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Abstract: This paper addresses the classical problem of learning-based monocu-
lar depth estimation in urban environments, in which a model is trained to directly
map a single input image to its corresponding depth values. All currently available
techniques treat monocular depth estimation as a regression problem, and thus re-
quire some sort of data pairing, either explicitly as input-output ground-truth pairs,
using information from range sensors (i.e. laser), or as binocular stereo footage.
We introduce a novel methodology that completely eliminates the need for data
pairing, only requiring two unrelated datasets containing samples of input images
and output depth values. A cycle-consistent generative adversarial network is used
to learn a mapping between these two domains, based on a custom adversarial loss
function specifically designed to improve performance on the task of monocular
depth estimation, including local depth smoothness and boundary equilibrium. A
wide range of experiments were conducted using a variety of well-known indoor
and outdoor datasets, with depth estimates obtained from laser sensors, RGBD
cameras and SLAM pointclouds. In all of them, the proposed CycleDepth frame-
work reaches competitive results even under a more restricted training scenario.

Keywords: Depth Estimation, Generative Adversarial Networks, Unpaired
Learning, Monocular Cameras

1 Introduction

Visual sensors have a series of properties that make them especially attractive for data collection in
robotics applications: they are relatively cheap, compact, with low power consumption and produce
dense representations that include color information. However, differently from traditional range-
based sensors such as lasers or sonars, cameras are unable to directly provide depth estimates from
a single image, which is necessary for tasks such as mapping and 3D reconstruction. Discerning the
shape of unstructured scenes from a single image is a key problem in perception, and historically
this limitation has been addressed by relying on multiple viewpoints of the same scene, either with
stereo configurations [1], moving cameras [2] or changing light conditions [3].

Recently, there has been a surge in works that pose the task of monocular depth estimation as a
learning problem [4, 5], trying to predict the depth of each pixel using models that have been trained
using a large number of data samples. Furthermore, new developments in back-propagation algo-
rithms and parallel computing have made multi-layered neural networks (i.e. Deep Learning) the
de facto tool for such applications, achieving unprecedented results particularly in autonomous nav-
igation tasks, for vehicle localization and mapping. These works can be broadly divided into two
categories: supervised, in which ground-truth is available as data collected from a different range-
based sensor and a direct mapping between input and output is learned [6, 7]; or unsupervised, in
which multiple overlapping views are available, either from stereo or moving cameras, and the latent
transformation into disparity values between frames is learned [8, 9].

In this paper we propose a third category: unpaired, which does not rely on data labeling or synchro-
nization of any sort. Supervised methods require input-output pairs, with explicit ground-truth infor-
mation, and unsupervised methods require input stereo pairs, which contain implicit latent ground-
truth information. Our method, on the other hand, only requires two separate datasets containing

2nd Conference on Robot Learning (CoRL 2018), Ziirich, Switzerland.



samples from the input and output domains, and it uses a cycle-consistent generative adversarial net-
work [10] to train a model capable of mapping between these domains. The result is an end-to-end
monocular depth estimation pipeline that can be trained with input and output data from different
sources (i.e. from different runs, environments or even vehicles), while still producing results that
are competitive with current state-of-the-art supervised and unsupervised techniques. Interestingly,
as a “side effect”, input depth estimates can also be mapped directly into images, producing an
artificial textured reconstruction of range information.

To the best of our knowledge, the only other work to use unpaired learning for depth estimation,
without relying on RGB-D inputs [11] or intermediate steps [12], is from Fish et al. [13], based
on Adversarial Inverse Graphics Networks, however they still require stereo pairs to estimate ego-
motion and optical flow between frames. Our CycleDepth framework does not require pairings of
any sort, and thus is more suitable for tasks in which input and output samples cannot be obtained
simultaneously during the training process (i.e data from mobile devices, real and synthetic domain
transfer, leveraging unlabeled data, and so forth). The main contributions of this paper are as follows:

* A novel architecture for monocular depth estimation that does not require input-output
or stereo pairs, only unrelated samples of each domain.

* The introduction of cycle-consistent boundary-equilibrium losses and how they can be
used to achieve better unpaired learning without mode collapse.

* A novel technique for sparse pointcloud 2D projection that uses the Hilbert Maps frame-
work [14] to produce a denser depth representation of observed structures.

2 Preliminaries

We start this section by discussing the concept of unpaired learning, and how it relates to the more
traditional supervised and unsupervised training methodologies. Afterwards, we briefly describe
Generative Adversarial Networks and their use in domain transfer tasks, including the mapping
between color and depth images. Finally, we provide an overview on Hilbert Maps for occupancy
modeling, that are used to increase the density of depth estimates obtained from pointcloud data.

