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Abstract

Recent advances in embedded technology have enabled
more pervasive machine learning. One of the common ap-
plications in this field is Egocentric Activity Recognition
(EAR), where users wearing a device such as a smartphone
or smartglasses are able to receive feedback from the em-
bedded device. Recent research on activity recognition has
mainly focused on improving accuracy by using resource in-
tensive techniques such as multi-stream deep networks. Al-
though this approach has provided state-of-the-art results,
in most cases it neglects the natural resource constraints
(e.g. battery) of wearable devices. We develop a Reinforce-
ment Learning model-free method to learn energy-aware
policies that maximize the use of low-energy cost predic-
tors while keeping competitive accuracy levels. Our results
show that a policy trained on an egocentric dataset is able
use the synergy between motion sensors and vision to effec-
tively tradeoff energy expenditure and accuracy on smart-
glasses operating in realistic, real-world conditions.

1. Introduction
The use of wearable technologies has increased the de-

mand for applications that can efficiently process large
amounts of raw data from motion sensors and videos. Rec-
ognizing an activity is possibly the first step in understand-
ing the context in which a person is embedded. Therefore,
creating robust methods to recognize activities under the
constraints of smart devices becomes one of the main chal-
lenges in the awakening of this technological trend.

Extensive research has been done in EAR. Traditional
vision methods commonly encode prior knowledge of
the egocentric paradigm by using handcrafted features
to build mid-level representations based on the detec-
tion/segmentation of objects [7, 15, 17, 19, 26], hands [15,
16, 17, 19, 23, 37], gaze [15, 16], among others. However,
the use of these specific representations prevent the gener-
alization to a more realistic set of activities. For example,

hand detection has been widely used in kitchen-related ac-
tivities but would be ineffective in the recognition of the
walking activity. Ideally, learning algorithms should be less
dependent on prior knowledge and instead be able to learn
adequate features from data automatically [3]. Deep learn-
ing methods have shown that they can achieve this task
quite well in several domains. Recent research on Activ-
ity Recognition has used very deep neural networks from
external [1, 5, 9, 24, 30] and egocentric [32] perspectives
achieving encouraging results. These models, however, de-
mand high computing resources and energy which are com-
monly not available in wearable devices hindering their use
in most of real-life applications.

The egocentric domain also entails new challenges.
Cameras often produce shaken and blurred shots due to the
natural movements of the wearer. Unintelligible images can
be produced by real life situations such as dark and rainy en-
vironments. Therefore, alternative sources of information
such as motion sensors can be used to increase the predic-
tion performance at a low power consumption cost. In fact,
the use of sensors such as accelerometers [2, 7] have played
an important role in EAR. Traditionally, these devices were
attached to several parts of the body [2, 12, 43], to exter-
nal objects [14, 40] and to the ambient [12, 43] which often
limited their use to controlled environments which can be
quite different to a real-life setting.

Few approaches [13, 41, 44] have tackled activity recog-
nition while considering the energy constraints on devices
such as smartphones. However, they consider a small group
of simple activities. State-of-the-art performance on more
complex activities comes from recent work [32, 33] that
uses data from both camera and motion sensors to per-
form activity recognition from an egocentric perspective.
Their methods, nevertheless, are extremely energy ineffi-
cient as their predictions rely on both resource intensive
multi-stream Deep Neural Networks and on expensive fea-
ture extraction techniques such as the one from stabilized
optical flow.

In this paper, we propose an energy-aware framework for
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EAR whose goal is to minimize energy consumption while
maintaining reasonable predictive performance. Specifi-
cally, we make the following contributions:

• We propose a Reinforcement Learning (RL) Policy
Gradient framework that balances energy consumption
and accuracy through a customizable hyper-parameter.

• We provide a novel egocentric dataset (DataEgo) with
continuous activities collected in real conditions with
high variations in illumination, different environments,
and mulitple subjects.

• We achieve higher accuracy over other benchmark,
Multimodal egocentric dataset [32] while using less
energy compared to previous work.

Results from rigorous experiments with the new dataset
called DataEgo, and on the Multimodal dataset [32] show
that our trained policy is able to optimize the use of energy
effectively while maintaining a competitive predictive accu-
racy.

2. Related Work
Activity recognition from visual information has at-

tracted great attention in the last years. It has been tradi-
tionally tackled using third-person view cameras and then
extended to egocentric cameras. In the external perspec-
tive context, the successful application of deep learning
approaches for image classification [11] has resulted in
their extension to the context of activity recognition over
video [1, 5, 9, 24, 30].

