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Fully Autonomous, Remotely
Operated Mine

T
his study is part of a larger program that is develop-
ing and implementing the vision of a fully autono-
mous, remotely operated mine. A key element of
this vision is a robust, probabilistic method of mod-
eling complex terrain on a large scale, typically with

dimensions measuring many kilometers. This article presents a
study of Gaussian process (GP) models applied to the problems
of modeling and data fusion in the context of large-scale terrain
modeling. The proposed model naturally provides a multireso-
lution representation of space, incorporates and handles uncer-
tainties aptly, and copes with incompleteness of sensory
information. These attributes are considered essential to support
most field robotics applications, including autonomous mining.
GP regression techniques are applied to estimate and interpolate
(to fill gaps in occluded areas) elevation information across the
field. GP approximation methods are introduced to enable the
application of the proposed techniques to large data sets. To
obtain a comprehensive model of complex terrain, typically,
multiple sensory modalities and multiple data sets are required.
The GP modeling approach is consequently extended to fuse
multiple, multimodal data sets to obtain a best estimate of the
elevation given the individual data sets. Two different GP-based
concepts are applied to perform data fusion—heteroscedastic
GPs and dependent GPs (DGPs). Thus, this article presents a
report on an ongoing study of the use of GPs and several GP-
based concepts to the problem of large-scale terrain modeling in
the context of mining automation.

Contemporary surface mapping methods employ represen-
tations based on tessellations. However, this process does not
have a statistically sound way of incorporating and managing
uncertainty. The assumption of statistically independent data is
a further limitation of many works that have used these
approaches. Although there are several interpolation techni-
ques known, the independence assumption can lead to simplis-
tic (like simple averaging) techniques that result in inaccurate
modeling of the terrain. Thus, an appropriate method for

incorporation and management of uncertainty and the ability
of handling spatially correlated data are two key challenges on
the modeling front.

Typically, sensory data are incomplete because of the pres-
ence of entities that occlude the sensor view. This is com-
pounded by the fact that every sensor has a limited perceptual
capability, i.e., a limited range and limited applicability. Thus,
most large-scale modeling experiments would ideally require
multiple sensory snapshots and multiple sensors to obtain a
more complete model. These sensors may have different
characteristics (accuracies) and yield data with different levels
of sparseness. The problem is in fusing these multiple and mul-
timodal sensory data sets. Terrain data can be obtained using
numerous sensors, including three-dimensional (3-D) laser
scanners and global positioning system (GPS). The 3-D laser
scanners provide dense and accurate data, whereas a GPS-
based survey typically comprises a relatively sparse set of well-
chosen points of interest. The experiments reported here use
data sets obtained from both of these sensors to develop an
integrated picture of the terrain.Digital Object Identifier 10.1109/MRA.2010.936960
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In this article, a novel approach to terrain modeling and ter-
rain data fusion using state-of-the-art machine learning meth-
ods is presented. A single nonstationary-kernel [neural
network (NN)] GP is successfully able to model large-scale
terrain data, taking into account the local smoothness while
preserving spatial features in the terrain (see the “Gaussian
Process Terrain Modeling” section). Particular emphasis is
placed on the scalability of the algorithm to large-scale terrain.
Toward this, a local approximation method based on a mov-
ing-window or a nearest-neighbor methodology, imple-
mented using efficient hierarchical data structures, is proposed
(see the “GP Approximations” section). The problem of fus-
ing multiple, multimodal data sets to obtain a comprehensive
model of the terrain is then addressed using two different
approaches—heteroscedastic GPs (see the “Heteroscedastic
GPs for Data Fusion” section) and DGPs (see the “DGPs for
Data Fusion” section). Sample outcomes are shown in the
respective sections with links being provided to detailed
reports on each method introduced in this article. A discussion
of current findings and ongoing work concludes this report.

Related Work
The state-of-the-art representations used in applications such
as mining, space exploration, and other field robotics scenarios,
as well as in geospatial engineering, are typically limited to ele-
vation maps [1], [2], triangulated irregular networks (TINs)
[3], [4], contour models, and their variants or combinations
[5], [6]. Each of these methods have their own strengths and
preferred application domains. The former two are more pop-
ular in robotics. All of these representations, in their native
form, do not handle spatially correlated data effectively and do
not have a statistically correct way of incorporating and man-
aging uncertainty.

GPs [7] are powerful nonparametric learning techniques
that can handle these issues and produce a scalable multiresolu-
tion model of the large-scale terrain under consideration.
They yield a continuous domain representation of the terrain
data and, hence, can be sampled at any desired resolution. GPs
incorporate and handle uncertainty in a statistically sound way
and represent spatially correlated data in an appropriate man-
ner. They model and use the spatial correlation of the given
data points to estimate the elevation values for other unknown
points of interest. In an estimation sense, GPs provide the best
linear unbiased estimate [8] based on the underlying stochastic
model of the spatial correlation between the data points. They
basically perform an interpolation methodology called Kriging
[9], which is a standard interpolation technique used in the
mining industry. Thus, GPs handle both uncertainty and
incompleteness effectively.

