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Abstract. Online learning has become crucial to many problems
in machine learning. As more data is collected sequentially, quickly
adapting to changes in the data distribution can offer several compet-
itive advantages such as avoiding loss of prior knowledge and more
efficient learning. However, adaptation to changes in the data distri-
bution (also known as covariate shift) needs to be performed with-
out compromising past knowledge already built in into the model to
cope with voluminous and dynamic data. In this paper, we propose
an online stacked Denoising Autoencoder whose structure is adapted
through reinforcement learning. Our algorithm forces the network to
exploit and explore favourable architectures employing an estimated
utility function that maximises the accuracy of an unseen valida-
tion sequence. Different actions, such as Pool, Increment and Merge
are available to modify the structure of the network. As we observe
through a series of experiments, our approach is more responsive, ro-
bust, and principled than its counterparts for non-stationary as well
as stationary data distributions. Experimental results indicate that our
algorithm performs better at preserving gained prior knowledge and
responding to changes in the data distribution.

1 Introduction
Over the past decade, Deep Architectures [5], [1] have become a
widely-discussed topic in machine learning. One key reason being
the ability to jointly perform feature-extraction and classification on
raw data, outperforming many other techniques in various domains
including object recognition [7], [2], hand-writing recognition [5]
and speech recognition [4]. A deep network can be understood as a
neural network consisting of many hidden layers [3]. While the inter-
est in deep networks arose quite early, only the recent hardware and
optimisation developments (e.g. Graphical Processing Units (GPUs),
Greedy pre-training) sparked the practicality of deep architectures.

Despite the note-worthy learning capacity, deep architectures are
still susceptible to the past-knowledge being overridden due to Co-
variate Shift [15]. Covariate shift is a common phenomenon that
transpires in online settings. Covariate shift essentially refers to the
difference in training and testing data distributions. Successful ex-
ploitation of adaptive capabilities of deep networks to minimise the
adverse effects of the covariate shift will lead to new frontiers in data
science.

While many algorithms (especially Support Vector Machines
(SVM)) have been enhanced with online learning capabilities
[9], [11], only few attempts of incorporating online learning for
Neural Networks have been proposed in the literature, notably in
[19], [13], [10], and [14]. Of these, only [14] and [19] focus on
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changing the structure of the network, where the others focus on
adapting a fixed architecture accordingly. [14] proposes an intriguing
approach to evolve neural networks using genetic algorithm, by mu-
tating weights and nodes in the network and crossing over existing
networks to generate more fit off-springs. However, this technique
is not scalable for deep networks and requires many repetitive runs
through the data. [19] proposes a structural adaptation technique for
deep architectures relying on simple heuristic (i.e. immediate per-
formance convergence). [19] does not seek a long-term reward and
lacks in responsiveness, as it waits for a pool of data to be filled in
order to add nodes to the structure. These limitations motivate the
question of how to explore the space of different architectures in an
online setting in a more responsive, robust and principled manner.

In this paper, we introduce a state-of-the-art mechanism to modify
deep architectures (specifically Denoising Autoencoders [18]) based
on reinforcement learning. The decision making behaviour exploits
and explores possible actions to discover favourable modifications
to the structure (i.e. adding/removing nodes) by maximising a stip-
ulated reward over time. Adding nodes helps to accommodate new
features, while removing nodes helps to remove redundant features.
An additional pooling operation fine-tunes the network with previ-
ously observed data. The method keeps track of a continuously up-
dated utility (long-term reward) function to decide which action is
best for a given state, whose estimation will improve over time. The
experimental results on three datasets clearly show that our algorithm
outperforms its counterparts in both stationary and non-stationary sit-
uations.

2 Background
2.1 Online Learning
By online learning we refer to the ability to accommodate new
knowledge (i.e. features) without overriding previously acquired
knowledge (i.e. features) [17]. This is becoming more popular due to
the explosive growth of data. Online learning has the ability to learn
from a continuous stream of data without a loss of past knowledge
and attempts to address the non-stationary nature of data by allowing
more flexibility in the model. For this reason, online algorithms per-
form significantly better in handling problems with covariate shift.

2.2 Deep Networks
We begin the presentation of the method by introducing the following
notation:

• x - Inputs
• y - Input labels
• K - Number of classes



• x̃ - Noise-corrupted input
• x̂ - Reconstructed input
• W - Weights of a neuron layer
• b - Bias of a neuron layer
• b′ - Reconstruction bias of a neuron layer

2.2.1 Autoencoder

An Autoencoder [6] maps a set of inputs x ={xi ∈ [0, 1]D} ∀i =
1, ..., N where xi = {x1i , x2i , ..., xDi } and D is dimensionality of
data to a latent feature spaceH with hW,b(x) = sig(Wx+b), where
W ∈ IRH×D , b ∈ IRH and sig(s) = 1

1+exp−s . An autoencoder can
reconstruct the input x̂i ∀i = 1, ..., N from the latent feature space
H with x̂ = sig(WT × hW,b(x) + b′) where superscript T denotes
transpose and b′ ∈ IRD . For simplicity we assume tied weights.