At first, a natural step has been to extend Convolutional
Neural Networks (CNNs) 2D filters that explore spatial in-
formation over images to 3D filters to add temporal infor-
mation over videos as it was done in [8]. In fact, Karpa-
thy et al. [9], explored spatio-temporal schemes using both
2D and 3D convolutions, finding that 3D convolutions over
videos were giving a very short gain in performance in com-
parison with 2D convolutions over images of single frames
of videos. This fact suggests that (CNNs) architectures are
not able to properly learn motion features, due to the non-
existence of sufficiently large video datasets. Simonyan et
al. [30] proposed the use of a stacks of dense optical flows
to encode temporal information achieving higher success.
However, these approaches focused on very short temporal
extents in videos.

In order to preserve longer temporal information, some
architectures based on Recurrent Neural Networks (RNNs)
have been proposed [1, 5, 24]. Donahue et al. [5] have used
Long Short-Term Memory (LSTM) networks over features
obtained from a CNN applied to single frames of videos.
Ng et al. [24] proposed a similar idea over images of single
frames and optical flow. Finally, Ballas et al. [1] suggested

the use of convolutions inside the recurrent units of GRU to
better capture temporal features of the sequence of images.

In the context of EAR, traditional vision methods have
encoded prior knowledge by using handcrafted features
and mid-level representations involving the detection of ob-
jects [7, 15, 17, 19, 26], hands [15, 16, 17, 19, 23, 37],
gaze [15, 16], motion [16, 17, 25, 28, 42], among others.
Object-based techniques presumes that an activity can be
inferred by the group of objects that appear in a video. Thus,
object-based techniques rely on the object recognition do-
main and, therefore, inherit its challenges. Another com-
monly used strategy has involved the use of optical flows
to express motion [32, 42]. Motion-based techniques fo-
cus on the fact that different kind of activities create differ-
ent body motions presenting remarkable robustness to deal
with some of the vision challenges. However, they perform
poorly when dealing with activities that lacks movement
patterns such as sitting, watching TV, and reading.

Most of the aforementioned representations prevents the
learning algorithm from generalizing to a more realistic set
of activities. Ideally, a framework must learn meaningful
features automatically. Recent advances in third-person ac-
tivity recognition have used deep learning to address this
requirement. Simonyan et al. [30] proposed a Two-Streams
CNN approach over spatial (image frames) and temporal
(optical flows) streams and has been taken as a baseline
of other works since it outperformed hand-crafted features
methods [38]. Song et al. [32] extended this Two-Streams
CNN approach to the EAR domain obtaining encouraging
results.

Wearable cameras can produce visual information that is
affected by real conditions of the wearer leading to unintel-
ligible images. Thus, the use of other sources of information
becomes essential. In fact, EAR is one of the fields that has
drawn most benefits from the use of multiple sensors [4].
Most of these devices have typically been attached to some
parts of the body [2, 12, 43], to external objects [14, 40] and
to the environment [12, 43] and their use was often limited
to controlled experiments, differing in high degree with a
real life application.

Reinforcement Learning is another technique that has
achieved successful results lately. Successes are wide rang-
ing, from playing Atari games [21] to teaching a robot to
play soccer [27] or detecting objects in vision tasks [18].
The ideas can be applied to a variety of domains, and the
performance of current methods have greatly improved with
the high level representations extracted from deep networks.
To the best of our knowledge, there is no current application
of Reinforcement Learning for the EAR problem.

Energy awareness has been greatly overlooked in all re-
cent multi-stream activity recognition work. This factor can
not be ignored anymore if we desire to use these methods
in a realistic setting which has major constraints such as



battery consumption. Despite all previous work, there have
been no/few attempts to balance computational resources
and other constraints with the overall accuracy on activity
recognition tasks. Therefore we propose a Reinforcement
Learning framework that makes use of policy learning in
order to balance two different activity predictors using only
motion and vision data.

3. Method

In this section, we introduce the methodology behind
our decision making framework for the Egocentric Activity
Recognition problem. The ultimate goal is to learn a policy
using a Reinforcement Learning (RL) approach that is able
to balance energy consumption and accuracy on resource
constrained environments.