Recently, GPs have been applied in the context of terrain
modeling [10], [11]. Plagemann et al.’s study [10] is based on
using a nonstationary equivalent of a stationary-squared expo-
nential (SQEXP) covariance function [12] and incorporating
kernel adaptation techniques (also used by [13] in a similar
context) to adequately handle both smooth surfaces and inher-
ent (and characteristic) surface discontinuities. It introduces
the idea of a hyper-GP using a stationary kernel to predict the
most probable length-scale parameters to suit the local struc-
ture. It also proposes to model space as an ensemble of GPs to
reduce computational complexity. Vasudevan et al. [11] pro-
poses the use of nonstationary NN kernels to model large-
scale discontinuous spatial data. It shows that using a suitable
nonstationary kernel can directly result in modeling local
structure and smoothness. It also proposes a local approxima-
tion methodology to address scalability issues relating to the
application of this approach to large-scale data sets. This ap-
proximation technique is based on an efficient hierarchical
representation (K-dimensional tree (KD-tree) [28]) of the data.
It also compares performances of GPs based on stationary
(SQEXP) and nonstationary (NN) kernels, as well as several
other standard interpolation methods applicable to elevation
maps and TINs, in the context of large-scale terrain modeling.

This article first presents an overview of [11]. It then extends
the GP terrain modeling approach to integrate multiple, multi-
modal data sets. Two approaches to data fusion are presented:
one based on the notion of heteroscedastic GPs and the other
based on DGPs. Note that this work develops only the fusion
methodology. The registration of individual data sets to a com-
mon reference frame is assumed to be given for this work. Two
other related articles that attempt the problem of data fusion in
the context of GPs include [14] and [15]. Although the former
is based on similar assumptions to the fusion approach presented
in this study, it bears a hierarchical learning flavor to it in that it
essentially demonstrates how a GP can be used to model an
expensive process by 1) modeling a GP on an approximate or
cheap process and 2) using the many input–output data from
the approximate process and the few samples available of the
expensive one together to learn a GP for the expensive process.
Murray-Smith and Pearlmutter [15] attempts to generalize arbi-
trary transformations on GP prior through linear transforma-
tions. It hints how this framework could be used to introduce
heteroscedasticity and how information from different sources
could be fused. However, specifics on how the fusion can
actually be performed are beyond the scope of this article.

The data fusion approach based on heteroscedastic GPs
[16]–[19] treats the problem by combining different noisy data
samples of the common entity being modeled. Both [16] and
[19] are particularly relevant to this study. They model the noise
variance using a separate GP in addition to the GP governing
the noise-free output. Goldberg et al. [16] use Markov-chain
Monte-Carlo techniques (MCMC) to estimate the posterior
noise variance, whereas Kersting et al. [19] propose a maxi-
mum-likelihood approach (faster) using an expectation maxi-
mization (EM) algorithm-like iterative optimization procedure
for computing the noise variances [34]. The fusion approach
presented in this article does not use a separate GP to model

GPs provide a powerful,
nonparametric, and continuous
model for incomplete, uncertain,
and correlated data.
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noise and does not rely on computationally expensive
MCMC-based approaches. The approach is tailored toward
handling large data sets (approximately 1 million data points
per data set) and thus relies heavily on the local approximation
methods. It treats individual terrain data sets as homoscedastic
in nature, but different data sets considered together form a
heteroscedastic system.

The data fusion approach based on DGPs treats the problem
as one of 1) modeling each data set using a GP and 2) formulat-
ing the data fusion problem as a conditional estimation prob-
lem wherein estimation of a GP is improved using information
from other GPs—through learning autocovariances and cross-
covariances between them. This idea has been inspired by
recent machine learning contributions in GP modeling [20],
[21], the latter approach being based on [22]. In kriging termi-
nology, this idea is akin to cokriging [23]. This formalism is
used to demonstrate multioutput GPs (MOGPs) in the context
of simultaneous modeling of both elevation and color of terrain
data. It is also used to demonstrate data fusion of multiple, mul-
timodal terrain data sets by casting the problem as a conditional
estimation problem, given multiple DGPs.

Experiments have been performed on large-scale multimo-
dal terrain data obtained from real mining scenarios. The scale
of the experiments represents a first of its kind in the context
of the topic. Toward ensuring the scalability of the approach,
approximation methods have been introduced for both the
learning and inference stages. This article, thus, summarizes
recent studies on using GPs and many of its associated techni-
ques to the problem of large-scale terrain modeling, specifi-
cally addressing issues relating to modeling and fusing large-scale
terrain data.

