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Abstract

This paper introduces a novel methodology for 3D template
matching that is scalable to higher-dimensional spaces and
larger kernel sizes. It uses the Hilbert Maps framework to
model raw pointcloud information as a continuous occupancy
function, and we derive a closed-form solution to the convo-
lution operation that takes place directly in the Reproducing
Kernel Hilbert Space defining these functions. The result is a
third function modeling activation values, that can be queried
at arbitrary resolutions with logarithmic complexity, and by it-
eratively searching for high similarity areas we can determine
matching candidates. Experimental results show substantial
speed gains over standard discrete convolution techniques,
such as sliding window and fast Fourier transform, along with
a significant decrease in memory requirements, without accu-
racy loss. This efficiency allows the proposed methodology
to be used in areas where discrete convolution is currently
infeasible. As a practical example we explore the key problem
in robotics of global localization, in which a vehicle must be
positioned on a map using only its current sensor information,
and provide comparisons with other state-of-the-art techniques
in terms of computational speed and accuracy.

1 Introduction
Template matching is a technique used to identify areas in
a dataset that are similar to a given pattern. It has a wide
range of applications in several fields of research, most pre-
dominantly image processing (Brunelli 2009), where it is
used in tasks such as scene recognition, object classifica-
tion, autonomous navigation and so forth. Broadly speaking,
most template matching techniques either rely on data pre-
processing, using predefined models (Opromolla et al. 2015)
or salient features (Steder, Grisetti, and Burgard 2010) to
represent information; or work directly on raw input data,
using cross-correlation techniques (Briechle and Hanebeck
2001) to measure similarity.

Although generally more attractive, since it does not re-
quire preprocessing or prior assumptions about input data,
cross-correlation techniques still struggle with scaling limi-
tations, especially in higher-dimensional scenarios. Recent
evolutions in sensor technology have led to a jump from two
to three-dimensional datasets, that are more representative
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of real world structures and environments than a single 2D
slice. Unfortunately, the computational complexity of cross-
correlation grows exponentially in relation to the number
of input dimensions, rendering 3D calculations very time-
consuming. Moreover, due to the discrete nature of digital
data, the exact formulation is often substituted by a discrete
approximation, that even though much simpler requires sub-
stantially more computational power and memory. Several
different approaches have been proposed over the years to al-
leviate this drawback, such as separable kernels (Hummel and
Lower 1986), recursive filtering (Bernd 2005) and transfor-
mation to the frequency domain (Bracewell 2003). However,
these approaches are mostly circumstantial and cannot be
applied in every scenario: not all kernels are separable; re-
cursive filtering often suffers from inaccuracy and instability;
and calculations in the frequency domain have considerable
more memory requirements and lower numerical precision.

Cross-correlation shares many similarities with convo-
lution, an equally important mathematical tool with ap-
plications in areas such as filtering (Jan 2000), denoising
(Vaseghi 2006), compression (Salomon 2006) and deconvo-
lution (Castleman 1996). In order to extend its use to higher-
dimensional spaces, a substantial amount of work has been
done to increase efficiency in the convolution formulation:
in (Riegler, Ulusoy, and Geiger 2016), an octotree is used to
exploit sparsity in input data to hierarchically partition the
space, creating a varying-size voxel grid that avoids waste-
ful computations and decreases memory requirements. This
framework is then used to train a convolutional neural net-
work for tasks such as object classification, orientation esti-
mation and point cloud labeling. Similarly, (Li et al. 2016)
represents 3D space as volumetric fields and proposes the
use of field probing filters to efficiently extract features from
sparse input data.

All these approaches, however, are still discrete, and very
little attention has been paid over the years to the application
of continuous convolution to similar tasks. This paper pro-
poses a novel methodology that enables the use of continuous
convolution between sparse 3D pointclouds1, delivering the
result as a function that can be queried at arbitrary resolu-
tions and at logarithmic time, thus allowing for very efficient

1Even though this paper focuses on 3D data, the proposed
methodology can be trivially extended to any input dimensionality.



searches (i.e. for local extrema). We employ the Hilbert Maps
framework (Guizilini and Ramos 2016), an occupancy map-
ping technique that uses feature vectors to project observa-
tions into a high-dimensional Reproducing Kernel Hilbert
Space, where real-world complexity can be represented in a
linear fashion.