3.1. Overview

We consider tasks in which a wearable device receives
data from motion sensors and uses a policy πθ(at|st) to take
actions a ∈ (α, β), where action α means motion predictor
is used while action β means the vision predictor is used to
recognize the activity. At each time-step t we give a reward
rt that reflects the accuracy and energy consumption of the
selected action. The long-term return Rt =

∑∞
k=0 γ

krt+k
is the total accumulated reward from time step t with dis-
count factor γ ∈ (0, 1]. We also define a training dataset
D = {xt, yt}Nt=1 with xt = {It, Sacct , Sgyrt } where It is a
sequence of images from the device’s camera, and Sacct and
Sgyrt is a sequence of accelerometer/gyroscope x,y,z val-
ues. The class labels for the 20 activities are denoted by
yt ∈ {y1, ..., y20}.

Our framework is shown in Figure 1. We learn a pol-
icy for energy optimization through a LSTM [6], mapping
accelerometer and gyroscope data to actions. The network
outputs a probability distribution over actions a ∈ (α, β)
that attempts to select actions with higher average rewards.
The model’s actions define whether the final prediction
should come from a motion predictor, defined by ρm(xt), or
vision predictor, defined by ρv(xt). These are represented
by a separate LSTM [6] and a LRCN Neural Networks [5]
respectively.

3.2. LSTM (Motion) Predictor

For predictions of sensor data we use a LSTM network.
This is a specific Recurrent Neural Network (RNN) archi-
tecture that has been widely used to solve problems where
data has an intrinsic temporal structure. Its main idea is to
regulate the flow of information through neurons’ specific
gates. They control how much information should be re-
membered or whether the network should forget or keep a
memory. LSTMs were designed to solve the problem of
long-term dependencies on vanilla RNNs, where data with

long temporal dependencies caused the gradient of the net-
work to vanish or explode. Our motion predictor archi-
tecture is comprised of one layer with 64 neurons unrolled
through time and is optimized using RMSProp with learn-
ing rate of 0.001. The main advantage of using motion data
for prediction is that it has a very low energy profile as mo-
bile devices require minimum energy to capture their val-
ues. Its predictive strength concentrates on activities with
high body movement patterns such as running, walking and
cycling. On the other hand, the network often performs
poorly for activities where there is no such pattern and/or
limited movement. For this reason, we also use a vision
predictor that helps to increase accuracy in these scenarios.

3.3. LRCN (Vision) Predictor

CNNs have dominated recent image recognition tasks.
However, these models are not very effective on tasks in-
volving sequences of images. Our vision predictor uses a
mix of CNNs and RNNs called Long Recurrent Convolu-
tional Networks (LRCN) [5]. The model’s first layer uses an
Inception V3 [36] pre-trained on Imagenet [11] followed by
a LSTM with 512 neurons and a softmax on the last layer.
The CNN acts as a feature extractor while the LSTM cap-
tures the temporal structure of the data. All training happens
end-to-end where we first freeze the inception layers and
train only the LSTM for 10 epochs. Then, we unfreeze the
3 last blocks of the CNN and train again for more 20 epochs.
The model receives a sequence of images and outputs a vec-
tor of activity probabilities. Even though the accuracy of
vision methods have shown higher overall accuracy on pre-
vious works [31, 33, 32], it still is very energy inefficient
model. For instance, we evaluated the camera’s consump-
tion on a Vuzix M300 smartglasses, and it takes on average
three times more energy than only motion sensor measure-
ments. Given this scenario, we aim to optimize the overall
accuracy by balancing our predictors usage appropriately.

3.4. Reinforcement Learning

Until recently, RL methods were constrained to discrete
state spaces and actions. However, the use of deep networks
as function approximators have extended their use to con-
tinuous inputs and outputs. While in supervised learning the
main goal is to only map inputs to outputs, in RL the choice
of what to approximate is what makes current methods to
differ from each other. One could optimize policies, value
functions, dynamic models or some combination thereof. In
fact, there are mainly two perpendicular choices to be made:
what kind of objective to optimize (e.g. policy, value func-
tion or dynamics) and what kind of function approximators
to use. In these lines, our framework can be fully defined
by the tuple < S,A, r, λ, γ >, with:

• S: Set of states {s1, ..., sn} where st := (Sacct , Sgyrt )
and,



Figure 1: (Left): Our smartglasses capture data from different sources; motion sensors and camera. (Middle): Policy
Function approximator represented by a LSTM Neural Network. (Right): Activity predictors pre-trained on an activity
recognition dataset.