2.1 Unpaired Learning

Broadly speaking, learning tasks are traditionally split into two categories: supervised, in which for
each input there is a corresponding output, used as ground-truth to guide model convergence; and
unsupervised, in which there is no ground-truth, and the model has to learn an underlying model that
produces the desired results. For the particular task of depth estimation, supervised learning assumes
training pairs of color and depth images, that are used to produce a model that maps each pixel of
a given test input image into its corresponding depth estimate [7]. This includes the use of Markov
Random Fields (MRF), Conditional Random Fields (CRF), semantic information and scene priors
[15]. Unsupervised learning, on the other hand, relies on secondary pairing, such as overlapping
stereo information [9] or sequential frames [16], and depth estimation becomes a by-product of the
reconstructive model trained between these two pieces of information.

Recently, a novel method for domain transfer that does not require paired samples (i.e. unpaired
learning) has been proposed by Xie et al. [10]. Instead of exploiting learning on the level of paired
samples, it works on the level of sets: given two domains X and Y, each defined by its own image
set, it trains a mapping F' : X — Y such that y = F(x € X) is indistinguishable from y €
Y, given a model trained to discriminate y from y. Because this is under-constrained (there are
infinitely many mappings F' that will produce the same y distribution), cycle consistency is enforced
by introducing another mapping G : Y — X which should be the inverse of F, so that G(F(x)) ~ x
and F(G(y)) ~ y. Although the concept of unpaired learning has already been explored [17, 18],
the formulation in [10] is not task-specific, and thus can be applied to a wide variety of domain
transfer scenarios with minimal modifications. A similar framework is proposed in [19], using two
sets of encoder-decoder networks and enforcing that both domains share the same latent feature
space for low-dimensional projection.

2.1.1 Generative Adversarial Networks

Generative Adversarial Networks (GANSs) [20] are a class of unsupervised algorithms implemented
by two neural networks competing against each other in a zero-sum game. One is the generator,



that creates samples supposed to come from the same underlying distribution pg., as training data,
while the discriminator examines samples to determine if they are real or fake. Both networks are
continuously optimized, so as the generator learns how to create fake samples similar to real ones,
the discriminator learns how to better distinguish between them. Formally speaking, GANs are a
structured probabilistic model [21] containing observed variables X ~ pgqt, and latent variables z.
The discriminator is a function y = D(x, ), and the generator is a function X' = G/(z, 8%), where
y is the probability of x being a real sample, x’ is a fake generated sample and (87,0%) are the
parameter sets of each network. These parameter sets are optimized by minimizing two distinct loss
functions, with the discriminator aiming to minimize £ (67 ,0%) controlling only 8, while the
generator aims to minimize £& (8, 8%) controlling only 8. Because each network’s loss function
depends on both parameter sets, the solution is a Nash equilibrium defined by a tuple (87, 0%) that
is a local of £P with respect to 8 and a local minimum of £ with respect to <.

2.1.2 Adversarial Loss Function

The choice of loss functions are key to a GAN’s success, since they define how each network will be
optimized during the training process to better achieve its goal. In the original implementation [20],
the discriminator loss function is defined as (dependencies on 8 are removed for notation simplicity):

£P 7,6 = —%Ex log D(x) — %Ez log(1 — D(G(2))), 1)

which is the standard cross-entropy cost for a binary classified with sigmoid output, only trained
on two data batches: one coming from the dataset (real, with label 1) and another coming from the
generator (fake, with label 0). For the generator, a zero-sum solution would produce LG = b,
which can be summarized as a value function V(82,0%) = —£P (0P 6%) specifying the discrim-
inator’s payoff. However, this approach does not work well in practice, since the discriminator aims
to minimize the same cross-entropy that the generator is trying to maximize, which causes compu-
tational issues like vanishing gradients [22]. The solution is to, instead of flipping the discriminator
sign, flip the target used to construct the cross-entropy cost, which then becomes:

£%(6",0%) = %Ez log D(G(z)). 2)

Training is performed in steps, by alternating between each loss function [23]. Since its introduction,
a substantial amount of work has been done to improve GAN performance and address some of its
original limitations [24, 25]. Several different convergence measures have also been proposed [25],
to estimate the quality of generated samples during training.