The main contribution of this paper is a technique for
the continuous convolution between two functions, and how
it can be applied in an occupancy mapping context for ef-
ficient cross-correlation template matching. We show that
the proposed technique is substantially faster than standard
convolution algorithms and has a much smaller memory foot-
print, since it does not require space discretization in any
form. Particularly, we show that our algorithm scales to much
larger kernel sizes and is more robust to the presence of
sparse information, a known issue found in most real datasets.
This methodology can be directly applied to a wide range of
other problems that benefit from the convolution operation,
such as object classification, image filtering, convolutional
neural networks, and so forth. As a practical application, we
focus on the problem of global localization (Xie et al. 2010),
showing how the proposed methodology is able to achieve
results that outperform current state-of-art similar techniques
in terms of speed, accuracy and reliability.

2 Occupancy Mapping Formulation
Initially proposed in (Ramos and Ott 2015), the Hilbert Maps
(HM) framework is a novel occupancy mapping technique
in which real-world complexity is represented linearly by
projecting observations into a feature vector that operates
on a higher-dimensional space, known as the Reproducing
Kernel Hilbert Space (RKHS) (Schölkopf and Smola 2001).
This results in a probabilistic framework in which parameter
training can be performed very efficiently using stochastic
gradient descent methods, and inference can be performed at
arbitrary resolutions.

We start by assuming a dataset D = {xi, yi}Ni=1, in
which xi ∈ RD is a point in the D-dimensional space and
yi = {−1,+1} is its corresponding occupancy value. This
dataset is used to incrementally learn a discriminative model
p(y|x,w), parametrized by a weight vector w that predicts
the occupancy values of new query points x∗. A simple Lo-
gistic Regression (LR) classifier (Freedman 2005) is used
here, due to its computational speed and direct extension to
online learning. Note that, even though this classifier is fairly
simple, it is accepted that linear separators are almost always
adequate to separate classes in high-dimensional spaces (Ko-
marek 2004). The probability of non-occupancy for a query
point x∗ is given by:

p(y∗ = −1|Φ(x∗),w) =
1

1 + exp (wTΦ(x∗))
, (1)

where Φ(x∗) is the feature vector of x∗ that operates on
the RKHS. To optimize the weight parameters w based on
information contained in D, we minimize the Regularized
Negative Log-Likelihood (RNLL) function:

RNLL(w) =

N∑
i=1

(
1 + exp

(
−yiwT Φ(xi)

))
+ R(w), (2)

with R(w) being a regularization function, used to prevent
overfitting and promote sparseness in w. A particularly in-
teresting property of Eq. 2 is its suitability for stochastic
gradient descent optimization (Bottou 2010), in which the
information contained in each training point provides one
small step towards a local minimum, given by:

wt = wt−1 − ηt
δ

δw
RNNL(w), (3)

where η > 0 is the learning rate, usually a constant or asymp-
totically decaying with the number of iterations. The only
remaining question is the feature vector calculation, that
projects observed points into the RKHS. It has been shown
(Ramos and Ott 2015) that the dot product of these feature
vectors can approximate popular kernels used in the litera-
ture, i.e. Φ(xi)Φ(xj) ≈ k(xi, xj). Here we are inspired by
the work of (Guizilini and Ramos 2016), in which D is clus-
tered to produce a setM = {µi,Σi}Mi=1 of anchor points,
used to correlate different areas of the input space based
on a Gaussian distribution with Automatic Relevance De-
termination (i.e. different length-scales for each dimension):

k(x,Mi) =
1√

(2π)D|Σi|
exp

(
−1

2
dTΣ

− 1
2

i d
)
, (4)

where d = x− µi and D is the input space dimensionality.
The feature vector Φ(x,M) produced by these anchor points
is generated by the concatenation of kernel values produced
by all extracted clusters (Eq. 5). To decrease computational
requirements, sparsity can be enforced by calculating only
the kernels related to a subset of the closest clusters and
setting all others to zero,