Sacct : 3D accelerometer values at time-step t,
Sgyrt : 3D gyroscope values at time-step t.

• A: Set of actions {a1, ..., an}where at ∈ [α, β] where,
α: Motion (LSTM) is used for prediction,
β: Vision (LRCN) is used for prediction.

• r: S × A → {1 + λ,−1 − λ, 1,−1, λ} is a reward
function with five possible outputs, corresponding to
executing an action at in state st.

• λ: Parameter that limits the rewards given to high en-
ergy consumption actions.

• γ ∈ (0, 1]: is the discount factor on future rewards.

Further, we denote the LSTM policy network by
πθ(at|st) which is parametrized by θ. Through the RL
framework, we select actions that give the highest average
reward for every hidden representation of the input state st.
The network architecture is comprised of a layer with 256
neurons followed by a softmax with one neuron for each
action. The policy πθ(at|st) chooses between two different
actions: predict yt (the activity label) from the motion pre-
dictor ρm(xt) or predict yt from the vision predictor ρv(xt).
Reward Function: The design of the reward function is one
of the most important parts of any RL framework. Its out-
puts should be able to increase or decrease the likelihood of
selecting an action in order to provide a better behavior for
the entire system. Positive rewards increases the probabil-
ity of an action through gradient ascent, while negative re-
wards will decrease it through gradient descent. In our case,
we have a lower accuracy but more energy efficient motion
predictor and a more energy demanding but more accurate
vision predictor. A parameter λ is applied to the rewards
given to the high energy cost/accuracy actions. The goal is
to only choose vision when low-energy motion predictions
are incapable of providing the right outcome. In order to de-
termine the reward, we use a training dataset where we have
access to the correct labels for all given inputs. We evaluate

the results on both motion and vision predictors calculating
the advantage of choosing one predictor over the other and
updating our policy accordingly. For instance, we give only
λ reward for choosing the LRCN model for prediction us-
ing vision when we observe that the LSTM is also able to
provide a correct outcome using motion sensors. The func-
tion gives constant rewards rt ∈ [−1, 1] for choosing the
motion predictor while giving λ controlled rewards to vi-
sion predictor actions. The formal definition of the reward
rt(πθ(at|st), yt) is as follows,

1 πθ(at|st) = α, ρm(xt) = yt

1 + λ πθ(at|st) = β, ρm(xt) 6= yt, ρ
v(xt) = yt

λ πθ(at|st) = β, ρm(xt) = yt, ρ
v(xt) = yt

−1− λ πθ(at|st) = β, ρm(xt) = yt, ρ
v(xt) 6= yt

−1 otherwise.

Episodes and Steps: Each episode contains 15 seconds of
data split in equal time-steps t of 1 second each. Videos on
the Multimodal dataset have 1 single activity per 15 seconds
of footage while on DataEgo, a video has 5 minutes of du-
ration conformed by 4-6 activities. Actions are taken every
second using the readings from both accelerometer and gy-
roscope. A separate buffer of image is kept during training
in order to evaluate the reward function. On real life settings
the camera would need to be turned on in order to provide
data for the LRCN network.

3.5. Policy Learning

We solve the RL problem through the use of a model
free framework. The goal is to optimize a parametrized
stochastic policy πθ(at|st) and a value function Vθv (st) us-
ing gradient methods [35]. While policy methods learns a
policy directly, value iteration methods such as Q-Learning
focuses on updating state-value functions through the use
of the Bellman equation [34]. We use an Actor-Critic [10]



framework that combines the benefits of both approaches.
The actor takes actions based on a policy πθ(at|st) and an
estimate of the value function (critic) Vθv (st) . The value
function Vθv (st) determines how good a certain state is
while following a policy πθ. While actor and critic parame-
ters θ and θv are shown as being separate, we share some of
the parameters in practice to improve stability. We use our
LSTM policy network that has one softmax output for the
policy πθ(at|st) and one linear output for the value function
Vθv (st).