2.2 Hilbert Maps for Occupancy Modeling

In [14] a novel framework for scene reconstruction was proposed, in which real-world complexity is
represented linearly by projecting spatial coordinates into a high-dimensional feature vector. Under
a particular set of assumptions [26], such as inner product representation, this structure is known as
a Hilbert space and, furthermore, if point evaluation in this space is a continuous linear functional
(i.e. if ||f — g|| is small for functions f and g, then |f(z) — g(x)]| is also small for all ), then it
becomes a Reproducing Kernel Hilbert Space (RKHS) [27].

We assume a training dataset D = {x;, y; }¥ ;, where x; € RP is a point in the D-dimensional space
and y; = {—1, +1} is its corresponding occupancy state. This dataset is used to incrementally learn
a discriminative model p(y|®(x), w), parametrized by a weight vector w that predicts the occupancy
values of new query points X,. It is known that, in high-dimensional spaces, linear separators are
almost always adequate to separate classes [28]. Because of that, a simple Logistic Regression (LR)
classifier [29] can be used, with the probability of non-occupancy for a query point given by:

1

plye = —1[2(x), W) = 7 exp (WIe(x.))’

3)

where ®(x.,) is a feature vector defined over x., that projects input data into a RKHS for calculations.
To optimize the weight parameters w based on information contained in D, we minimize an objective
function using the information contained in D. This is usually done using stochastic gradient descent
optimization [30], in which mini-batches of training data are used to take small steps towards a local
minimum. This approach facilitates the use of large-scale datasets and lends itself naturally to online
learning, where new data is constantly being produced and incorporated into the model.



3 Methodology

In this section the proposed CycleDepth framework is introduced and discussed in details. We start
by describing how unpaired learning can be applied to the problem of monocular depth estima-
tion, using cycle-consistent GANs to train mapping functions between color and depth domains.
Afterwards, a novel adversarial loss function is proposed, that improves over [10] by including
a boundary-equilibrium component and a series of constraints aimed specifically to improve per-
formance for the task of monocular depth estimation. A novel methodology for pointcloud 2D
projection is also proposed, to increase the density of depth image estimates during training.

3.1 CycleDepth Formulation

The objective is to learn mapping functions between two domains: X (image) and Y (depth), given
unrelated training samples {x; }*_;, where x; € X, and {y, }} j=1, Where y; € Y. Image samples are
assumed to have dimensions w X h X ¢, with ¢ = 1 if grayscale and ¢ = 3 if colored, and depth
samples are assumed to have dimensions w X h x 1. As depicted in Fig. 1a, this is achieved through
the use of two generators X = G'x(y) and y = Gy (x), each taking real inputs from one domain and
mapping them into the other to produce fake estimates, and two discriminators Dx and Dy, that
aim to distinguish between {x,x} and {y,y} respectively (further details of each architecture are
discussed in the supplementary material). Additionally, cycle consistency is achieved by applying
each generator to its corresponding fake estimate, to create a reconstructed version of inputs X =
Gx(y) = Gx(Gy(x)) and y = Gy (X) = Gy(Gx(y)). During training, it is enforced that X
should approximate x and y should approximate y according to a predefined distance metric, which
prevents the learned mappings GG x and Gy from contradicting each other.

3.2 Adversarial Depth Loss

Adversarial losses [20] are used to train both sets of generators and discriminators, with G attempt-
ing to minimize an objective function, thus improving the quality of generated fake samples, while
D tries to maximize it, to better distinguish between real and fake samples. In [10] the original
adversarial loss formulation (Egs. 1 and 2) is used, in conjunction with a cycle-consistent constraint
to approximate inverse mappings. However, there are several well-documented shortcomings pre-
sented by this original formulation, such as mode collapse (only one convincing output is learned)
[31] and balancing the convergence of generator and discriminator [22]. Because of that, here we
explore an alternative technique for adversarial training, recently proposed in [25], and modify it to
be used for domain transfer in a cycle-consistent scenario.

The Boundary-Equilibrium Generative Adversarial Network (BEGAN) technique uses an auto-
encoder as discriminator [24], and instead of trying to match data distributions directly it attempts to
match auto-encoder loss distributions, using a loss function derived from the Wasserstein distance
[32]. It is shown that this can be achieved using a typical GAN objective function with an additional
equilibrium term to balance generator and discriminator training. They are assumed to be at equi-
librium when E[£(x)] = E[L(X)]. This generator-discriminator equilibrium can be relaxed with
the introduction of a new parameter v € [0, 1], defined as v = E[L(X] / E[£(x)]. This term lets us
balance between different goals, with lower values of v leading to lower image diversity, because
the discriminator focuses more heavily on auto-encoding real images. The objective function for
adversarial training is then defined as:

Lpy, = L(x) — k:L(X) and L, = L(X) , with kep1 = Kk + M\ (7L(x) — L(X)), 4)
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Figure 1: The proposed CycleDepth framework.



where k; € [0, 1] is a variable used to maintain equilibrium during training, and )\, is the learning
rate for k. To account for both sets of generators and discriminators in the proposed domain transfer
framework, individual objective functions are summed up, so that Lp = aLp, + (1 — «)Lp, and
Lo =alagy + (1 —a)Llg,. The parameter o € [0, 1] defines how much emphasis will be put in
each mapping, i.e. higher values of « indicate that transfers from X — Y are more relevant to the
task at hand than Y — X. In addition, cycle-consistency is enforced by applying a L1 penalty to
the reconstructed versions of inputs:

Lo =Ex[|lx — %] + Ex[|ly - 511]- )

For the task-specific purpose of depth estimation, we take inspiration from [9] and include a gradient
smoothness term, to encourage depth values to be locally smooth with an L1 penalty on depth gra-
dients JY. As depth discontinuities often coincide with image gradients 0.X, this distance penalty
is weighted with an edge-aware term, so that:

w,h

7
The same intuition can be applied to the inverse mapping, in the sense that image discontinuities
0X often coincide with depth gradients JY, to produce the gradient smoothness term Lg, . The
full gradient smoothness objective function, that is applicable to both generators, is the sum of each
individual component weighted by «, so that Ls = aLs, + (1 — a)Ls, . Now we can define the
full objective function to be minimized during training, which is of the form:

L=Lc+Lp+ PcLlc+ BsLs, @)

where B¢ and Bg control the relative importance of the cycle and smoothness components, respec-
tively, in relation to the adversarial loss for generative and discriminative components. Furthermore,
a global measure of convergence can be derived by finding the closest reconstruction £(x) with the
lowest absolute value of the instantaneous process error, which is formulated as:

C=Cx+Cy = LX)+ [yL(x) = L)+ L(y) + [vL(y) — £, ®)

which is used to determine when the network has reached its final state or if the model has collapsed
(i.e. every input produces the same output), as shown in Figure 1b.

3.3 Reconstructed Depth Images

A common way to store range-based sensor data is through the use of pointclouds, which can be
easily projected back into a 2D plane to produce depth images, containing distance estimates for
all pixels that have a corresponding world point. These projections constitute the domain Y for
function mapping within the proposed CycleDepth framework, and conversely reconstructed depth
images can be projected back to recover their corresponding pointclouds. Assuming a rectified
camera projection matrix P,...; € R3%4 a rectifying rotation matrix R,..; € R3%3 and a rigid
body transformation matrix from camera to range-based sensor T7G70 . € R**4 a 3D point p can
be projected into pixel u as such:

u= PrecthectTf«ZZLgep . ®)

An example of this projection can be seen in Fig. 2. The input image is shown in (a), in (b) we can
see the input pointcloud, and (d) depicts the projected 3D points on the 2D image plane, colored by
depth. The corresponding depth image is shown in (c), where we can notice its sparsity, mostly due
to low pointcloud density in areas further away from the sensor. Spatial dependency modeling is a
crucial aspect in computer vision, and the introduction of such irregular gaps can severely impact
performance. Because of that, here we propose projecting not the pointcloud itself, but rather its oc-
cupancy model, as generated by the Hilbert Maps (HM) framework. This methodology has recently
been successfully applied to the modeling of large-scale 3D environments [33], producing a contin-
uous occupancy function that can be queried at arbitrary resolutions. We employ the same feature
vector from [33], defined by a series of squared exponential kernel evaluations against an inducing
point set M = {M;}M, = {u;, =;},, obtained by clustering the pointcloud and calculating
mean p and variance X estimates for each subset of points:

B(x, M) = [k:(x7/\/l1)7 o k(x7MM)} , k(x, M;) = exp (—;(x )T x - Mi)) . (10)



(a) RGB image. (b) Laser pointcloud. (c) Laser depth image.

(d) RGB image + Laser. (e) Reconstruction (prob. 80%). (f) Reconstructed depth image.

Figure 2: Example of reconstructed pointcloud projection using the Hilbert Maps framework.

Clustering is performed using the Quick-Means algorithm proposed in [34], due to its computational
efficiency and ability to produce consistent cluster densities. However, this algorithm is modified
to account for variable cluster densities within a function, in this case the distance d from origin.
This is achieved by setting r; = r, = 7 - f(d), where r; and r, are the inner and outer radii used
to define cluster size and 7 is a scaling constant. The intuition is that areas further from the center
will have fewer points, and therefore larger clusters are necessary to properly interpolate over such
sparse structures. The trade-off for this increase interpolative power is loss in structure details, since
a larger volume will be modeled by the same cluster.