Φ(x,M) = [k(x,M1) , k(x,M2) , . . . , k(x,MM )]T . (5)

3 Continuous Convolution Model
In this section a novel methodology for the continuous con-
volution between two occupancy state functionsHs andHm
is introduced, the first one henceforth referred to as scene
and the second one as mask. The result of this operation is a
third functionHa that does not reflect occupancy states, but
rather activation values (i.e. how similar the scene is to the
mask). Although this methodology can be applied to any two
kernel functions with a closed-form convolution formula, or
using Monte Carlo approximations (Gilks, Richardson, and
Spiegelhalter 1995), for notation simplicity here we assume,
without loss of generalization, that both kernel functions are
described by Eq. 4. This choice greatly simplifies the problem
because, for the convolution of two Gaussian distributions,
there is a closed form solution that is also a Gaussian distri-
bution with Automatic Relevance Determination:

k(x,Mi) ∗ k(x,Mj) = k(x,Mi +Mj), (6)

where Mi + Mj = {µi + µj ,Σi + Σj}. The proof of
this result is omitted here for brevity (Bromiley 2003), but
it is a well-known property of Gaussian distributions. Fur-
thermore, it has been shown (Guizilini and Ramos 2016;
Doherty, Wang, and Englot 2016) that the Gaussian kernel



(a) Original pointcloud (b) Extracted clusters (c) 3D Reconstruction

(d) Reconstructed convolution mask. (e) Example of convolution with low activa-
tion value

(f) Example of convolution with high activa-
tion value

Figure 1: Examples of continuous convolution between two occupancy state functions,Hs andHm. In (e) and (f), the yellow
lines indicate clusters inHs that were closest to clusters inHm given the distance threshold (line 9 in Alg. 1). These matches are
used to update the weight ofHa (Eq. 7).

is adequate to efficiently model the occupancy state of large-
scale 3D environments at high accuracy. We will now pro-
ceed to build upon this property and propose a closed-form
solution to the continuous convolution of two arbitrary oc-
cupancy state functions, assuming they are modeled using
the Hilbert Maps framework with Gaussian kernels, as de-
scribed by Alg. 1. Examples of convolution results with other
kernel functions can be found in (Genton and Kleiber 2015;
Gneiting, Kleiber, and Schlather 2010), and directly applied
to the proposed methodology to produce more representative
models under different circumstances.

In lines 2-3 the resulting function Ha is initialized as a
copy of Hs and its weights are set to zero. Then, for each
cluster µsi , we take all clusters ofHm, translate them so that
they are centered in µsi (line 7) and find their closest neighbor
between the clusters inHs (line 8)2. If the closest neighbor
of any particular cluster is closer than the average cluster
distance r (line 9), this match is used to update wi in Ha
(line 11) according to the following equation:

wai +=

{
0 if ||µij − µs∗|| > r

ws
∗wm

j√
(2π)D|Σ∗j |

otherwise, (7)

where Σ∗j = Σs∗ + Σmj and ||µij − µs∗|| is the Euclidean

2Efficient nearest neighbor search can be performed using ap-
proximate kd-trees (Arya et al. 1998).

distance between µij = µsi + µmj and its closest neighbor
µs∗ in Hs. Note the similarities between Eqs. 5 and 7: the
weight values of both clusters are multiplied, since they are
constant; and the denominator is the same, since the result is
also a Gaussian distributions, with covariance matrix equal
to the sum of each individual covariance matrix. The only
difference is the exponential function, that measures the dis-
tance between points in Eq. 5, that is absent in Eq. 7 and
is substituted by a binary value: 0 if the distance between
clusters is larger than a certain threshold and 1 otherwise.
This is due to the random nature of the clustering process.
Given the same pointcloud, it is not possible to guarantee
that the same cluster centers will be selected, which would
create an artificial distance penalty in activation values. By
allowing any two clusters within r to be treated as if they
were in the same location (i.e. d = 0), we eliminate these
random variations, while ensuring that clusters with distance
above this threshold are removed from the calculation and
do not contribute to the final activation value. The multiplica-
tion of cluster weights also reflects the overlapping between
occupied (positive weights) and unoccupied areas (negative
weights), since only opposite areas will generate a penalty.