Algorithm 1 Asynchronous advantage actor-critic (A3C)

1: //global shared parameter vectors = θ and θv
2: //thread-specific parameter vectors = θ′ and θ′v
3: Inputs: πθ, D
4: Outputs: π∗θ
5: Initialize θ and θv randomly
6: t← 1
7: repeat
8: dθ ← 0
9: dθv ← 0

10: θ′ ← θ
11: θ′v ← θv
12: tstart ← t
13: Get state st = (Sacct , Sgyrt ) from D
14: repeat //run episode and save batches until tmax
15: at ← πθ′(at|st)
16: Caculate rt(at, yt)
17: st ← st+1

18: t← t+ 1
19: T ← T + 1
20: until terminal st or t− tstart == tmax
21: if st == terminal, R = 0 else R = Vθv (st)
22: //Calculate gradients from batch with tmax steps
23: for i ∈ {t− 1, ..., tstart} do
24: R← ri + γR
25: dg ← ∇θ′ log πθ′(at|st)A(st, at, θ′v)
26: dh← ∇θ′H(πθ′(at|st))
27: dθ ← dθ′ + dg + dh
28: dθv ← dθ′v + ∂(R− Vθ′v (st))

2/∂θ′v

29: end for
30: θ ← θ + dθ′ //asynchronous update
31: θv ← θv + dθ′v //asynchronous update
32: until T > Tmax

Policy learning is performed through infinitesimal up-
dates in both θ and θv . The sign and magnitude of our re-
ward determines if we are making an action more or less
probable as it performs gradient ascent and descent respec-
tively. For the policy update, we calculate the gradient over
an expectation using a score function estimator as shown in
the work of Sutton et al. [35]. The value function is updated
using a squared loss between the discounted reward and the

estimate of the value under parameters θv . Optimization is a
two-step process where we first train our predictors ρm(xt)
and ρv(xt) on the training dataset and then we use their pre-
dictions to optimize both the policy θ parameters and value
function θv parameters.

The main benefit of the actor-critic method is to use an
advantage function instead of discounted rewards in the up-
date rule. As rewards have high variance during learning,
the use of an estimated value speeds up the process while
reducing variance on gradient updates. The advantage func-
tion A(st, at, θv) is an estimate of the advantage and is
given by A(st, at, θv) =

∑k−1
i=0 γ

irt+i + γkVθv (st+k) −
Vθv (st).

We have also added entropy regularization to our pol-
icy updates as proposed by Williams and Peng [39]. The
main idea is to have a term in the objective function that
discourages premature convergence to suboptimal deter-
ministic policies. The final update rule for the algorithm
takes the form θ ← θ +∇θ(log πθ(at|st)) A(st, at, θv) +
η ∇θH(πθ(at|st)), where H(πθ(at|st)) is the entropy for
our policy and η is the parameter that controls its relative
importance.

3.6. Asynchronous optimization

The availability of multi-core processors justifies the de-
velopment of RL techniques with asynchronous updates.
Recent work [22, 29] have shown that updates in on-line
methods are strongly correlated mainly because the data ob-
served from RL agents is non-stationary [20]. Techniques
like experience replay [22] focuses on storing batches of ex-
perience and then performing gradient updates with random
samples from each batch. This approach has achieved the
best results on Deep Q-Learning methods [21]. Here, we
follow a different approach to solve the same problem. We
use asynchronous gradient optimization of our controllers
that executes multiple workers in parallel on multiple in-
stances of the environment. This process decorrelates the
data into a more stationary process. In fact, this simple idea
enables a much larger spectrum of RL algorithms to be ex-
ecuted effectively. The asynchronous variant of actor-critic
methods is the state-of-the-art method on several RL com-
plex domains as it was shown by Mnih et al (2016). Al-
gorithm 1 shows the implementation for each actor-learner,
which we call Asynchronous advantage actor-critic (A3C).
They run independently on each CPU core while the central
model receives updates from all workers asynchronously.

4. Experiments
4.1. Datasets

The large majority of previous work on egocentric Ac-
tivity Recognition have used either raw data acquired from
sensors or video data from cameras (not both). One of the



Figure 2: Convergence of A3C shows small variance on motion/vision usage and average rewards after 600 episodes for both
Multimodal (top) and DataEgo (bottom) datasets.

few datasets available was proposed by Song et al. [33]. We
refer to this dataset as Multimodal. Its main limitation is
that videos are split by activity instead of a more natural
setting where there is a flow between different activities.
Learning activities with transitions is a much harder prob-
lem as data not only contains more noise but there is also
a natural imbalance of classes (e.g. walking is an interme-
diate activity that appears way more often than any other
activity).