2.2.2 Denoising Autoencoder

The Denoising Autoencoder (DAE) is a variant of autoencoder which
uses a corrupted (noisy) version of the example as the input [18].
This forces the algorithm to become more robust to noise. DAE
works in the following manner.

First, the inputs are corrupted by introducing noise using a bino-
mial distribution with probability p. Let us call the corrupted input
x̃. Next, x̃ is mapped to a hidden representation using hW,b(x̃) =
sig(W x̃+b) whereW ∈ IRH×D , b ∈ IRH and sig(s) = 1

1+exp−s .
Finally, the decoding function retrieves the reconstructed input, x̂ =
sig(WT ×hW,b(x̃) + b′), where b′ ∈ IRD . In this work, we assume
tied weights for encoding and decoding. Cross entropy is used as the
cost function (Equation 1),

Lgen(x, x̂) =

D∑
j=1

xj log(x̂j) + (1− xj)log(1− x̂j). (1)

The optimal values for parameters W, b, b′ are found by minimising
the cost function,

Wopt, bopt, b
′
opt = argminW,b,b′Lgen(x, x̂).

2.2.3 Stacked Denoising Autoencoders

A Stacked Denoising Autoencoder (SDAE) [18] is a set of con-
nected autoencoders. A SDAE undergoes two main processes; pre-
training and fine-tuning. In the pre-training process, the network is
considered as a set of autoencoders AE1, ..., AEL. The output of
AEl = {W l, bl, b′l}, hlW,b where l is the current layer, is calculated
as follows,

hlW,b =

{
sig(W lx̃ + bl); if l = 1

sig(W lhl−1
W,b + bl); Otherwise.

In the fine-tuning phase, the network is treated as a single deep
autoencoder and trained using labelled data D. Assuming labelled
data in the format D = (xi,yi), ∀i = 1, ..., N where yi ∈ {0, 1}K
such that if yji are the elements of yi then

∑
j y

j
i = 1, we can use

a softmax layer with parameters {W out, bout,b′out}. The output of
the network is defined as ŷ = softmax(W outhLW,b + bout), where
softmax(ak) = exp(ak)∑

k′ exp(ak′ )
. Then the cost function becomes,

Ldisc(y, ŷ) =

K∑
j=1

(yj logŷj + (1− yj)log(1− ŷj)). (2)

Finally, from Equation 2, we can formulate the optimisation problem
to learn W , b and b′ as,

Wopt, bopt, b
′
opt = argminW,b,b′Ldisc(y, ŷ),

where Wopt=(W 1
opt, ...,W

L
opt,W

out
opt ), bopt=(b1opt, ..., b

L
opt, b

out
opt)

and b′opt=(b′1opt, ..., b
′L
opt, b

′out
opt ).

2.3 Incremental Feature Learning for Denoising
Autoencoders

Merge-Incremental Denoising Autoencoders (MI-DAE) is an online
learning stacked denoising autoencoder proposed in [19]. Initially,
the network is pre-trained using a pool of data (typically first 12,000
examples). Then, for every batch of data bt, add hard examples (i.e.

xi if Lgen(xi, x̂i) >

∑
∀xj∈bt

Lgen(xj,x̂j)

|bt| ) to a pool,B. The method
then performs merging of nodes within the same layer or adds new
nodes to the network. Once the number of points in B exceeds a
threshold, τ , retrieve previously calculated pairs of nodes with the
highest similarity (∆Mrg) and add ∆Inc new nodes to the network.
Next, use B to greedily train newly added features. Afterwards, up-
date ∆Mrg and ∆Inc [20] and remove all data fromB. Finally repeat
this process for all the batches in the sequence. Pseudo-code for this
algorithm is presented in Algorithm 1.

Algorithm 1 MergeInc Algorithm
1: procedure MERGEINC(bt ,∆MRG,∆INC)
2: Define: µ - Average reconstruction error for the
3: most recent 10,000 examples
4: Define: τ - Pool threshold (10,000 examples)
5: Compute objective Ldisc(yj, ŷj), ∀ {xj,yj} ∈ bt
6: Add hard example xj to B if Lgen(xj, x̂j) > µ of bt
7: if |B| > τ then
8: Merge 2∆Mrg candidates to ∆Mrg
9: Add ∆Inc nodes and fine-tune ∆Inc new nodes with

{xj,yj} ∈ B while keeping rest of the network constant
10: Update ∆Mrg and ∆Inc (Heuristic-based [20])
11: Set B = ∅
12: end if
13: Fine-tune all the features (with ∆Mrg and ∆Inc) with bt
14: end procedure

2.4 Reinforcement Learning and Markov Decision
Processes

After describing SDAE, we now introduce notation and the basics
of reinforcement learning (RL). RL enables an agent to learn a pol-
icy, π (a function that defines which action to take in a given state),
by interacting with its environment, preferably trading-off between
exploration and exploitation. A reinforcement learning task that sat-
isfies the Markov Property can be formulated as a Markov decision
process (MDP) [16]. Formally a Markov Decision Process can be
defined using the following,

• A set of states - S
• A set of actions - A
• A transition function - T : S ×A× S → [0, 1]
• A reward function - R : S ×A× S → IR.