GP Terrain Modeling
GPs provide a powerful framework for learning models of spa-
tially correlated and uncertain data. GP regression provides a
robust means of estimation and interpolation of elevation
information and can handle incomplete sensor data effectively.
GPs are nonparametric approaches in that they do not specify
an explicit functional model between the input and output.
They may be thought of as a Gaussian probability distribution
in function space and are characterized by a mean function
m(x) and the covariance function k(x, x0), where

m(x) ¼ E½ f (x)�, (1)

k(x, x0) ¼ E½( f (x)� m(x))( f (x0)� m(x0))�, (2)

such that, the GP is written as:

f (x) � GP(m(x), k(x, x0)): (3)

The mean and covariance functions together specify a distri-
bution over functions. In the context of terrain modeling, each
x � (x, y) and f (x) � z of the given data. The covariance func-
tion models the relationship between the random variables cor-
responding to the given data. Although not necessary, the
mean function m(x) may be assumed to be zero by scaling the
data appropriately such that it has an empirical mean of zero.

There are numerous covariance functions (kernels) that can be
used to model the spatial variation between the data points.
The most popular kernel is the SQEXP kernel given as:

k(x, x0) ¼ r2
f exp � 1

2
(x� x0)TR(x� x0)

� �
, (4)

where k is the covariance function or kernel, R ¼
�

lx 0
0 ly

��2
is

the length-scale matrix (a measure of how quickly the mod-
eled function changes in the directions x and y), and r2

f is the
signal variance. The set of parameters lx, ly, rf are referred to as
the kernel hyperparameters. The NN kernel [24]–[26] is a
nonstationary kernel that takes the form:

k(x, x0) ¼ r2
f arcsin

bþ 2xTRx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1þ bþ 2xTRx)(1þ bþ 2x0TRx0)

p
 !

,

(5)

where b is a bias factor, R is the length-scale matrix as
described earlier, and lx, ly, rf , b constitute the kernel hyper-
parameters. This kernel represents the covariance function of a
NN with a single hidden layer between the input and output,
infinitely many hidden nodes and using a sigmoid as the trans-
fer function [25] for the hidden nodes. Hornik [27] showed
that such NNs are universal approximators of data, and Neal
[24] observed that the functions produced by such a network
would tend to a GP.

The main difference between these two kernels is that the
SQEXP kernel, being a function of jx� x0j, is stationary
(invariant to translation), whereas the NN function is not so.
In practice, the SQEXP function has a smoothing or averaging
effect on the data. The NN covariance function proves to be
more effective in handling discontinuous (rapidly changing)
data than the SQEXP covariance function. This is the main
reason why it proves to be effective in modeling complex ter-
rain data. A more detailed analysis of these kernels and their
properties is presented in [11].

For dense and large data sets, not all data are used for learning
the GP model as such an approach would not scale for reasons
of computational complexity. The data are thus sampled (e.g.,
uniformly) into three disjoint subsets: training, evaluation, and
testing. The training data are used to learn the GP model corre-
sponding to the data. The training and evaluation data together
are stored in an efficient data structure (a KD-tree [28] is used
here) for later use in the inference process. The KD-tree
provides for rapid data access in the inference process and is also
used in the local approximation methods proposed in the “GP
Approximations” section. The testing data are the subset of data
over which the GP model is evaluated.

Training the GP for a given data set is equivalent to
choosing a kernel function and optimizing the hyperpara-
meters for the chosen kernel. For the SQEXP kernel, this
amounts to determining the values h ¼ flx, ly, rf , rng, and
for the NN kernel, this amounts to determining the values
h ¼ flx, ly, rf , b, rng, where r2

n is the noise variance of the
data being modeled. This is performed by formulating the
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problem in a maximum marginal-likelihood estimation frame-
work and subsequently solving a nonconvex optimization
problem. This study only considers noise in the observations or
output data. Noise in the input data (x, y) may be incorporated
as demonstrated in [29].

Applying the GP model amounted to using the learned GP
model to estimate the elevation information across a region of
interest, characterized by a grid of points at a desired resolution.
The 2.5-D elevation map can then be used directly or as a surface
map for various applications. This is achieved by performing GP
regression at a set of query points, given the training/evaluation
data sets and the GP kernel with the learned hyperparameters.
GP regression uses the idea that any finite subset of random varia-
bles is Gaussian distributed. Thus, any finite set of training or eval-
uation data and test data are jointly Gaussian distributed. This
idea, shown in (6), yields the standard GP regression equations (7)
and (8), which represents the posterior/expected-value/mean-
value and the variance/uncertainty in the prediction, respectively.

z

f�

� �
� N 0,

K (X , X)þ r2
nI K (X , X�)

K (X�, X) K (X�, X�)

� �� �
: (6)

�f� ¼ K (X�, X)½K (X , X)þ r2
nI ��1z: (7)

cov( f�) ¼ K (X�, X�)

� K (X�, X)½K (X , X)þ r2
nI ��1K (X , X�): (8)

For n training points and n� test points, K (X , X�) denotes
the n 3 n� matrix of covariances evaluated at all pairs of training
and test points. The terms K (X , X), K (X�, X�), and K (X�, X)
can be defined likewise. The function values ( f�) corresponding
to the test locations (X�), given the training inputs X , training
outputs z, and the covariance function (kernel), are given by (7)
and their uncertainties by (8). The GP estimates obtained are a
best linear unbiased estimate for the respective query points.
Uncertainty is handled by incorporating the sensor noise model
in the training data. The representation produced is multireso-
lution in that a terrain model can be generated at any desired
resolution using the GP regression equations presented earlier.
Thus, the GP terrain modeling approach is a probabilistic, mul-
tiresolution method that handles spatially correlated informa-
tion. A detailed report on GP modeling of large-scale terrain
data (individual data sets, which may be from any sensor) is
presented in [11]. This article includes extensive detail, experi-
ments on multiple, multimodal data sets, as well as comparison
and benchmarking experiments. One sample experimental out-
come is shown in Figures 1 and 2.