Once the occupancy model has been trained, it can be queried (Eq. 3) to produce a reconstruction
of the environment given a certain occupancy probability, as shown in Fig. 2e. Afterwards, each
pixel can be checked for collision in the 3D space, producing depth estimates. An example of
reconstructed depth image is depicted in Fig. 2f, where we can see that virtually all previously
empty areas in Fig. 2c were filled by the occupancy model, while maintaining spatial dependencies
intact (up to the reconstructive capabilities of the Hilbert Maps framework).

4 Experimental Results

Four different datasets were used to validate the proposed CycleDepth framework: KITTI [35] and
CaRINA [36], containing monocular images and Velodyne pointclodus from vehicles driving in
urban environments; DSO [37], containing monocular images and SLAM pointclouds from a hand-
held camera in outdoor environments; and NYU [38], containing sequences from a variety of indoor
scenes recorded with a RGBD camera. On the first three datasets, pointclouds were first transformed
into depth images (see Section 3.3), based on the intrinsic parameters of the RGB camera. Note
that, even though these datasets contain paired input-outputs, different sets were used to obtain RGB
and depth training data, thus simulating an unpaired learning scenario. The same on-the-fly data
augmentation scheme from [9] was used, with a 50% chance of horizontal flip and a 50% chance
of random gamma, brightness and color shifts. Further implementation details are provided in the
supplementary material, to facilitate reproduction.

4.1 Individual Datasets

The first experiment involved the KITTI dataset, using 12 different sequences for a total of 11957
RGB and depth images. From these, cross-validation was performed by rotatively selecting 5 runs
for RGB training, another 5 for depth training and the remaining 2 for testing. Some results are
depicted in Fig. 3, including comparisons with MonoDepth [9] and the standard CycleGAN [10].
Note that all other considered techniques require paired data for training, either as ground-truth
depth estimates or stereo images, while the proposed CycleDepth framework was trained solely
on unpaired data and was still able to achieve visually compelling results. In Fig. 4a we see some
examples of pointcloud reconstruction from recovered depth images, which can be applied to further
tasks such as dense monocular SLAM [39]. Additionally, Fig. 4b depicts some examples of RGB
image reconstruction from depth information, which is learned as a by-product of the proposed
cycle-consistent methodology and can be used to hallucinate textures into range data. The same
process was repeated for the CaRINA and DSO datasets, with results depicted in Fig. 5.



(a) Input image (b) Ground-Truth (c) MonoDepth (d) CycleGAN (e) CycleDepth

Figure 3: Monocular depth estimation results in the KITTI dataset using different techniques. A full
evaluation video can be found in https://www.youtube.com/watch?v=aGWhH8aY6FY&
feature=youtu.be.

For completeness, experiments were also conducted with the NYU dataset, by randomly selecting
1200 RGB and depth images for training and using the remaining 249 for testing. While outdoor
datasets produced more consistently accurate depth estimates (see Table 1), indoor results were
much more varied, with some testing samples producing surprisingly accurate estimates while oth-
ers failed to provide meaningful measures. We attribute this larger variance to the higher diversity
present in indoor environments, while outdoor datasets are more structured. The relatively small
number of training samples could also be a factor, however a deeper analysis is left for future work.
Note that, while cycle-consistent training requires four different networks, inference can be per-
formed using only G x for RGB or Gy for depth image generation. Because of that, we were able to
achieve end-to-end speeds of up to 40 Hz with 256 x 128 input images, using a NVIDIA Titan XP
GPU card), which makes the proposed approach suitable for real-time applications using high-end
processors.

4.2 Cross-Training

To further test the unpaired learning properties of CycleDepth, we also performed experiments using
RGB and depth images from different sources. Note that this includes projecting the input point-
clouds from one dataset as depth images using the intrinsic parameters from the RGB camera on the
other dataset. We noticed this approach produces substantially better results than using depth images
projected within the same dataset, while not violating the proposed unpaired learning assumption,

CycleDepth Ground-Truth

Ground-Truth

CycleDepth

Image + laser ~ Ground-truth ~ Reconstruction

(a) Pointcloud reconstruction from RGB images. (b) RGB image reconstruction from pointclouds.

Figure 4: Examples of end-to-end reconstruction (RGB +— Pointcloud) using CycleDepth.
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(a) CaRINA dataset. (b) DSO dataset.