Table 1. The notations and definitions used in Section 3

Notation Description Notation Description
N Number of data points Br Pool of data containing most recent τ examples
D Dimensionality of data Bft Pool of data containing dissimilar inputs
K Number of classes Λ Distance threshold for Bft
p Number of data points in one batch L̃n(m) Exponential Moving Average of error L in the window

n−m to n
n sequence number of the current batch of data νnl Ratio between the current count of neurons and the ini-

tial count for neuron layer l for nth data batch
τ Size of data pools ∆Inc Number of neurons to add at a given time
xi ith data point ∆Mrg Number of neurons to remove at a given time
yi Vectorized label of xi s.t ∀ yji ∈ yi y

j
i ∈ {0, 1} s.t.∑

j y
j
i = 1

rn The reward for the nth batch of data

D Dataset containing {{x1,y1}, {x2,y2}, . . .} γ Discount rate for Q value update
Dn nth batch of data (Dn ⊂ D) Q(s, a) Utility function
Lng Generative error for nth batch of data η1 The duration until beginning to collect state-action pairs
Lnc Classification error for nth batch of data η2 The duration until beginning to exploit Q-values

In this paper, RL is used to find the policy to adapt the structure of the
network, given the current network configuration or state. Therefore,
at a given instance i, from state si an action ai is performed and
the network transits to state si+1. Actions are modifications to the
network such as adding new nodes or removing existing nodes. The
state is a function of the network performance and will be defined in
Section 3. The reward ri for going from state si to si+1 by taking
action ai is calculated based on the errors produced on the learning
task. State si+1 depends on the current state si and current action
ai, and is conditionally independent of all the previous states and
actions, thus satisfying the Markov Property. The ultimate goal is to
learn an optimal policy π∗(si, ai) that recommends the best action
ai for a given state si.

In order to learn the policy to select the best action for a given
state, Q-Learning is used. Q-Learning (a variant of Temporal dif-
ference [16]) is an off-policy model-free approach to finding the
optimal policy, π∗. Q-Learning estimates the utility value in an on-
line manner and, as an off-policy learning, it learns a value func-
tion independent of the agent’s experience. This leads to exploring
new tactics the agent has not tried. Furthermore, Q-Learning can be
employed for MDPs with unknown transition and reward functions.
Q-Learning proceeds as follows,

1. Define Q(sn, an), where sn ∈ S and an ∈ A.
2. Initialise Q0(si, ai) = 0, ∀si ∈ S and ∀ai ∈ A.
3. Update Qt+1(sn, an) = (1 − α) × Qt(sn, an) + α ×

[R(sn, an, sn+1) + γ(maxa′(Q(sn+1, a′)))] where γ is the dis-
count rate, α is the learning rate, and si+1 is the state after action
ai.

One of the applications of using Q-learning is to train a multi-layer
perceptron as found in [13]. More recently, a variant of Q-Learning
was successfully used in a Convolutional Deep Network when the
network was trained to play the Atari games using raw pixel images
[10].

3 Reinforced Adaptive Denoising Autoencoder
(RA-DAE)

3.1 Limitations of MI-DAE
MI-DAE (Algorithm 1) introduces several interesting concepts use-
ful for online learning such as, pooling data and update rules for

∆Mrg and ∆Inc. However, the approach has several limitations: (1)
The response of the algorithm to changes is slow as it waits for a
pool of data (B) to be filled in order to execute an operation; (2)
While the algorithm incorporates an intuitive criteria (performance
convergence) to modify the network (update rules), the method is
based on simple heuristics such as the immediate future reward that
does not generally reflect a holistic view of the effect an action has
on the network.

3.2 Overview of RA-DAE

Motivated by the drawbacks in MI-DAE, we propose a more robust
and principled solution which relies on RL. In essence, our algo-
rithm estimates an utility function Q(s, a) for each state-action pair
by sampling from the environment, where actions are modifications
in the network structure. UsingQ(s, a), the algorithm selects the best
action for a given state. The utility function is based on the accuracy
measured on an unseen validation batch. Our approach is beneficial
as,

• Actions are taken for every batch of data, resulting in fast response
to sudden changes in the data distribution;

• The utility function ensures that actions are taken based on the
long-term benefit they incur on the accuracy;

• A new pool operation refreshes the network’s knowledge by fine-
tuning the network using a pool of data containing data points
significantly different from each other.