The elevation map in Figure 1 is obtained by predicting the
elevation for each point across a test grid of points spanning
the data set. The figure clearly demonstrates the ability of the
GP to 1) reliably estimate the elevation data in known areas, 2)
produce models that take into account the local structure to

preserve the characteristics of the terrain
being modeled, and 3) be able to model
sparse and feature rich data sets.

In Figure 2(b), the final uncertainty
estimates of the output elevation map (see
Figure 1) of the West Angelas mine data
set as obtained using the proposed GP
approach are shown. The uncertainty
map corresponds to a top–down view of
the data set as depicted in Figure 2(a).
Each point represents the uncertainty in
the estimated elevation of the correspond-
ing point in the elevation map. The
uncertainty is clearly higher in those areas
where there is no training data—typically
in the outer fringe areas and in gaps (mini-
mum standard deviation is 0.01 m, and
maximum standard deviation is 39.25 m).

GP Approximations
Both GP learning and inference are
computationally expensive operations
in that both require matrix inversion.
This operation is of cubic complexity
with respect to the number of points in

Figure 1. Outcome of applying a single NN-based GP to the
West Angelas data set.
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Figure 2. (a) Top–down view of West Angelas mine data set. (b) Uncertainty
(standard deviation in meter) of output elevation map (Figure 1).
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consideration. Numerous approximation strategies exist, re-
views of which can be found in [7] and [30]. This section
introduces a local approximation methodology based on a
moving-window or nearest-neighbor methodology that is
applied to both GP learning and GP inference.

Approximation During GP Inference
During the inference process, the KD-tree that initially stores
the training and evaluation data is queried to provide a prede-
fined number of spatially closest data, to the point for which the
elevation must be estimated. The GP regression process then
uses only these training exemplars to estimate the elevation at
the point of interest. This approximation method is akin to a
moving-window methodology and has multiple benefits that
are vital to the scalability of the GP method in a large-scale
application. The use of only the spatially closest neighbors for
GP regression keeps the computational complexity low and
bounded. As described earlier, the SQEXP kernel has a smooth-
ing effect on the data, whereas the NN kernel is more effective
in modeling discontinuous terrain data. The number of nearest
neighbor exemplars used can be used to control the trade-off
between smoothness and feature preservation. Finally, the pro-
posed local approximation method bounds (by selecting a fixed
number of data points) the subset of data over which the NN
kernel is applied. A more detailed explanation of these aspects is
provided in [11]. Vasudevan et al. [31]–[33] deal with the data
fusion of multiple large-scale terrain data sets. The proposed
approximation method is also used in these articles by extending
it to handle multiple data sets for each GP regression performed.

Approximation During GP Learning
Vasudevan et al. [11] demonstrated GP learning for a single
large-scale terrain data set. GP learning was based on maximiz-
ing the marginal likelihood. This study used uniform sampling
to select training points from the data to be modeled as using
the several 100,000 data for learning would be computationally
infeasible. The same procedure was applicable to the first data
fusion work [31] by adopting a constrained optimization
approach where GP modeling of only one data set was per-
formed at a time. The recent works on data fusion using DGPs
[32], [33] explored the possibilities of jointly learning the GP
models of multiple data sets and also learning GP models using
only limited computational resources. This was done by apply-
ing a nearest-neighbor approximation to GP learning as well.

During learning, a small set of training points is identified
through uniform sampling. The KD-tree is also used to select
points in each of their neighborhoods as training points. Thus,
patches of data are selected for training. Thus, the KD-tree
representation of the available data aids in both learning and
inference. Once the training data are selected, GP learning
proceeds by using the maximum marginal-likelihood frame-
work detailed in [11]. To ensure that GP learning can be effec-
tively performed given limited computational resources, a
block-learning procedure was adopted to learn the GP mod-
els. Instead of learning with all training points at once, this idea
uses blocks of points in a sequential marginal-likelihood com-
putation process within the optimization step. The block size

is predefined and depends on the computational resources
available. The KD-tree-based block learning guarantees that
multiple (in a data fusion context) large data sets can be handled
using even limited computing resources. Experiments in [32]
demonstrated that for a similar GP learning performance
(resulting model error), the KD-tree-based block learning
procedure was significantly faster (by 1 h) than a simple uni-
form sampling approach. Together with the nearest-neighbor/
moving-window GP approximation in the inference stage,
these methods ensure the scalability of the approach to multiple
large data sets.