Figure 5: Examples of monocular depth results using CycleDepth in different datasets.

since it allows the use of datasets without information from both sensors. This virtual camera was
positioned facing forward at the center of the pointcloud (T}, . = I), however this is not strictly
necessary, and different points of views can be used in a data augmentation scenario to generate

multiple depth images from the same pointcloud.

A quantitative comparison between different learning-based monocular depth estimation techniques
can be found in Table 1, both for individual and cross-training. The CycleDepth and CycleGAN al-
gorithms were trained as described previously, and pre-trained models freely available online were
used for the others. Interestingly, CycleDepth achieved better results than some of the other tech-
niques, despite its more restrictive training methodology. We attribute this behavior to a higher
similarity between training and testing data, which is possible due to the unpaired properties within
the proposed framework. Additionally, cross-training between the KITTI and CaRINA datasets did
not significantly affect performance, indicating that CycleDepth is indeed capable to generalize over
different datasets to produce accurate mappings between domains. However, it still relies on struc-
ture similarity, as shown by a performance decrease when the DSO dataset, containing data collected
from a hand-held camera, is introduced, even though it relatively useful estimates are still produced.
This behavior is further amplified by the cross-training between indoor and outdoor datasets, that
failed to provide meaningful results due to radical differences in data collection methods.

Table 1: Quantitative results using different learning-based monocular depth estimation techniques.
The same scale-invariant log-depth error metric introduced in [40] is used for comparison.

Method Root Mean Squared Error (log-depth, scale-invariant)

KITTI CaRINA DSO NYU

MonoDepth [9] 0.181 £ —0.710 | 0.205 £ —0.659 | 0.342 + —0.499 - — -
DepthMap [40] 0.214 £ —-0.768 | 0.252+ —0.710 | 0.435+ —0.437 | 0.151 £ —1.011
CNN-Depth [41] 0.199 £ —0.758 | 0.257 = —0.659 | 0.408 &= —0.534 | 0.494 + —1.312
CycleGAN [10] 0.511 + —0.057 | 0.543 & —0.094 | 0.662 £+ +0.020 | 0.220 + —0.572

KITTI 0.220 £ —0.499 | 0.247 £ —0.358 | 0.404 & —0.069 - — =

CveleDepth CaRINA || 0.260 £ —0.383 | 0.212 + —0.467 | 0.373 &+ —0.122 - — =

YECUEPR | pso || 0.379 4+ —0.251 | 0.347+ —0.271 | 0.252 + —0.291 -
NYU - —— - —— - —— 0.265 + —0.409

5 Conclusion

This paper proposes a novel learning-based methodology for monocular depth estimation that does
not require paired data during training. Differently from other techniques, it uses a cycle-consistent
generative adversarial network to directly learn mappings between RGB and depth images, with-
out the need for data synchronization of any kind. Training is performed using a novel adversarial
loss function with boundary-equilibrium properties, to improve stability while avoiding mode col-
lapse, and introduces a cycle-consistent gradient smoothness component to improve performance on
monocular depth estimation tasks. Experiments were conducted using a variety of well-known in-
door and outdoor datasets, with the proposed CycleDepth framework achieving competitive results
when compared to state-of-the-art pairing-based techniques. Additionally, we introduce a novel
technique for depth image generation from sparse pointclouds, that produces denser representations
by projecting Hilbert Maps occupancy models. Future work will focus on improving the various
aspects of cycle-consistent training and inference, aiming for better generalization properties, and
leveraging the use of simulated data, for which the proposed technique is particularly well suited.



Acknowledgments

This research was supported by funding from the Faculty of Engineering & Information Technolo-
gies, The University of Sydney, under the Faculty Research Cluster Program.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

Y. Furukawa and C. Hernndez. Multi-view stereo: A tutorial. Foundations and Trends in Computer
Graphics and Vision, 2015.

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. /EEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2017.

A. Abrams, C. Hawley, and R. Pless. Heliometric stereo: Shape from sun position. In Proceedings of the
European Conference on Computer Vision (ECCV), 2012.

R. Roberts, C. Potthast, and F. Dellaert. Learning general optical flow subspaces for egomotion estimation
and detection of motion anomalies. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

V. Guizilini and F. Ramos. Semi-parametric learning for visual odometry. International Journal of
Robotics Research (IJRR), 2013.

K. Karsch, C. Liu, and S. Kang. Depth transfer: Depth extraction from video using non-parametric
sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2014.

D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale
convolutional architecture. In Proceedings of the International Conference on Computer Vision (ICCV),
2014.

R. Garg, V. Kumar, and I. Reid. Unsupervised cnn for single view depth estimation: Geometry to the
rescue. In Proceedings of the European Conference on Computer Vision (ECCV), 2016.