We present a novel egocentric activity dataset DataEgo
that contains a very natural set of activities developed in
a wide range of scenarios. We recorded sequences of nat-
ural daily routines using a Vuzix M300 smartglasses with
a bespoke recording application. There are 20 activities
performed in different conditions and by different subjects.
Each recording has 5 minutes of footage and contains a se-
quence of 4-6 different activities. Images from the camera
are synchronized with readings from the accelerometer and
gyroscope captured at 15 fps and 15 Hz respectively. In
total, our dataset contains approximately 4 hours of con-
tinuous activity while the multimodal dataset has only 50
minutes of separate activities. We make DataEgo publicly
available in the following link 1. More details regarding this
dataset can be found in the supplementary material.

4.2. Predictors Benchmark

The results for our individual predictors are shown on
Table 1. It can be seen that if we consider methods indi-
vidually without any type of sensor fusion or extra features
such as the ones from optical flow, our methods have the

1Dataset link: – Hidden for blind review purposes. –

highest overall accuracy. Our LRCN network has achieved
an accuracy of 78.70% which sits very close to the more re-
source intensive methods from previous work [32, 33]. Our
LSTM also outperforms previous work on motion sensors
[32] by almost 10%. We believe that this result is due to
the stateful approach we used during training. The idea is
to save the hidden states in between batches so as to better
capture the temporal structure within the data.

Method Dataset Accuracy (%)
LRCN (vision) Multimodal 78.70%
LSTM (motion) Multimodal 61.24%
LRCN (vision) DataEgo 71%
LSTM (motion) DataEgo 58%

CNN FBF (vision) [32] Multimodal 70%
Multi Max (both) [32] Multimodal 80.5%

Fisher Vector (both) [33] Multimodal 83.7%
LSTM (motion) [32] Multimodal 49%

Table 1: Comparison of motion and vision predictors with
previous work shows higher accuracy when comparing to
single stream methods.

4.3. Convergence of A3C

We start by presenting training results of the RL frame-
work on Figure 2. Convergence was achieved with approx-
imately 600 episodes for each of our 20 actor-learners. The
image shows that predictors usage converged at roughly
50% for both vision and motion networks. Also, the run-
ning mean of rewards presents an exponential increase ini-
tially while stabilizing with fixed small variance at the end.



Accuracy comparison for different settings

Figure 3: Individual per-class accuracy on Multimodal
dataset shows that activities with low body movement
seems to benefit the most from vision predictor.

The results illustrates that our algorithm finds a stable pol-
icy for λ = 0.2 while equally balancing usage of low/high
energy consumption predictors.

4.4. Motion vs Vision Tradeoff

Figure 3 compares the effect of λ on the overall per class
results for the Multimodal dataset. Activities such as or-
ganizing files, riding elevators and others have greatly im-
proved their accuracy by using the vision predictor. This
shows that our policy is in fact learning actions that exploits
the different strengths of our predictors.

Validation for the aforementioned results was perfomed
through an analysis of how actions were being chosen
amongst different activities. We sampled the softmax out-
puts on the multimodal test dataset while using a learned
policy with λ = 0.2. As can be seen on Figure 4, activi-
ties such as organizing files and riding elevators/escalators
presented higher probabilities on using the vision predic-
tor, while running, doing sit-ups and walking up/downstairs

Softmax Average per Activity

Figure 4: The softmax average per activity shows synergy
between predictors on a λ = 0.2 policy.

were dominated by the motion predictor. This fact is con-
sistent with a real life setting as activities with higher move-
ment patterns are prone to perform better with motion sen-
sor data.

Figure 5 shows the energy consumption trend as we in-
crease the use of vision methods. A vision only approach
would have an energy cost of 450 mAh, while motion based
only costs 150 mAh. As it was mentioned before, motion
methods are three times more energy efficient than vision
methods. For both datasets, λ = 0.2 seems to be the best
tradeoff between accuracy/energy consumption.

Maximum energy efficiency was achieved allowing min-
imum use of the vision predictor by making λ = 0. With
only 8% of vision usage the model achieved 64.02% accu-
racy on the Multimodal dataset as shown on Figure 5. This
represents an increase of almost 4% if we compare with
the motion only predictor. The benefit is that we tradeoff
minimum vision usage for a huge leap in accuracy. This is
only possible due to the optimal decision making behavior
learned by our policy.