Heteroscedastic GPs for Data Fusion
This approach to data fusion is based on two underlying ideas:

1) Data from the same entity can be modeled using a single
set of GP hyperparameters with just the noise parameter
varying between data sets. Thus, the data sets are consid-
ered as different noisy samples of a common terrain that
has to be modeled.

2) The fusion problem is treated as a standard GP regres-
sion/estimation problem (see the “GP Terrain Mod-
eling” section) with data having different noise
parameters. The formulation is similar to the heterosce-
dastic GP formulation described in [16] and [19]. A
detailed description of the approach is presented in [31],
and this section provides an overview of the approach
and puts it into perspective with that detailed in the “GP
Terrain Modeling” section.

Given multiple data sets (possibly multimodal) of the ter-
rain being modeled, the objective is to estimate the elevation
at a point given the various data sets and their respective GPs
(kernels and their hyperparameters). This can be specified as

E½ f�(X�)�, var( f�(X�))jXi, zi, GPi, X�, (9)

where Xi ¼ (xi, yi) and zi ¼ zi are the given data sets, GPi are
their respective GP model hyperparameters, and i varies from 1
to the number of data sets available (henceforth denoted by nt).

As in the “GP Terrain Modeling” section, the joint distri-
bution of any finite number of random variables of a GP is
Gaussian. Thus, the joint distribution of the training outputs z
and test outputs f�, can be specified by:

z
f�

� �
� N 0,

K (X , X)þ R K (X , X�)
K (X�, X) K (X�, X�)

� �� �
, (10)

where

z ¼ ½z1, z2, z3, . . . , znt �0

GP regression techniques are applied
to estimate and interpolate elevation

information across the field.
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are the output elevation values of the selected training data
from the individual data sets,

X ¼ ½X1, X2, X3, . . . , Xnt�

are the input location values of the selected training data from
the respective individual data sets, and

R ¼ diag r2
1f1...N1g, r

2
2f1...N2g, r

2
nf1...Nntg

h i

is the diagonal noise matrix, where each noise term is repeated
as many times as the number of training data taken from the
corresponding data set, denoted by N1, N2, . . . , Nnt. The
experiments performed in [31] used the NN kernel, although
any kernel [7] may be used so long as the same kernel is used for
modeling each of the individual data sets. For N training points
and N� test points, K (X , X�) denotes the N 3 N� matrix of
covariances evaluated at all pairs of training and test points.
K (X , X), K (X�, X�), and K (X�, X) can be similarly defined.

�f� ¼ K (X�, X)½K (X , X)þ R��1z: (11)

cov( f�) ¼ K (X�, X�)

� K (X�, X)½K (X , X)þ R��1K (X , X�): (12)

Conditioning (10) on f� given z yields (11) and (12). The
mean and variance of the elevation estimate can, thus, be
obtained by applying (11) and (12), incorporating multiple
data sets in the component terms as shown earlier. This esti-
mate is the conditional estimate at a desired point, given the
multiple and possibly multimodal data sets and their respective
GP models. The data sets may, thus, be fused to generate inte-
grated and comprehensive terrain models.

Learning of hyperparameters is based on the maximum
marginal-likelihood framework demonstrated in [11]. Only
one set of hyperparameters are used with the noise parameter
alone varying across data sets. These hyperparameters may be
obtained by selecting training data from each of the data sets and
doing a joint learning exercise. This method is computationally
expensive and is limited by the computational resources avail-
able but can be done if the learning approximation described in
the “Approximation During GP Learning” section is used.

An alternative approach to the GP-hyperparameter learning
is used in [31] that is based on constrained optimization. Here,
the first data set (any one) in consideration is modeled using
standard GP modeling procedure described in [11]. Thereafter,

for each other data set, a constrained optimization method is
adopted where the hyperparameters obtained before are reused,
the noise hyperparameter alone being modified to model the
successive data sets. This approach is akin to modeling successive
data sets in terms of the existing data set and then fusing them
using (11) and (12). The advantages of this approach include the
bounding of the computational complexity and the ability to
run the optimization operations in parallel. The former is partic-
ularly important in the context of this article.