Notation: An input data stream is denoted as D =
{{x1,y1}, {x2,y2}, . . .}, where xi is a normalized data
point, xi ∈ [0, 1]D , yi ∈ {0, 1}K and yji are the elements
of yi with

∑
j y

j
i = 1. The nth data batch is written as

Dn = {{x(n−1)×p ,y(n−1)×p}, ..., {xn×p,yn×p}}, where p
is the number of examples per batch. Denote the generative error as

Lng =
∑
∀xi∈Dn

Lgen(xi,x̂i)

p
and the classification (or discriminative)

error as Lnc =

∑
∀yi∈Dn

1
k̂i=ki

p
, where 1 is the indicator function

and ki = argmaxk′({yk
′
i }), ∀k′ = 1, ...,K of the nth batch.

rn denotes the reward for the nth batch. Finally define two pools



Br = {Dn−τ , ...,Dn} and

Bft =


Dn if Bft = ∅
Dn ∪Bft if d(Dn,Dj) > Λ ∀Dj ∈ Bft
Bft −Dj j = argminj′(∀Dj

′
∈Bft) if |Bft| > τ

Bft otherwise
(3)

for some d distance measure and a similarity threshold Λ ∈ [0, 1].
η1 and η2 are pre-defined thresholds for starting to collect observed
state-action pairs and exploiting Q-values respectively. α is the learn-
ing rate for Q-learning. A summary of the notation is in Table 1 for
quick reference.

3.3 RL Definitions
To calculate when and which actions to take, we employ a MDP for-
mulation. We define a set of states S, a set of actionsA, and a reward
function rn below.

3.3.1 State Space

The state space S is defined as follows. For the nth batch,

S = {L̃ng (m), L̃nc (m), νn1 } ∈ IR3 (4)

where the moving exponential average (L̃) is defined as L̃n(m) =
αLn + (1 − α)L̃n−1(m − 1), n ≥ m and m is a pre-defined
constant. L̃g and L̃c denote L̃ w.r.t. Lg and Lc, respectively, and
νnl = Node Countcurrent

Node Countinitial
for the lth hidden layer. L̃ is defined in terms

of recursive decay to respond rapidly to immediate changes.
This state space takes into account the following attributes:

• Ability of RA-DAE to classify an unseen batch of data;
• Difference between current data distribution and previously ob-

served distributions;
• Complexity of RA-DAE’s current structure.

The justification for the choice of state space is discussed in Section
4.2.1.

3.3.2 Action Space

The actions space is defined as,

A = {Pool, Increment(∆Inc),Merge(∆Mrg)}, (5)

where Increment(∆Inc) adds ∆Inc new nodes and greedily ini-
tialise them using pool Br . The Merge(∆Mrg) operation is per-
formed by merging the 2∆Mrg nodes. Merge operation is executed
by selecting the closest pairs (e.g. minimum Cosine distance) of
∆Mrg nodes and merging each pair to a single node. The Pool op-
eration fine-tunes the network with Bft. Both operations (i.e. Incre-
ment and Merge) are performed in the 1st hidden layer. Equations 6,
7 and 8 outline the calculations for ∆Inc and ∆Mrg,

∆ = λ exp
−(ν−µ̂)

2σ2 |Lnc − Ln−1
c | (6)

∆Inc =

{
∆; if a = Increment

0; Otherwise
(7)

∆Mrg =

{
∆; if a = Merge

0; Otherwise
(8)

Algorithm 2 RA-DAE algorithm
1: procedure RA-DAE
2: define : n - Current batch ID
3: Initialise Q(s, a) = 0 ∀s ∈ S, a ∈ A
4: s, a = null
5: while Dn 6= NULL do
6: s′, a′, Q′,∆Mrg,∆Inc,= GetCtrlParam(n,Q, s, a)
7: if a′ = Pool then
8: Fine-tune using Bft
9: else if a′ = Increment then

10: Add ∆Inc new nodes to the network
11: Train the ∆Inc nodes greedily using Br
12: else if a′ = Merge then
13: Merge 2∆Mrg nodes into ∆Mrg
14: end if
15: Train the network with Dn
16: s = s′, a = a′, Q = Q′

17: n = n+ 1
18: end while
19: end procedure

where λ is a coefficient controlling the amount of change, µ̂ and σ
are chosen depending on how large or small the network is allowed to
grow, and a is the current action chosen by Algorithm 3. We defined
∆Mrg and ∆Inc as a function of νn1 and Lnc . The objective of Equa-
tion 6 is to minimise the error while preventing the network from
growing too large or too small. For example, if the error is high, the
algorithm increases ∆ to reduce the error. If the error has converged,
i.e. has not changed for two consecutive batches, ∆ will be small.

The need for two pools, Br and Bft is justified as follows. The
pool operation is designed to revise the existing knowledge. Thus,
Bft is composed of a diverse set of data batches that differ in the
distribution of the data. The objective of the increment operation is
to add the most recent features. Br is ideal for this purpose as it
contains the most recent data.

3.3.3 Reward Function

The reward function rn is defined as,

rn =


en − |µ̂− νn1 | if νn1 < V1

en − |µ̂− νn1 | if νn1 > V2

en; Otherwise,

(9)

where en = (1− (Lnc − Ln−1
c ))× (1− Lnc ) (10)

and V1 and V2 are predefined thresholds. en is specified so that the
reward will be higher for lower errors and higher rates of error change
(Equation 10). Equation 9 penalises rn if the network grows too
large or too small.