4.5. Effect of the Reward Parameter λ

The parameter λ allows our method to learn policies with
both low energy profile and with high predictive capacity.
This can be achieved through proper parameter tunning. For
instance, predictive performance is improved as we increase
the value of λ while energy consumption is reduced as we
pick smaller values.

The results on large values of λ have shown promising
results. With 95% of vision usage and only 5% of motion,
the overall accuracy on the Multimodal dataset was 84.84%.
This is the highest accuracy achieved in this dataset to date.
The policy outperforms the vision only model by almost



Precision and Recall on the DataEgo dataset with different λ values showing Motion / Vision Usage

λ = 0 (99% / 1%) λ = 0.2 (48% / 52%) λ = 0.4 (42 % / 58%) Max Pooling [32]

Activity Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Walking 0.79 0.84 0.73 0.88 0.73 0.88 0.68 0.75
Walking Up/downstairs 0.74 0.35 0.39 0.27 0.67 0.29 0.64 0.35
Chopping Food 0.026 0.017 1.0 0.85 1.0 0.83 0.88 0.80
Riding Elevators 0.18 0.0434 0.42 0.13 0.54 0.17 0.58 0.20
Brushing Teeth 0 0 0.14 1.0 0.14 1.0 0.20 0.99
Riding Escalators 0.08 0.03 0.62 0.41 0.71 0.52 0.78 0.60
Talking with people 0.46 0.70 0.46 0.70 0.5 0.71 0.5 0.70
Watching TV 0.29 0.33 0.29 0.33 0.28 0.33 0.22 0.28
Eating and Drinking 0.49 0.61 0.82 0.97 0.87 0.98 0.88 0.94
Cooking on Stove 0 0 0.94 0.94 0.90 0.94 0.90 0.91
Browsing Mobile Phone 0.16 0.28 0.96 0.91 0.94 0.92 0.95 0.97
Washing dishes 0.21 0.78 0.81 0.94 0.76 1.0 0.80 1.0
Working on PC 0.30 0.5 0.82 0.58 0.86 0.69 0.84 0.72
Reading 0.26 0.10 0.95 0.85 0.95 0.87 0.90 0.78
Writing 0.28 0.26 0.96 0.93 0.90 0.89 0.83 0.83
Lying Down 0.98 0.96 0.91 0.96 0.91 0.96 0.76 0.50
Running 0.96 0.92 0.96 0.90 0.94 0.84 0.97 1.0
Doing push ups 0.69 0.79 0.97 0.89 0.97 0.88 0.99 0.96
Doing sit ups 0.89 0.82 0.88 0.82 0.88 0.81 1.0 1.0
Cycling 0.69 0.81 0.68 0.84 0.64 0.82 0.78 0.87

Table 2: Results on the DataEgo dataset shows that our method has better performance when compared to previous work.
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Figure 5: Summary of Accuracy, Energy Consumption
and Sensor/Vision usage for both Multimodal (top) and
DataEgo (bottom) datasets.

5%. Not only we perform better than previous work [32]
but we also provide a more energy efficient predictor as 5%
of all actions comes from a low energy source.

The impact of λ was quite different between datasets as
can be observed on Figure 5. This is due to a lower pre-
dictive capacity of the LRCN on the DataEgo dataset. As
the difference of accuracy between predictors decreases, our
method requires smaller values of λ in order to balance their
usage. Therefore, when choosing a value of λ, the predic-
tors accuracy should be taken into consideration as it is di-

rectly related to the magnitude of λ. Moreover, determin-
istic policies were in fact learned when λ values were too
high or too low. For instance, λ = 0 provided 99% of mo-
tion based predictions usage and only 1% of vision based
ones while using the Multimodal dataset.

Table 2 compares the max pooling method from previ-
ous work [32] on the DataEgo dataset. Its performance is
worse than our method with λ = 0.4. This proves that our
method is more suitable on situations where a more realistic
setting is used. Our policy seems to suffer less from activity
transition noise as it provides better overall accuracy.

5. Conclusion
We presented a novel RL framework for the Egocen-

tric Activity Recognition problem. Our method was able
to achieve state-of-the-art performance on current multi-
stream datasets while saving energy by trading off vision-
based activity recognition with low power motion based
sensor. This approach attempts to be more realistic for prac-
tical implementation on wearable devices as these devices
have limited computational and energy resources and there-
fore are not able to run expensive deep learning models for
extensive periods of time. We believe that in order to create
more pervasive machine learning applications, energy con-
sumption should be a central consideration when devising
new methods.
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