Equations (11) and (12) provide the mean elevation esti-
mate and uncertainty (covariance) of GP sampled at points X�,
assuming no noise in the query points. If the predictions need
to be made at query points that are as uncertain as the data at
hand, (12) is modified as:

cov( f�) ¼ K (X�, X�)þ R(X�)

� K (X�, X)½K (X , X)þ R��1K (X , X�), (13)

where R(X�) represents the noise or uncertainty of the query
points themselves. In the homoscedastic case (single data set mod-
eling as in the “GP Terrain Modeling” section), this is typically
taken to be equal to the noise variance learned from the data. In
the heteroscedastic case, this is not known. For heteroscedastic
GP regression, estimation of the noise hyperparameters of the
data points and the query points is a key issue. Goldberg et al.
[16] and Kersting et al. [19] deal with the problem by maintaining
two GPs: one to estimate the quantity of interest given the
expected values of the noise parameters (in addition to the data
sets and GP hyperparameters) and the other GP to estimate the
noise hyperparameters, given the data points and query points.
The former is a straightforward application of (11) and (13). The
latter GP is the key issue, as it provides the noise values to the
former GP. Both [16] and [19] make an intuitive approxima-
tion—the noise values obtained from the second GP are approxi-
mated by their expected values. This work adopts the same idea
but implements it differently. Because the query points can be
assumed to be as noisy as the training data, and the local approx-
imation methodology toward GP regression [11] is adopted, the
query points are assigned a noise value, that is the expected value
(weighted average) of the noise terms of data taken from the
individual data sets. More details on this may be found in [31].

The article [31] and its corresponding technical report detail
numerous experiments conducted. Data fusion was demon-
strated by showing that the uncertainty at a given set of test
points from a data set never increased when it is fused with one
or more other data sets. The usefulness of data fusion was dem-
onstrated when the resulting output (post fusion) had lower
prediction errors than when they were considered individually.
One sample outcome is shown here. Figure 3 depicts the three
data sets overlaid on each other to clarify the overall picture of
the terrain in consideration. The points in blue represent laser
scan 1 [dense RIEGL (http://www.riegl.com/) laser scan span-
ning 2,146.6 m 3 2,302.1 m 3 464.3 m and comprising more
than 850,000 points], the points in red represent the second
laser scan (dense RIEGL laser scan having about 400,000 points
spread over 1,416.6 m 3 2,003.4 m 3 497.8 m), and finally, the

Nonstationary neural network
kernel-based GP is an effective
modeling option for modeling
discontinuous data of varying
sparseness.
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points in green represent the GPS survey data (sparse GPS Sur-
vey having only about 34,530 points spread over 1,437.2
m 3 1,879.5 m 3 380.5 m).

Figures 4 and 5 depict the surface map and uncertainty esti-
mates obtained after fusing the GPS data with the two laser
scanner data sets.

Mathematical Properties
Equations (11) and (12) provide the batch fusion estimator,
i.e., they provide the conditional mean and variance in eleva-
tion given all the data sets taken together.

It can be shown that the formalism guarantees that, with the
addition of data sets (any number from any sensor), the uncer-
tainty in the fused elevation estimate cannot increase. If the new
or incoming data set has relevant information for the prediction
at a query point in the first data set, the posterior uncertainty
will decrease; if there is no relevant information (assume, for
instance, no points are selected from successive data sets for a
particular query point), the uncertainty will remain same.

The detailed derivation is not included here because of the
paucity of space; however, it is based on the following idea—

without loss of generality, the difference between the posterior
uncertainty using a single data set to that obtained using two
data sets can be shown to be a positive semidefinite matrix.
This change in uncertainty will be based on the information
gain provided by points of the successive data sets to the
prediction at a query point using the first data set. For two data
sets, this is specified by:

a21 ¼ K�1
11 K12 ~K�1K21K�1

11 �K�1
11 K12 ~K�1

�~K�1K21K�1
11

~K�1

� �
, (14)

where ~K ¼ K22 � K21K�1
11 K12, K11 ¼ K (X1, X1)þ r2

1I rep-
resents the covariance matrix of the training data selected (for a
query point) from the first data set. K12 ¼ K (X1, X2),
K21 ¼ K (X2, X1), and K22 ¼ K (X2, X2)þ r2

2I can be simi-
larly defined. This term is always positive semidefinite, guaran-
teeing that the uncertainty will either remain the same or
decrease but never increase.

The information gain term (14) can be used to derive the
conditional mean and variance in a recursive form as shown in
[31]. This form enables a recursive fusion process wherein the
previous best estimate (and its uncertainty) together with the
information gain from the new data can be used to derive the
new fused elevation estimate and its uncertainty. The article
[31] provides more details on all aspects of this approach.

DGPs for Data Fusion
MOGPs (or multitask GPs) or DGPs extend the GP ap-
proach outlined before to handle multiple correlated outputs

Figure 3. The three (GPS survey and two laser scans) data sets
overlaid on one another for a clearer picture of the site in
consideration.

Figure 4. Output of GP fusion algorithm applied to the Tom
Price data sets (GPS data and the two laser scanner data sets).
The test data comprises 1 million points. The surface map of
the output elevation map is depicted in the image.
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Figure 5. Uncertainty (in meters) of the predicted elevation map
obtained from the GP fusion of the GPS data and the two laser
scanner data sets. The image corresponds to a top–down view
as shown in Figure 3. Fringe areas that are not well supported
by the individual data sets observe high-prediction uncertainty.
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simultaneously. The main advantage of this technique is that
the model exploits not only the spatial correlation of data cor-
responding to one output but also those of the other outputs.
This improves GP regression/prediction. Two works in this
area that have inspired this approach to data fusion include
[20] and [21]. In [20], the shared covariance function is learned
as a product of individual covariance functions and an intertask
similarity matrix. Boyle and Frean [21] use the process convo-
lution approach [22] to derive closed-form solutions to auto-
and cross-covariance functions for two DGPs. The approach
presented in this section integrates both of these ideas to allow
for increased flexibility in learning DGP models. It has been
presented in detail for stationary (SQEXP) and nonstationary
(NN) kernels in [32] and [33], respectively.