Once the convolution process is complete, the resulting
functionHa can be queried using Eq. 4 to produce activation
values for any point in the input space. Note that the number
of clusters in Ha remains the same as in Hs, which means



Algorithm 1 Pseudo-code for the continuous convolution
between two Hilbert Maps

1: Input: Hs andHm of input dimensionality D and aver-
age cluster distance r

2: Output:Ha
3: Ha = Hs %Ha is initialized asHs
4: wa = 0 % Weights ofHa are set to zero
5: for i = 0 to Ms do
6: for j = 0 to Mm do
7: µij = µsi + µmj
8: µs∗,w

s
∗ = µ,w for µs ∈Ms closest to µij

9: if ||µij − µs∗|| < r then
10: Σ∗j = Σs∗ + Σmj
11: wai += ws∗wmj /

√
(2π)D|Σ∗j |

12: end if
13: end for
14: end for

that querying for activation values can be done with the same
complexity as querying for occupancy values. Examples of
this continuous convolution methodology can be seen in Fig.
1e-f, depicting results with low and high activation values,
respectively. As expected, areas with higher overlapping will
have more cluster matches that fall within the distance thresh-
old, and therefore will generate higher activation values.

Computational Complexity
Here we analyze the computational complexity of the
proposed methodology, particularly in relation to the
O(N3

fN
3
g ) cost of sliding window convolution and

O
(
(Nf +Ng)

3log(Nf +Ng)
3
)

cost of Fourier convolu-
tion for 3D datasets (Fialka and Cadik 2006). This includes
both the computational complexity of generatingHs andHm
from input data and the convolution process between them to
produceHa.

Recently, a novel clustering initialization method called
k-MC2 was proposed (Bachem et al. 2016) in which seeding
for k-means can be done with complexity O(K2D), where
K is the number of clusters and D is data dimensionality.
This approach completely eliminates dependency on the num-
berN of data points, and was used here to produce the cluster
setM from which the feature vectors in Eq. 5 are generated.
To enforce sparsity, only the Q nearest clusters from each
data point are selected to produce its feature vector (in all
experiments, a value of Q = 3 was used). This is can be
efficiently implemented by maintaining a kd-tree of cluster
locations, that can be queried with a computational complex-
ity of O(logM), where M is the number of clusters used to
describe the pointcloud.

Training the weights of a Hilbert Map with the above in-
formation can be performed with complexity O(NQ logM)
using stochastic gradient descent, in which each data point
updates Q weights to better reflect its label (occupied or
unoccupied). Once both Hs and Hm are obtained, their
convolution (see Alg. 1) can be performed with complex-
ity O(MsMm logMs), since for each point in Ms all trans-
lated points in Mm are convolved with their nearest neigh-
bor in Ms. The resulting functionHa has the same number

of clusters Ma = Ms and can be queried with complexity
O(Q logMs). To summarize, the entire proposed continuous
convolution process has complexity:

O
(
H(Ds,Dm)

)
= O

(
(M2

s +M2
m)D

+NQ(logMs + logMm) +MsMm logMs

)
, (8)

where we can see a linear dependency in the number D of
dimensions. Intuitively, the size of Ms and Mm should also
increase as more dimensions are added, however in most
real datasets this increase is not exponential, since there is
usually a large amount of unobserved areas, that do not pro-
duce any clusters. The number of input points is considered
linearly and only during the training process, which is per-
formed once and can then be reused for any number of con-
volutions. When Mm � Ms the clustering process is in
fact the most computationally complex step, with O(M2

sD),
whereas at the limit when Mm = Ms the convolution pro-
cess becomes the most computationally complex step, with
O(M2

s logMs). Note that memory requirement is propor-
tional to onlyO(Ms+Mm), since there is no need to produce
a discretized grid of the observed space, only store cluster
locations, covariances and weights.