3.4 RA-DAE Algorithm

With S, A and rn defined, we present the general approach used
to solve the MDP (Algorithm 3). Q-Learning was utilised with the
following steps,

For the nth iteration, with data batch Dn,

1. Until adequate samples are collected (i.e. n ≤ η1), train with Br .



 

Figure 1. Random examples from the extended MNIST, CIFAR-10 and
MNIST-rot-back datasets, respectively

2. With adequate samples collected (i.e. n > η1), start calculating Q-
values for each state-action pair observed {sn, an}, where sn ∈
S, and an ∈ A as defined in Algorithm 3.

3. During η1 < n ≤ η2, uniformly perform actions from A =
{Increment,Merge,Pool} to develop a fair utility estimate for all
actions in A.

4. With an accurate estimation of Q (i.e. n > η2), the best action
a′ is selected by a′ = argmaxa′(Q(sn, a′)) with a controlled
amount of exploration (ε-greedy).

5. if a′ =Increment, calculate ∆Inc from Equation 7, add randomly
initialised ∆Inc nodes and greedily initialise only the new nodes
with Br , while keeping the rest constant.

6. if a′ =Merge calculate ∆Mrg from Equation 8 and average
the closest pairs of ∆Mrg nodes to amalgamate 2∆Mrg nodes to
∆Mrg nodes.

7. if a′ =Pool fine-tune the network with Bft.
8. Train the network with Dn.
9. Calculate the new state, sn+1 (Equation 4) and the reward rn

(Equation 10).
10. Update the Value (Utility) Function Q(s, a) as,

Q(t+1)(sn−1, an−1) = (1−α)×Qt(sn−1, an−1)+α×q, (11)

where q = rn + γ ×maxa′(Qt(sn, a′)).

3.5 Function Approximation for Continuous Space

For clarity of presentation, Algorithms 2 and 3 assume discrete state
space. However, the same algorithms can be extended for continuous
state space. The idea is to, for a given action a and an unseen state s̃,
predict the utility valueQ(s̃, a) = f̂(s̃,w) through function approx-
imation where f̂ is the function and w is the approximated parameter
vector [16]. In this paper, Gaussian Process Regression (GPR) [12]
with squared exponential kernel, kSE(x, x′) = σ2(exp(− (x−x′)2

2l2
))

has been used for this regression task. The hyperparameters σ and
l are optimised by maximising the marginal likelihood w.r.t. the hy-
perparameters [12]. Formally, we collect at least η2 − η1 observed
states and corresponding value pairs {sn, Q(sn, an)}. Next, for each
a ∈ A, separate curves are fitted with GPR for the {sn, Q(sn, an)}
collection of pairs by separating pairs w.r.t. an, so that there are |A|
curves. Then, for an unseen state s̃ and a given action a′, Q(s̃, a′) is
calculated using the curve fitted for action a′. The continuous space
is preferred as it provides a detailed representation of the environ-

Algorithm 3 Control Parameter Calculation algorithm
1: procedure GETCTRLPARAM(n,Q, s, a)
2: define : n - Current batch ID
3: define : Q - Utility function
4: define : s, a - Previous state,action
5: define : γ - Discount rate
6: define : α - Learning rate
7: if n < η1 then
8: return null, Pool,Q, 0, 0
9: end if

10: Calculate current state, s′ (Equation 4)
11: if s, a 6= null then
12: q = rn + γ ×maxa′(Q(s′, a′))
13: Q(s, a) = (1− α)×Q(s, a) + α× q
14: end if
15: if n < η2 then
16: Evenly chose action a′ from ∈ A
17: else
18: Explore with ε-greedy (ε = 0.1)
19: OR
20: a′ = argmaxa′(Q(s′, a′))
21: end if
22: Calculate ∆Mrg and ∆Inc (Eq. 7 and 8)
23: return s′, a′, Q, ∆Mrg,∆Inc
24: end procedure

ment with fewer variables, as opposed to the discrete space. This is
sensible as the information extracted is continuous (e.g. Lg, Lc, ν).

3.6 Summary

Our proposed solution is detailed in Algorithm 2 and can be seen is
a repeated application of Algorithm 3. For each batch of data Dn,
the state sn+1 and reward rn is calculated using Equations 4 and
10 respectively. Next, the best action a′ for the new state is retrieved
by a′ = argmax′a(Q(sn+1, a′). To calculate Q(sn+1, â) for some
action â ∈ A, GPR is employed as explained in Section 3.5. Next
the action a′ is performed. Then the network is fine-tuned using Dn.
This process is repeated until the end of the data stream.