The objective is to model terrain data obtained as (x, y, z)
coordinates from multiple and multimodal data sets. Given the
GP models of these data sets (as obtained earlier), the objective
then would be to estimate an elevation map at any chosen
resolution and any chosen region of the terrain under consid-
eration. This can be achieved by performing a conditional esti-
mation given the different data sets/their GP models. In the
context of GPs, this amounts to GP regression. The problem
can be specified as shown in (9). This estimation will need to
take into account both the spatial correlation within each data
set and the spatial correlation across data sets. Correlations
between GPs can be modeled using autocovariances and cross-
covariances between them. By performing GP regression that
takes this information into account, conditional estimation can
be achieved, which results in a fused elevation estimate, given
the individual data sets.

The process convolution approach [22] is a generic method-
ology that formulates a GP as a white noise source convolved
with a smoothing kernel. Modeling the GP then amounts to
modeling the hyperparameters of the smoothing kernel. The
advantage of formulating GPs this way is that it readily allows
the GP to be extended to model more complex scenarios, one
such scenario being the multioutput GPs or DGPs. The fol-
lowing formulation is based on [22] and [21].

Given that one single terrain is being modeled, a single
Gaussian white noise process [denoted by X(s) and represent-
ing (x, y) information of the data sets] is chosen as the underly-
ing latent process. This process, when convolved with
different smoothing kernel (denoted by ki) produces different
data sets. The result of this convolution is denoted by Ui(s).
The observed data are assumed to be noisy, and, thus, an addi-
tive white Gaussian noise N (0, r2

i ) (denoted by Wi(s)) is added
to each process convolution output to yield the final data sets
observed. The mathematical formulation of the process con-
volution approach is given in (16).

Yi(s) ¼ Ui(s)þWi(s): (15)

Ui(s) ¼
Z

s
ki(s� k) ? X(k)dk: (16)

When expressed using the process convolution approach, the
auto- and cross-covariances between GPs, required for GP fusion,
can be computed through a convolution integral as the kernel
correlation, as demonstrated in [21]. In general, the main chal-
lenge in using this concept is the nontrivial derivation of closed-
form solutions for auto- and cross-covariances for a given kernel.
Vasudevan et al.’s study [32] is based on the SQEXP kernel and is
inspired by [21]. The authors subsequently developed and applied
this formalism for the nonstationary NN kernel in [33].

For two SQEXP GPs N (0, ki) and N (0, kj) with length-
scale matrices Ri and Rj, respectively, the auto- and cross-cova-
riances are specified by (17).

KU
ij (x, x0) ¼ Kf � jRi þ Rjj�

1
2

exp

�
� 1

2
(x� x0)T Rij(x� x0)

�
, (17)

where Rij ¼ Ri(Ri þ Rj)�1Rj ¼ Rj(Ri þ Rj)�1Ri. KU
ii repre-

sents the autocovariance of the ith data set with itself, and KU
ij

represents the cross-covariance between the ith and jth data
sets, without considering the noise components of the data
sets. The Kf term in (17) is inspired from [20]. This term mod-
els the task similarity between individual tasks. Incorporating it
in the auto- and cross-covariances provides additional flexibil-
ity to the DGP modeling process. It is a symmetric matrix of
size nt � nt and is learned along with the other GP hyperpara-
meters. For two NN GPs (following a similar notation), the
auto- and cross-covariances may be specified by (18).

KU
ij (x, x0) ¼ Kf � 2

1
2jRij

1
4jRi þ Rjj�

1
2jRjj

1
4k(x, x0, Rij) (18)

where Rij is obtained as Rij ¼ 2Ri(Ri þ Rj)�1Rj, and the term
k(x, x0, Rij) is the NN kernel for two data x, x0, and length-
scale matrix Rij. It is given by (5).

The covariance matrix term KðX ;XÞ in (7) and (8) is then
specified as:

K ¼

KY
11 KY

12 . . . KY
1nt

KY
21 . . . . . . ..

.

..

. ..
. ..

. ..
.