C. Godard, O. Mac-Aodha, and G. Brostow. Unsupervised monocular depth estimation with left-right con-
sistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

J.-Y. Zhu, T. Park, P. Isola, and A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the International Conference on Computer Vision (ICCV), 2017.

Y. Li, K. Qian, T. Huang, and J. Zhou. Depth estimation from monocular image and coarse depth points
based on conditional GAN. In MATEC Web of Conferences, volume 175, 2018.

A. Atapour-Abarghouei and T. Breckon. Real-time monocular depth estimation using synthetic data with
domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

H.-Y. Fish, A. Herley, W. Seto, and K. Fragkiadaki. Adversarial inverse graphics networks: Learning
2d-to-3d lifting and image-to-image translation from unpaired supervision. In Proceedings of the Inter-
national Conference on Computer Vision (ICCV), 2017.

F. Ramos and L. Ott. Hilbert maps: Scalable continuous occupancy mapping with stochastic gradient
descent. In Proceedings of Robotics: Science and Systems (RSS), 2015.

B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth and surface normal estimation from
monocular images using regression on deep features and hierarchical crfs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox. Demon: Depth and
motion network for learning monocular stereo. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in Neural Information
Processing Systems (NIPS), 2016.

K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level domain
adaptation with generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.



(19]

[20]

[21]

(22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation networks. In Advances in
Neural Information Processing Systems (NIPS), 2017.

L. Goodfellow, J. Pouget-Abadie, X. Mehdi, X. Bing, D. Warde-Farley, S. Ozair, A. Courville, and J. Ben-
gio. Generative adversarial networks. In arXiv:1406.2661, volume 2014, Advances in Neural Information
Processing Systems (NIPS).

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. In arXiv:1701.00160, 2016.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

J. Z. M. Mathieu and Y. LeCun. Energy-based generative adversarial networks. In Proceedings of the
International Conference on Learning Representations (ICLR), 2017.

D. Berthelot, T. Schumm, and L. Metz. Began: Boundary equilibrium generative adversarial networks.
In arXiv:1702.08431, 2017.

G. Sansone. Orthogonal Functions: Revised English Version. Dover Books on Mathematics, 2012.

B. Scholkopf, K. Muandet, K. Fukumizu, S. Harmeling, and J. Peters. Computing functions of random
variables via reproducing kernel Hilbert space representations. Statistics and Computing, 25(4):755-766,
2015.

P. Komarek. Logistic regression for data mining and high-dimensional classification. Technical report,
Carnegie Mellon University, 2004.

D. Freedman. Statistical Models: Theory and Practice. Cambridge University Press, 2005.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of the Interna-
tional Conference on Computational Statistics (COMPSTAT), pages 177-186, 2010.

V. Dumoulin, I.Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville. Adver-
sarially learned inference. In Proceedings of the International Conference on Learning Representations
(ICLR), 2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. In arXiv:1701.07875, 2017.

V. Guizilini and F. Ramos. Large-scale 3d scene reconstruction with Hilbert maps. In Proceedings of the
IEEE International Conference on Intelligent Robots and Systems (IROS), 2016.

V. Guizilini and F. Ramos. Learning to reconstruct 3d structures for occupancy mapping. In Proceedings
of Robotics: Science and Systems (RSS), 2017.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. International
Journal of Robotics Research (IJRR), 2013.

P. Shinzato, T. Santos, L. Rosero, D. Ridel, C. Massera, F. Alencar, M. Batista, A. Hata, F. Osorio, and
D. Wolf. Carina dataset: An emerging-country urban scenario benchmark for road detection systems. In
Proceedings of the International Conference on Intelligent Transportation Systems (ITSC), 2016.

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. In arXiv:1607.02555, 2016.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgb
images. In Proceedings of the European Conference on Computer Vision (ECCV), 2012.

K. Tateno, F. Tombari, I. Laina, and N. Navab. Cnn-slam: Real-time dense monocular slam with learned
depth prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep
network. Advances in Neural Information Processing Systems (NIPS), 2014.

I.Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth prediction with fully
convolutional residual networks. In Proceedings of the International Conference on 3D Vision, 2016.