Rotational Invariance
While the standard convolution process is translationally in-
variant, it still takes into account the orientation of its func-
tions during calculations, and there are situations in which
rotational invariance is desirable. For example, one could be
interested in detecting particular objects, regardless of their
orientation in the environment. The continuous convolution
process depicted in Alg. 1 produces high activation values
only in areas ofHs aligned with the length-scales ofHm. In
this section we propose a simple, yet effective, technique that
automatically produces aligned clusters during the convolu-
tion process, so the resulting functionHa is also invariant to
arbitrary rotations betweenHs andHm.

This alignment is performed by modifying line 8 of Alg.
1, where the clusters of Hm are iteratively translated to be
centered around each cluster inHs, before proceeding with
nearest neighbor search (line 8) and weight update (line 11).
This modification takes the form:

µij = µsi +Rµmj , Σij = RΣmj R
T , (9)

where R = [V m? ]T [V si ] is a rotation matrix composed of V si
as the eigenvector matrix of Σsi , sorted by ascending eigen-
value order, and V m? is a similar eigenvector matrix, obtained
from the centermost cluster in Hm. What Eq. 9 essentially
does is rotate the cluster locations and covariances ofHm, so
they are aligned with the orientation of each cluster inHs as
they are iteratively convolved. To increase efficiency, these
eigenvector matrices can be calculated during the clustering
process and stored for later use.

Iterative Continuous Convolution
Here we show how global optimization can be performed
over Ha, to determine the input point with maximum acti-
vation value (i.e. where Hs is most similar to Hm). This is
achieved using an iterative process composed of three steps:



Algorithm 2 Iterative Continuous Convolution

1: Input: Ds and Dm, initial average cluster distance r,
number of iterations n and distance decay γ < 1

2: Output: Global maximum xopt
3: d← argmaxx∈Ds‖x‖ % Mask radius
4: for i = 0 to n do
5: Hs,Hm ← HM(Ds, r), HM(Dm, r)
6: Ha ← CC(Hs,H, r) % Perform convolution
7: xopt ← argmaxµHa(µ ∈Ms) % New maximum

8: xopt ← grad_desc( xopt , ∂
∂xH

a ) % Grad. descent
9: Ds ← { x ∈ Ds | ‖x− xopt‖ < d+ 2 · r }

10: r = γr % Decay average cluster distance
11: end for

1) Sample the function in search for global extrema candi-
dates; 2) Local convergence using gradient descent; and 3)
Increase cluster resolution to refine estimates. Pseudo-code
for this process can be found in Alg. 2, where we can see
is various stages: (line 5) HM modeling of scene and mask
pointclouds, at the current resolution; (line 6) convolution
process between these two occupancy models; (line 7) deter-
mine current global maximum within cluster mean points;
(line 8) local optimization using gradient information; (line
9) eliminate scene points sufficiently far from the current
maximum; and (line 10) decay average cluster distance for
the next iteration.

The derivative of Ha in relation to x is obtained by first
calculating the derivative of its kernel, which in the case of a
Gaussian distribution (Eq. 4) is given by:

∂

∂x
k(x,Mi) =

dTΣ
− 1

2
i√

(2π)D|Σi|
exp

(
−1

2
dTΣ

− 1
2

i d
)

= dTΣ−
1
2 k(x,Mi), (10)

where, again, d = x − µi. Subsequently, the derivative

of a feature vector defined by these kernels, and used to
produce ∂

∂xH
a, can be written simply as ∂

∂x Φ(x,M) =
∂
∂x [k(x,M1) , k(x,M2) , . . . , k(x,MM )]

T , i.e. the
derivative of each kernel independently (which is possible
because they are factored as a sum, see Eq. 1).

Note that a smaller subset of Dm is used at each itera-
tion, since it is refining previous estimates, which promotes
efficient calculations even at high resolutions. Additionally,
multiple hypotheses can be maintained by refining several
candidates in parallel, and the output can be used as the start-
ing point for other local optimization techniques. Note that
there is a practical limit to r, because as resolution increases
each cluster receives fewer data points, which are used to
calculate mean and variance parameters. So, rather than a
fixed number of iterations, the refinement process stops when
a significant percentage of clusters has fewer than a certain
threshold of points (in experiments we used 10% of clusters
with fewer than 5 points).