KY
nt1 . . . . . . KY

nt nt

2
6664

3
7775, (19)

where

KY
ii ¼ KU

ii þ r2
i I , (20)

KY
ij ¼ KU

ij : (21)

KY
ii represents the autocovariance of the ith data set with itself,

and KY
ij represents the cross-covariance between the ith and

jth data sets. They also take the noise components of the data
sets into consideration and are obtained as in (20) and (21),
respectively. K (X�, X) denotes the covariance between the

Heteroscedastic GP and dependent
GP concepts are applied to perform
data fusion.
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test data and the sets of input data (from the individual data
sets) that are used for GP regression. It is given by:

K (X�, X) ¼ KU
i1 (X�, X1), KU

i1 (X�, X2), . . . KU
i nt(X�, Xnt)

� �
, (22)

where i is the output to be predicted—it can vary from 1 to nt.
K (X�, X�) represents the a priori covariance of the test points
and is specified by:

K (X�, X�) ¼ KU
ii (X�, X�)þ r2

i : (23)

The noise term is added assuming the test points are as noisy
as the data points of the ith GP. Finally, z represents the sets of
z data corresponding to the training data taken from each of
the data sets.

z ¼ ½z1, z2, . . . , znt�: (24)

The hyperparameters of the system that need to be learned
include nt � ðnt þ 1Þ=2 task similarity values, nt � 2 length-
scale values of the individual kernels, and nt noise values corre-
sponding to the noise in the observed data sets. GP learning is
performed by the maximum marginal-likelihood estimation
process [11], [32], [33] using the approximations introduced
earlier. In the context of modeling a single terrain using multi-
ple and multimodal data sets, for each point, the GP that is spa-
tially closest to the test point is chosen for performing GP
regression. The regression takes into account spatial correla-
tion with other data sets as described.

The reports [32] and [33] describe the approach in detail,
provide derivations for the math, and present preliminary
results demonstrating data fusion (for multiple, multimodal
data sets), as well as simultaneous elevation and color model-
ing. Further experimentation and optimization is intended to
improve results and perform comparison/benchmarking
experiments. One sample result from [32] is showcased in Fig-
ures 6–8. In Figure 7, about 2,550 points were used for train-
ing each task (elevation, red, green, and blue). The average
mean squared error (MSE) between GP prediction and
ground truth values obtained over the 100,000 points were
0.0524 m2 for elevation and 0.0131, 0.0141, and 0.0101
squared units for red, green, and blue, respectively. The out-
put demonstrates the ability of the approach to simultaneously
handle elevation and color data in the context of terrain mod-
eling. Figure 8(a) shows the output when the entire data set
(Figure 6) is fused with patch 2 of the same data set—this rep-
resents a case of data fusion between two overlapping data sets.
Figure 8(b) shows the output when two nonoverlapping
patches of the original data set, patches 1 and 2 of Figure 6, are
fused to predict the model for the entire data set. As shown in
Figure 6, even in the area where no data is observed (patch 3),
the DGP formalism produces a best estimate given the data sets
at hand. These estimates were verified to be within two
standard deviations (2 r) of the ground truth—see [32] for a
figure showing this. In both the figures, the red and green
points are the training points used from each data set, and the
blue ones are generated from the DGP model.

Conclusions
This article reviewed recent efforts in applying a machine
learning approach (GPs and models derived from them)
toward solving a complex, real-world problem (large-scale
terrain modeling) with significant practical applications (min-
ing automation being one example). Specifically, this article
addressed the problems of modeling and data fusion using GPs
applied to large-scale problems. On the modeling front, it showed
that a single NN-based GP was powerful enough to be able to
successfully model complex terrain data, taking into account the

Figure 6. Small section of a single RIEGL laser scan from Mt.
Tom Price, Australia. The data set has about 150,000 points
with both elevation and color (RGB) data. For the purpose of
the data fusion experiments (see Figure 8), the data set is split
into three patches as shown in the figure.

Figure 7. A SQEXP kernel-based MOGP being used to
simultaneously model and predict elevation and color (RGB)
data at 100,000 test points taken from the Tom Price data set
(see Figure 6).
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local structure and preserving much of the spatial features in the
terrain. To ensure scalability of the proposed methods, approxi-
mations were introduced in both learning and inference stages.
Two approaches based on heteroscedastic GPs and DGPs were
proposed to address a relatively unexplored problem—data fusion
using GPs. The latter approach being more generic is shown to
cope with nonoverlapping data and simultaneously model multi-
ple properties of terrain data. Key distinguishing characteristics of
this study include the use of the nonstationary NN kernel, the
approximation methods used, the development of the nonstation-
ary DGP approach, as well as the scale of the data used and the
extent of experimentation. Further experimentation, comparison,
and benchmarking are currently being undertaken for the data
fusion approaches to fully understand them.

The study presented here provides a means to
1) model large-scale sensory data acquired at different

degrees of sparseness

2) provide a nonparametric, multiresolution, and proba-
bilistic representation of the large-scale terrain

3) provide an unbiased estimator for the data at any desired
resolution

4) handle sensor incompleteness by providing an unbiased
estimates of data that are unavailable (because of occlu-
sions for instance); no assumptions on the structure of
the data are made, and a best prediction is made using
only the data at hand

5) handle sensor uncertainty by modeling the uncertainty
in data in a statistically sound manner

6) handle spatial correlation between data
7) integrate (data fusion) multiple, multimodal data sets of

a common underlying terrain.
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