4 Experiments

4.1 Overview and Setup

The experiments are based on extended versions of three datasets (i.e.
MNIST2, MNIST-rot-back3 and CIFAR-10 4). Random samples from
each dataset are depicted in Figure 1. The extended versions of each
dataset consist of 1,000,000 examples. Examples were masked with
noise during the generation to make them unique. We generated non-
stationary distributions for each dataset using Gaussian processes
(GP) [12], simulating the covariate shift effect. Formally, the ratio for
each class of labels is generated using ratiok(t) = exp{ak(t)}∑K

j=1 exp{aj(t)}

where ak(t) is a random curve generated by the GP.
Experiments were conducted with three different types of deep

architectures; SDAE (Standard Denoising Autoencoders), MI-DAE
(Merge-Incremental Denoising Autoencoders) and RA-DAE (our ap-
proach). For MI-DAE, we used a modified ”update rule I” introduced

2 http://yann.lecun.com/exdb/mnist/
3 www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/MnistVariations
4 http://www.cs.toronto.edu/ kriz/cifar.html
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Figure 2. Analysis of Global Error Eglb for different state spaces for
CIFAR-10 and a network with 3 layers with 1000 neurons on each. The

mathematical definitions of state spaces 1,2,3 and 4 can be found in Section
4.2.1. It is clear that State Space 4 shows a steeper reduction of error

compared to its counterparts.

in [20] as they claim the performance is fairly robust to different up-
date rules as follows,

∆Nt+1 =


∆Nt + 30; , et

et−1
< (1− ε1)

∆Nt/2; , et
et−1

> (1− ε2)

∆Nt, Otherwise

∆Mrg = dγratio∆Ince; for γratio = 0.2, as these modifications pro-
duced better performance.

Several initial layer configurations (hidden layer sizes) were used,
as outlined in Table 2. To refer to a certain algorithm, we use the
following notation. We use the superscript for the number of lay-
ers and the subscript to indicate the size of each layer. For example,
SDAEl31500 denotes a SDAE with three layers and 1500 nodes in each
layer. The configurations in Table 2 maximise the performance of the
algorithms tested. The continuous state space (Equation 4) was used
for all the experiments. We define two error measures for evaluating
performance. A local error Elcl = Ln+1

c , measured on a validation
set, Dn+1 (batch succeeding the current batch) and a global error

Eglb =
∑
∀i L

i
c

|Dtest| s.t. Di ∈ Dtest measured on an unseen independent
test set Dtest, which contains an approximate uniform distribution
of all the classes. These two sets of data enable us to respectively,
evaluate how the network preserve immediate past knowledge and
the globally accumulated knowledge.

All experiments were carried out using a Nvidia GeForce GTX
TITAN GPU and Theano5. For all experiments we used 20% corrup-
tion level, 0.2 learning rate, batch size of 1000. We empirically chose
γ = 0.9 (Equation 11) m (Equation 4) 30, and η1 and η2 (Algo-
rithm 3) to be 30 and 60 respectively. Λ (Equation 3) was selected
as 0.7 and 0.995 for non-stationary and stationary experiments re-
spectively. τ = 10, 000 (for Br , Bft and B) was chosen from a set
of sizes {1000, 5000, 10000} as 10,000 produced the best results.
Results are depicted in Figure 3.

4.2 Results

4.2.1 Evaluation of State Spaces

As mentioned in Section 3.3.1 the state space was chosen while
paying close attention to the performance against an unseen data
batch, difference between observed data distributions and complex-
ity of the network. We utilised various quantifiable measures. Ln+1

g

5 http://deeplearning.net/software/theano/
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Figure 3. Performance of RA-DAE and MI-DAE for different pool sizes.
Pool size of 10000 yielded the best results. It can be seen that RA-DAE with

a pool size of 1000 performs similarly to MI-DAE with pool size 10000.
This can be attributed to the learned policy and the pooling technique.

Table 2. Initial layer configurations for different datasets. The superscript
of the algorithm name specifies the number of layers and the subscript

indicates the size of each layer.

MNIST CIFAR-10 MNIST-rot-back
SDAEl1500 SDAEl11000 SDAEl11500
SDAEl3500 SDAEl31000 SDAEl31500

MI-DAEl1500 MI-DAEl11000 MI-DAEl11500
MI-DAEl3500 MI-DAEl31000 MI-DAEl31500
RA-DAEl1500 RA-DAEl11000 RA-DAEl11500
RA-DAEl3500 RA-DAEl31000 RA-DAEl31500

and Ln+1
c were employed to evaluate RA-DAE’s ability to clas-

sify an unseen batch of data (i.e. Dn+1). Kullback-Leibler diver-
gence (DKL(Pn||Qn)) [8] was used to measure the divergence
between the distribution of current data and previously fed data;
DKL(Pn||Qn) =

∑K
i P

n(i)log(P
n(i)

Qn(i)
), where Pn(i) =

Countni
p

,
Countni is the number of data points with class i in Dn, p is as de-

fined in Table 1 and Qn(i) =
∑j
j−m P j(i)

m
. Finally the complexity

of RA-DAE at a given time is captured by νn.
With the aforementioned quantities defined, the following state

spaces were defined:

• State Space 1 - {L̃g(m3), L̃c(m1), L̃c(m2), L̃c(m3), ν}
• State Space 2 - {L̃g(m3), L̃c(m1), L̃c(m2), L̃c(m3), ν,DKL(Pn||Qn)}
• State Space 3 - {L̃g(m), L̃c(m), ν}
• State Space 4 - {L̃g(m), L̃c(m), ν,DKL(Pn||Qn)}

The constants m1,m2,m3 and m were chosen empirically and
set to 5,15,30 and 30 respectively. The reason for calculating L̃ for
severalm values is to learn whether augmenting the state space of Lg
and Lc contribute additional information. However, from the experi-
mental results, it was evident that a simpler state space yields the best
results. Furthermore, it was surprising to verify that DKL(Pn||Qn)
had no significant positive impact on the results. The performance of
different state spaces is depicted in Figure 2.