4 Experimental Results
Experiments were conducted to validate the proposed ap-
proach to continuous convolution in 3D space, and how it
performs in relation to standard sliding window and Fourier
discrete convolutions. Initially a virtual dataset was used,
composed of 44000 points covering an area of roughly 60
m3. The entire dataset served as the scene, and a cubic subset
was selected as the mask. For a fair comparison, the same
resolution used to produce the discretized grid served as the
average cluster distance.

Fig. 2 depicts convolution results when using discrete and
continuous techniques. Note that, while discrete convolution
tends to produce sharper boundaries between areas with high
and low activation values, continuous convolution provides a
smoother transition that better depicts "partial matches", i.e.
scene areas that share some similarities with the mask. Fig.

Figure 2: Examples of discrete (top row) and continuous (bottom row) convolution in a simulated 3D environment. The entire
dataset is convolved with a subset of it, defined by a white cube of side s = 0.5m. A resolution of r = 0.1m was used to produce
the voxel grid for discrete convolution, and the same value was used as the average cluster distance for continuous convolution.



(a) Continuous convolution with rotational invariance.

(b) Effects of changing resolution in continuous (top row) and
discrete (bottom row) convolutions.

Figure 3: Examples of resolution and rotational invariance
properties presented by the proposed convolution technique.

3a shows continuous convolution results for the same dataset
when using the rotational invariance technique described in
Sec. 3. In the top row, similar activation values were obtained
when convolving horizontal and vertical surfaces, while in
the bottom row two opposite wall corners were convolved
also with similar activation values.

To compare the computational speed of each technique,
we performed convolutions on this dataset using different
mask sizes s and resolutions r, with results presented in Fig.
4. As expected, for very small mask sizes discrete techniques
are faster, however as the mask size increases, especially for
higher resolutions, the proposed technique quickly surpasses
even the Fourier convolution in terms of computational speed.
Note that discrete techniques require the generation of grid
representations of its input functions, a step absent in the
continuous convolution process. As an example, for the above
mentioned dataset a discretized grid generated with r =
0.02m contains around 370 million points, while only 2000
clusters are necessary for the continuous representation.

Figure 4: Speed comparison between different convolution
techniques (average of 50 runs with random masks).

A breakdown of computational times3 during discrete and
continuous convolution is depicted in Table 1, where we can
see that grid generation takes up a substantial amount of time
in relation to the actual convolution process, particularly for
the Fourier technique. This computational time also increases
cubically with resolution, while the generation of a Hilbert
Map from the same dataset is not only much faster, but in-
creases roughly linearly with resolution. Interestingly, we
noticed during experiments that higher resolutions actually
decrease the accuracy of discrete convolution techniques, due
to the sparse and noisy nature of the input data (see Fig. 3b)
that produces random gaps in the generated grid. The ability
of the Hilbert Maps framework to deal with sparse data has
been noted in (Guizilini and Ramos 2016), and here it con-
tributes to the calculation of more robust activation values,
smoothing out random variations in input data.

As an application of the proposed technique in a context
of 3D template matching, in which a larger pointcloud is
searched for areas that fit a smaller one, we selected the key

3All computations were performed on a i7/2.60 x 8 GHz note-
book, with multi-threading wherever possible.

Res. Generate Convolve Infer
(m) (ms/m3) (µs/pt) (µs/pt)

Slid.
0.10 1.9 - 3.5
0.05 12.4 - 26.1
0.02 167.9 - 416.8

Four.
0.10 1.9 - 0.4
0.05 12.4 - 3.1
0.02 167.9 - 5.1

Cont.
0.10 1.1 0.1 0.6
0.05 1.7 0.4 0.8
0.02 2.5 0.9 1.0

Table 1: Computational times using different convolution
techniques. In discrete techniques, convolution and inference
are performed simultaneously, while the proposed framework
produces a function that can be queried at any input point.