10



Supplementary Material for:
Unpaired Learning of Dense Visual
Depth Estimators for Urban Environments

Vitor Guizilini and Fabio Ramos
School of Information Technologies
University of Sydney, Australia
{vitor.guizilini; fabio.ramos}@sydney.edu.au

1 Architectures

Here we provide implementation details that facilitate the reproduction of results available in the
main paper, more specifically related to the generators and discriminators used in the proposed
cycle-consistent monocular depth estimation algorithm. Although not necessary, for simplicity both
Gx Gy generators have the same architecture, and are used to map inputs from one domain into
the other, so that X = Gx(y) and y = Gy (x), where x and y are real RGB and depth images re-
spectively. Similarly, both Dx and Dy discriminators also have the same architecture, and are used
to separate between real and fake samples from each domain, i.e. between {x, X} and {y, y} respec-
tively. The choice of parameters that compose the proposed boundary-equilibrium, cycle-consistent
and gradient-smooth loss function is also presented and discussed, including how variations of these
parameters might affect results in different ways.

1.1 Generator

The generative architecture is a fully convolutional auto-encoder inspired by [1], in which input im-
ages are first projected into low-dimensional, multiple-channel feature maps and then reconstructed
to produce the corresponding output in a different domain (i.e. color to depth or vice-versa). A dia-
gram of the proposed generative architecture is depicted in Figure 1, including its various modules.
The input image is first padded with reflected information and goes through a series of convolutions,
first with kernel size k = 7 x 7 and stride s = 1 (no image dimension change) and then with kernel
size k = 3 x 3 and s = 2 (image dimension is decreased by a factor of 2). At the same time, the
number c of channels in the resulting feature maps increase, so more patterns can be simultaneously
captured. The Leaky Rectified Linear Unit (LReLU) activation function [2], with & = 0.05, is used
to introduce non-linearities between layers, in conjunction with instance normalization [3], that has
been shown to substantially improve image stylization results. Afterwards, a series of 9 residual
blocks [4], commonly used to improve optimization of deeper networks, serve to further process
these feature maps, before two sequential transposed convolutions (i.e. deconvolutions), to recover
the original input dimensions, and a final padded convolution that brings the number of channels
to the required output dimensionality (1 for depth and 3 for color images). For the final layer, a
hyperbolic tangent tanh activation function is used, to produce values between [—1, 1] that can be
directly mapped as pixel intensities.

1.2 Discriminator

The discriminator architecture is inspired by [5], but without fully connected layers for hidden state
generation. Each convolutional block is composed of two convolution operations with kernel sizes
k = 3 x 3 and Exponential Linear Unit (ELU) activation functions [6]. This is followed by a resize
operation that modifies the spatial dimensions of current feature maps (m = 1/2 is a downsample to
half the original dimensions, m = 2 is an upsample to double the original dimensions, using nearest
neighbors, and m = 1 leaves the dimensions untouched). These convolutional blocks are repeated
four times, with increasing number c of channels as spatial dimensions decrease. Afterwards, this
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Generator

ConvBlock(c, k, s, a= ReLU) PadConvBlock(c, k, s, a= RelLU)
ResBlock(c, k) DeconvBlock(c, k, s, a = ReLU)

Figure 1: Proposed CycleDepth generative architecture, used in experiments.

process is reversed and four other convolutional blocks are used, now with increasing spatial dimen-
sions and decreasing number of channels. Skip-connections [7] are also used to facilitate gradient
propagation between layers, as the concatenation of hidden states directly up-sampled to match the
output dimensions of each convolutional block. The final convolutional block brings the number
of channels to the required output dimensionality (1 for depth and 3 for color images) and uses a
hyperbolic tangent tanh activation function to produce values between [—1, 1] that can be directly
mapped as pixel intensities.

1.3 Parameters

In all experiments, we set the cycle-consistency and gradient smoothness ratios 8¢ = 10 and Sg =
25, as shown in Equation 7 of the main paper. A mapping ratio &« = 0.6 was used, to determine
the weight of individual domain transfers, and a diversity parameter v = 0.3 was used to balance
between generator/discriminator optimization, as shown in Equation 4 of the main paper. Different

Discriminator

ConvBlock(c, k, m, a = ELU)

Figure 2: Proposed CycleDepth discriminative architecture, used in experiments.



Adam optimizers [8] were used for generators and discriminators, with learning rate 0.0001 for the
first 50 epochs and decreasing linearly by a factor of 100 over the next 250 epochs, for a total of 300
epochs. We started the equilibrium parameter ko = 0 with a constant learning rate of A = 0.001, as
shown in Eq. 4. Ateach epoch, X and Y were independently randomized and processed sequentially
with a batch size of 2. Wherever reconstructed depth images were used, as introduced in Section
3.3 of the main paper, the scaling constant for average cluster distance was set to 7 = 0.01, and
probabilities p(y. = 1|®(x.), w) > 0.8 were considered as occupied for surface generation.
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