4.2.2 Analysis of Structure Adaptation

We studied the adaptation pattern of RA-DAE and MI-DAE in both
stationary and non-stationary environments. Figure 5(c) depicts the
number of nodes in the first layer for MI-DAE and RA-DAE as they
adapt to data distributions changes with the CIFAR-10 dataset. In
non-stationary problems, RA-DAE exhibits repeated peaks in the
number of nodes. This can be explained by the changes in class distri-
bution in Figure 5(f). Node number changes in Figure 5(c) align with
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Figure 4. Visualisation of the value function (Q(s, a)) evolution for stationary and non-stationary distributions. Annotations on the top-right graph indicate
note-worthy behaviours of the value function. The left and top-right graphs depict the complete progression of the data distribution. For clarity, a reduced

version of CIFAR-10 with only two classes and 200,000 examples was used. For stationary data distribution, the graph indicates how Pool and Merge operations
dominate the behaviour as there are no significant data distribution changes. In the non-stationary setting, the value function for action Increment surges in face

of a sharp distribution change (Annotation 2). Merge and Pool operations take over when data distributions are consistent (Annotation 3 and 4 respectively).

the peaks appearing for various class distributions in Figure 5(f).
For sharp distribution changes, RA-DAE quickly increases the num-
ber of neurons. However, MI-DAE shows a moderate growth in the
number of nodes, despite the rapid changes in the data distribution.
This demonstrates that RA-DAE is more responsive than MI-DAE
in adapting the architecture in the face of changes. For a stationary
data distribution, MI-DAE shows a constant node count after the first
few hundred batches, where RA-DAE increases the number of nodes
over time. This can be attributed to the fact that reducing the num-
ber of neurons tends to increase the error, occasionally making the
reduction operation not preferable to RA-DAE. This is acceptable as
RA-DAE will not increase nodes unnecessarily as it would lead to
poor results due to overfitting. An alternative is to perform the pool
operation after reduce, which would reduce the error at an increased
computational cost.

4.2.3 Analysis of Local and Global Error

Finally, the capability to preserve past knowledge, balancing imme-
diate and global rewards for the algorithms was assessed by using
the local error, Elcl, and the global error, Eglb. We used the hybrid
objective function (Ldisc+λLgen for λ = 0.2) [19] to fine-tune the
network.

Figure 5 depicts several interesting results. Figure 5(a) illus-
trates the behaviour of the Elcl. RA-DAEl1500 shows a clear im-
provement w.r.t Elcl over time. Note how in RA-DAEl1500 the fluc-
tuations shrink over time. Moreover, Figure 5(d) delineates a sig-
nificant Eglb error margin maintained by RA-DAEl1500 compared to
SDAEl1500 and MI-DAEl1500. RA-DAE’s ability to grow the network
faster compared to MI-DAE explains this significantly lower error.
Figure 5(b) and (e) portray the performance of the algorithm in a
stationary environment (CIFAR-10). Though we expected all algo-
rithms to perform comparably well in the stationary environment,
RA-DAEl31000 achieves the lowest Elcl and Eglb and the steepest er-
ror reduction. Both RA-DAEl31000 and MI-DAEl31000 demonstrate bet-
ter performance than SDAEl31000. This highlights that structure adap-
tation strategies enhance the performance of deep networks in both
stationary and non-stationary environments.

Table 3 summarises the errors (mean±standard deviation of the
last 250 batches) for various datasets. The number 250 was chosen,

as the last 250 batches displayed a consistent performance in most
instances. There are several key observations from Table 3. First,
RA-DAEl3 has outperformed its counterparts in both stationary and
non-stationary scenarios, where RA-DAEl1 and MI-DAEl1 have per-
formed equally well. By observing the performance of RA-DAEl1

and RA-DAEl3 it is evident that the performance of RA-DAE has
improved as the network becomes deeper. MI-DAE has exhibited the
same property in most occasions. The rationale being, not only deep
networks are more robust to structural modifications in terms of er-
ror, but also they are able to learn more descriptive representations
as depth increases. However, performance of SDAEl3 is worse than
SDAEl1 in both cases. This observation justifies the need for better
techniques to leverage deep architectures in online scenarios.

A surprising observation can be made in {SDAE,MI-DAE,RA-
DAE}l1 for MNIST-rot-back. Even though we expected RA-DAE
to perform the best, SDAEl1 shows the best performance with a
52.8 ± 7.0% and 65.7 ± 2.7% for Elcl and Eglb respectively. Close
examination of the behaviours of Elcl and Eglb of SDAE, MI-DAE
and RA-DAE, shows that MI-DAE and RA-DAE do not perform as
well as SDAE. This is due to the fluctuation of Elcl being fast, which
causes the algorithm to increase the number of nodes unnecessarily.
Consequently, MI-DAE and RA-DAE lead to poor accuracy due to
overfitting. This issue alleviates as the network becomes deeper.