Figure 5: Template matching on real large-scale datasets, using the proposed continuous convolution technique. White dots
indicate the template pointcloud, that is convolved with the dataset to produceHa, from which the global maximum is extracted.

problem in robotics of global localization (i.e. the kidnapped
robot problem). Two large-scale real datasets were used, rep-
resenting a structured corridor (n = 474557) and an outdoor
area (n = 670584). From these datasets, various unambigu-
ous ground-level points were selected and pointclouds were
extracted from a 3m radius, serving as the template to be
matched against the entire dataset. Two other techniques
were considered for comparison: the Generalized Iterative
Closest Point (GEN-ICP) (Segal, Haehnel, and Thrun 2009)
algorithm, as implemented by the PCL library (Rusu and
Cousins 2011); and a Particle Filter with Approximate Opti-
mal Sampling (AOS-PF) (Blanco, Gonzalez, and Fernandez-
Madrigal 2008). Nested annealing (Rajasekaran 2000) was
used to improve GEN-ICP initialization, and the AOS-PF
algorithm only considered ground-level points as potential
particles. Note that standard discrete convolution techniques
would not be applicable for such large-scale scenarios, due
to memory requirements and kernel sizes. In all cases, the
template pointclouds were downsampled by a factor of 2 and
arbitrarily rotated by up to 30o, to test the ability to deal with
sparse and misaligned data.

Fig. 5 shows some qualitative results obtained using the
proposed continuous convolution technique (CC-HM). As
expected, areas similar to the template produce higher activa-
tion values, that quickly decrease as we move away from their
center. Note that the proposed technique is able to naturally
deal with multiple hypotheses, in which activation values
can be viewed as a probabilistic distribution for potential
matches. Table 2 contains numeric comparisons between the
various 3D template matching techniques considered here, in

terms of accuracy and computational speed. Note that, while
CC-HM produces comparable linear and angular errors, it
converges much faster and more reliably than GEN-ICP and
AOS-PF, that still sporadically diverge (linear error > 1m).
We were able to further reduce these errors using the iterative
convolution process described in Section 3 (ICC-HM), by in-
crementally decreasing r and thus increasing accuracy during
optimal point calculation. Lastly, we tested the output of ICC-
HM as initial estimates for GEN-ICP, producing the entry
ICC-ICP, that converges in just a few iterations and achieves
marginally better overall results with 100% convergence rate.

Method Error Time Conv.
(cm) (o) (s) (%)

Corr.

GEN-ICP 11.9 3.7 55.9 60
AOS-PF 10.4 5.2 82.0 90
CC-HM 14.5 4.4 2.9 100
ICC-HM 9.8 3.1 4.1 100
ICC-ICP 9.5 2.9 7.3 100

Out.

GEN-ICP 15.5 5.1 75.6 55
AOS-PF 12.4 5.8 102.3 75
CC-HM 17.1 6.1 4.6 100
ICC-HM 10.9 3.4 5.7 100
ICC-ICP 10.3 3.2 9.3 100

Table 2: Comparison between different 3D template matching
techniques. Each row represents the average of 20 runs, and
the last column represents the convergence rate for these runs
(only successful runs were considered).



This indicates that the proposed technique can be used as a
first step for global optimization, since it searches the entire
input space, and then further refined using conventional local
techniques. Note that roughly half the time required by the
proposed technique is due to dataset modeling (as shown in
Table 1), that can be reused for convolutions with different
templates without extra computational cost.

5 Conclusion
This paper proposes a novel methodology for 3D template
matching using continuous convolution, in which input data
is modeled as occupancy functions using the Hilbert Maps
framework, and calculations takes place directly in the higher-
dimensional Reproducing Kernel Hilbert Space. We derive
a closed-form solution for the convolution process that is
highly scalable to larger kernel sizes, a scenario that remains
challenging and is not addressed by most state-of-the-art
techniques. Experimental results show a substantial increase
(by orders of magnitude) in computational speed and de-
crease in memory requirements, relative to standard discrete
convolution techniques. Experiments on large-scale global
localization using real datasets were performed, with the
proposed technique achieving results that outperform conven-
tional techniques in terms of computational time, accuracy
and reliability. Future work will focus on extending the con-
tinuous convolutional framework to different scenarios, such
as classification, producing much more compact filters that
are able to approximate arbitrarily complex functions.
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