans. The performance of ICP degrades after offset 5 while @Rtching
remains constant.

independently of the offset. This indicates the main benefit

of our approach; the algorithm is able to associate points by
shape when it is necessary or by distance when this feature is
more relevant.

Figure 4 shows the spatial transformation errors. As can
be seen, for small offsets, the translation and rotatioorgrr
of ICP and CRF-Matching are very low (graphs labeled ICP
and CRF). While CRF-Matching maintains this low error for
larger offsets, the performance of ICP degrades significant
In order to evaluate the ability of CRF-Matching to alignissa
without prior knowledge about the relative locations ofelas
scans, we removed the distance feature defined in (5) from
the feature set of CRF-Matching. The resulting graph, kdbel
“CRF nodist” in Figure 3, indicates that CRF-Matching can
globally match laser scans. The graph labeled “CRF noout”
shows the performance when the CRF does not contain the
outlier state. In this case, the association error inceease
which shows that explicit outlier handling is important for
real outdoor laser data.

We also performed experiments removing classes of features

pair of scans is obtained during the trajectory and artificia to evaluate the importance of each feature for the overall
rotated and translated. ICP and CRF matching are then dppRerformance. When we removed the local shape features or
and compared. To guarantee ICP reaches its best output, thfeimage features the performance was 10% worse (measured
algorithm is computed twice, for a threshold of 20 metrddy the association error). Removing the pairwise featunes a
and for a threshold of 5 metres (ICP treats nearest neightfeaking the matching entirely based on the output of Adaboost
distances beyond the threshold as outliers). In each ca®e 1€sulted in error rates three times as high as CRF-Matching.

ICP iterations are performed.

This indicates the importance of the joint reasoning of CRFs

Figure 3 summarizes the results of this experiment. Feverall, the most important component of the network is
each offset, it shows the fraction of measurements that dR& pairwise distance featufg,;;, which models the rigidity
not identical to the “ground truth” association Computedhvvi of the transformation. LeaVing this feature out results in
ICP on the non-shifted scans. It can be noticed that the pBR% increase in the association error. Removing the parwis
formance of ICP degrades Signiﬁcanﬂy for trans]a’[iongéar association features resulted in a relative increase of. 30%
than 1.5 meter combined with rotation of 20 degrees (offsetFor trajectory estimation, the benefits of CRF matching are
5). In contrast, CRF matching keeps the same performanuere evident. The key property of weighting each associatio



incorporate arbitrary features describing the shape asulVi
appearance of laser scans. The parameters of the model are
—20f 1 learned efficiently from labeled training data. Maximum &{o
teriori data association computed via loopy belief propiaga

is used to determine the transformation between laser scans

Our experiments show that CRF-Matching clearly outper-
forms ICP on scan matching tasks that involve large uncertai
ties in the relative locations of scans. Our approach is tble
consistently match laser scans in real time without anyrinfo
mation about their relative locations. Additional expegimns
using camera information indicate that the performanceuof o
approach increases as richer sensor data becomes available

We consider these results extremely encouraging. In future
work we will investigate various extensions to the basic ERF
o Matching described here. In addition to developing diffeere

Reference Sequence feature functions, we plan to integrate CRF-Matching into a
Fig. 5. Log-likelihood of the matching between a referen@nscand scenes o_utd_oor_SLAM technique. Sm.ce. CRF-_M_atchlng_ Com.pUteS full
from a sequence used to detect loop closure. The log-liketliwas computed distributions over data associations, it is pOSSIble torese
from the MAP association of CRF-Matching. the uncertainty of the resulting spatial transformatiofa (
instance by sampling data associations). This uncertaiaty
be used directly by a SLAM approach.
according to their matching probability significantly inwes o cyrrent approach considers outliers as the only alter-
the performance. It also demonstrates that especiallyolaF I \ative to matching a measurement. However, one can extend
tion, ICP suffers a severe degradation for large offsets. CRF-Matching to additionally model different types of atte
B. Loop Closure Detection with Laser and Camera Data Such as cars, buildings, trees, and bushes. Such a modéll coul

also perform improved data association for moving obsgacle

I‘I?Op closlure I(_jet?_ctlon IdS a ket))/ ﬁg?”engﬁ ATI(\)/Ir rigablissﬁ:he key advantage of our technique is the development of a
multaneous localization and map building ( ) [16], [ .]framework for performing all these reasoning steps within a
In this preliminary experiment, we show that CRF matchmgingle model, in contrast to existing techniques

can be employed to detect loop closure in urban environments il also i . h licati f CRE-Matchi
using both laser and camera. The data was acquired usinj’lgwe will also investigate the application o -Matching to
t

Log-likelihood
I
[=2}
o
T
I

-801 i

-100 q

adapted car travelling at 30 km/h approximately. We use € more chgllenging problem_ of underwater mapping. Here,
approach described in [23] to compute the correct extrin e observations are camera images annotated with 3D depth
calibration of these two Sensors information provided by sonar. We hope that the ability of ou

To detect the loop closure, a reference scene (camera gﬁgroach o incorporate arbit_rar_y featu_res and to joirefson
laser data) from the initial position of the vehicle is madh & OL.th. corrplste datﬁ associations will ?Iloan to ﬁerfglr?nll
against a sequence of scenes. To compare different matclﬁ/légsr,"klfamy ?ttetr)lt an ggrrent appr_osc €s. Oh ma ed f'
the log-likelihood from the MAP association is computedeTh atching applicable to scans with many thousands o

maximum of this scoring function indicates the most probabPO'ntS’ we intend to _develop a hierarchical technique that
%L_Jtomatmally selects increasingly large subsets of pdiot

location where the loop was closed. Figure 5 shows the |0 ; . o
P d atching. Such an approach could include classifiers tleat ar

likelihood for all scenes. The peak is clearly visible atreze = d ate b | d points f hi
91 which indicates the best match for the reference sceH@'ne not to assoclate but to select good points for magchi

Figure 6 shows the reference image and image 91 where FHgaIIy, we wi_II investigate the application of Virtuall Elénce .
loop closure was detected. It should be noted that even tho;%oostmg, Wh'(.:h has re‘??f‘“y been shown to provide superior
the images look rather similar, the actual laser scansrdi ature selection capabilities for CRFs [10].

substantially between the two scenes (Figure 7).

VI. CONCLUSIONS ANDFUTURE WORK ACKNOWLEDGMENTS

We introduced CRF-Matching, a novel approach to match-

ing laser range scans. In contrast to existing scan matchingrhis work is partly supported by the ARC Centres of
techniques such as ICP, our approach takes shape informafxcellence programme funded by the Australian Research
into account in order to improve the matching quality. Addi€ouncil (ARC) and the New South Wales State Government,
tionally, CRF-Matching explicitly reasons about outlie@sd by the University of Sydney Visiting Collaborative Resdarc
performs a joint estimation over the data associations lof &ellowship Scheme, and by DARPAs ASSIST and CALO
beams in a laser scan. By using a Conditional Random Fid¢tdogrammes (contract numbers: NBCH-C-05-0137, SRI sub-
as the underlying graphical model, our approach is able ¢ontract 27-000968).



Fig. 6.

Reference scene (left) and scene 91 (right) witheuted laser point (gray/yellow crosses). CRF matching ifiestthis scene as the best match

indicating the most probable position where the loop clomw®irred. Note that the laser scans are substantiallyrelifte

30

15
(m)

20 25

Fig. 7. Matched laser scans from Figure 6. The black croseepaints
from the reference scene and the gray/green circles arésgfoim scene 91.
The dark lines indicate the camera field of view.
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