4.2.4 Analysis of the Policy Learnt

In order to analyse the policy learnt by RA-DAE, it is imperative to
take a close look at the value function (i.e. Q(s, a)) learnt by RA-
DAE. Figure 4 depicts the evolution of the value function over time
with note-worthy behaviours annotated. For the purpose of visualisa-
tion, a simplified version of CIFAR-10 dataset (CIFAR-10-bin) has
been used. CIFAR-10-bin comprises only two classes and has a total
of 200,000 data points. Figure 4 depicts the value function for two
settings; stationary and non stationary. The annotation graphs at top-
right highlight the changes in data distribution at the points of interest
in the top graph.

In the stationary setting, it can be seen that Pool and Merge op-
erations have dominated the policy, Figure 4(right). This is sensible
as the data distribution stays constant throughout and a necessity to
increase the number of nodes hardly emerges.



Table 3. This table presents the Elcl and Eglb obtained for various datasets and depths. Errors are in the format of mean±standard deviation for the last 250
batches. The lowest errors are highlighted in bold. RA-DAE has shown the best performance (smallest local and global errors) in most occasions (for both

stationary and non-stationary).

MNIST CIFAR-10 MNIST-rot-back CIFAR-10 (Stationary)
Elcl% Eglb% Elcl% Eglb% Elcl% Eglb% Elcl% Eglb%

SDAEl1 10.9± 5.8 27.2± 5.7 65.9± 4.9 82.8± 1.1 52.8± 7.0 65.7± 2.7 67.9± 1.5 70.2± 0.6

MI-DAEl1 6.4± 3.2 23.9± 4.4 50.4± 4.7 74.9± 3.0 61.8± 9.0 72.0± 2.6 55.5± 1.9 61.4± 0.8

RA-DAEl1 5.1± 1.4 11.3± 0.7 50.6± 7.2 74.0± 2.4 62.3± 8.8 69.6± 2.8 59.8± 1.9 61.9± 1.1

SDAEl3 11.2± 5.9 31.6± 5.4 76.3± 6.6 88.4± 1.9 67.6± 8.9 77.1± 3.2 71.8± 1.4 72.7± 0.7

MI-DAEl3 5.4± 4.4 31.3± 4.0 43.7± 8.5 71.0± 1.6 56.0± 9.2 65.5± 2.1 56.1± 1.8 58.9± 1.1

RA-DAEl3 4.1± 3.0 13.4± 0.1 32.4± 8.0 62.7± 0.7 48.2± 9.2 60.6± 3.4 50.6± 2.1 53.6± 2.1
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Figure 5. (a) and (d) show the behaviour of Elcl and Eglb in a non-stationary (Non-St) situation, where (b) and (e) show the behaviour of Elcl and Eglb in a
stationary (St) situation. The titles consist of the name of the dataset followed by number of hidden layers and neuron count in each layer, within parenthesis.
RA-DAE exhibits the lowest Elcl and Eglb at the end, and a more consistent reduction compared to SDAE and MI-DAE. (c) presents node adaptation patterns

of MI-DAE and RA-DAE in both stationary and non-stationary situations. (f) shows the class distribution of data over time and each curve denotes a single
class. By comparing to (f), (c) clearly indicates that RA-DAE is more sensitive to changes in data distribution than MI-DAE in terms of the neuron adaptation.

The horizontal axis represents the number of batches in the training dataset.

For the non-stationary setting, it can be seen how Pool and Merge
operations have a high value as the algorithm has not seen an signif-
icant data distributions, thus suppressing Increment operation. Next,
at annotation 2 it can be seen how the value of Increment operation
boosts up due to the massive data distribution change. Then, at point
3, Merge operation takes over as data distribution is somewhat con-
sistent. And finally, at point 4, Pool operation dominates the graph
due to the consistency of the distribution of data.

5 Conclusion

Online learning can be widely beneficial for deep architectures as
it allows network adaptation for streaming data problems. However,
defining the structure of the network, including number of nodes,
can be difficult to do in advance. To address this, [19] introduces
MI-DAE which can dynamically change the structure of the network
but relies on simple heuristics. The novelty of this work is an online
learning stacked denoising autoencoder which leverages reinforce-
ment learning to modify the structure of the deep network. In this,
we use a model-free reinforcement learning approach and calculate
a utility function for actions by sampling from the incoming states.

Compared to the counterpart, our approach is more principled and
responsive in adapting to new information. The method leverages
RL to make decisions in a dynamic fashion. The control behaviour
combined with powerful pooling techniques allows our approach to
preserve past-knowledge effectively. Finally, our solution make de-
cisions based on long-term versus immediate reward. Experimental
results indicate that our solution often outperforms its counterparts
with a lower classification error, and the performance improves as
the network becomes deeper. Also, the approach is more sensitive
to changes in the data distribution. Future work will address other
deep learning architectures such as convolutional neural nets and
deep Boltzmann machines.
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