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Abstract— Automated rock recognition is a key step for
building a fully autonomous mine. When characterizing rock
types from drill performance data, the main challenge is that
there is not an obvious one-to-one correspondence between
the two. In this paper, a hybrid rock recognition approach
is proposed which combines Gaussian Process (GP) regression
with clustering. Drill performance data is also known as
Measurement While Drilling (MWD) data and a rock hardness
measure - Adjusted Penetration Rate (APR) is extracted using
the raw data in discrete drill holes. GP regression is then applied
to create a more dense APR distribution, followed by clustering
which produces discrete class labels. No initial labelling is
needed. Comparisons are made with alternative measures of
rock hardness from MWD data as well as state-of-the-art GP
classification. Experimental results from an actual mine site
show the effectiveness of our proposed approach.

I. INTRODUCTION

Successful automation of mining activities represents a

goal for mining companies. Of the challenges facing mine

automation, the construction of representations of the un-

mined geology so as to determine the quantity and quality

of the minerals of interest, represents a significant issue.

To help address this challenge, we develop automated rock

recognition solutions to extract useful properties such as rock

hardness and rock type from measurements of the operation

and performance of the drills used to drill blast holes. These

holes are drilled on a relatively close grid of 5-6m so that the

blasting produces uniform rock breakage. The drills may be

operated in manual or autonomous mode. The measurements

are known as Measurement While Drilling (MWD) data.

Automated rock recognition provides information that can

be used in optimization of mine operations as well as mine

planning and design [4]. It can assist the mining industry

operate in a more efficient, cost effective and safe manner.

For instance, rock type boundary detection is important for

blast design as well as general strategic planning.

Conventionally, rock recognition is performed manually

by geologists from rock samples collected on site. It is a

hard work - time intensive and expensive. This motivates

the seeking of an automated solution. One feasible approach

is to automate rock recognition from the MWD data that

are routinely collected from drilling. MWD data consist of

a group of measurements that are primarily used to control

and monitor the drilling process. They are collected from the

sensors mounted on large drill rigs for blast hole drilling.

Figure 1 is an example of the autonomous blast hole drill

rig.

The idea of relating drilling measurements to the proper-

ties of the rocks has been studied using empirical and statis-

tical approaches [7][5][6][10][9]. Teale’s Specific Energy of

Fig. 1. Autonomous blast hole drill rig used for collecting experimental
MWD data in this paper.

Drilling (SED) [7] is most widely cited. Machine learning

techniques, including unsupervised learning and supervised

learning, have also been applied. In [8], an unsupervised

learning method is used to classify the geological patterns.

Various supervised learning approaches have been developed

as well, such as Neural Networks (NN) [11][13][12][4],

Conditional Random Field (CRF) model [14][15] and GP

classification [16].

Supervised learning methods classify rock types of indi-

vidual blast holes on the basis of models trained from the

labelled MWD data. MWD data are labelled by experienced

geologists using other geological data and interpretations.

Since it is very difficult for geologists to reliably categorize

the rock type changes within one blast hole, the entire hole

is assigned a rock type label. A classifier is then trained and

used to classify any new coming MWD data. In our context,

rocks in each blast hole are classified into one of the three

types, i.e. shale, ore and BIF (Banded Iron Formation).

For supervised learning, the major difficulty in accurately

predicting rock types from MWD data lies in the inhomo-

geneity of the rocks. It is possible for one rock type to have

different MWD values and for one set of MWD values to

represent quite different rock types.

To address this difficulty, we propose an adaptive solution

with the framework shown in Figure 2. Instead of directly

relating MWD data to a specific rock type, we build the

connection between MWD data and rock types in two steps.

MWD data are firstly mapped to the rock hardness followed
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Fig. 2. The framework of the proposed hybrid GP regression and clustering
approach for automatic rock recognition.

by another mapping from the rock hardness to rock types.

A generalized rock hardness measure - Adjusted Penetration

Rate (APR) is extracted from the discrete blast hole MWD

data, with which GP regression [1][2] is applied to get a more

dense 3D rock hardness distribution. From the derived APR

values, general identification of rock types can be attempted.

Of the three main rock types present at the site of our work,

shale is the softest, BIF is the hardest and ore is in between.

The main contributions of our work are:

1) Our proposed approach successfully creates a rock type

model from MWD data, where there is not a direct

connection between the input (MWD data) and the

output (rock types). It reliably classifies rock types

without initial labelling.

2) A continuous 3D model of rock hardness distribution

across a mining site can be obtained by applying GP

regression on the rock hardness measure APR from

multiple holes. This makes it possible to have a more

accurate overall description of the rock hardness.

3) In contrast to all previous methods of analyzing rock

properties, we introduce and define a new parameter

Adjusted Penetration Rate (APR). APR is simply the

Penetration Rate divided by the product of Pulldown

Pressure and square root of the Rotation Pressure (see

Section III for details of MWD data). This makes it

possible to reveal the inherent connection between the

MWD data and rock hardness, which is not explicitly

reflected on the raw MWD data due to the interdepen-

dence between them.

For easy reference, major acronyms related to drilling and

geology in this paper are listed below,

1) APR: Adjusted Penetration Rate

2) BIF: Banded Iron Formation

3) MWD: Measurement While Drilling

4) PR: Penetration Rate

5) PP: Pulldown Pressure

6) RP: Rotation Pressure

7) RS: Rotation Speed

8) SED: Specific Energy of Drilling

The rest of the paper is organized as follows. GP regres-

sion and GP classification are briefly reviewed in Section II.

In Section III, our proposed APR is defined and the APR

based rock recognition algorithm is presented. Section IV

shows the experimental results. Finally, Section V summa-

rizes the main conclusions.

II. GAUSSIAN PROCESS (GP) REGRESSION AND

CLASSIFICATION

In our work, we use Gaussian Process (GP) regression

to generate the continuous rock hardness distribution. The

results are then compared between GP classification and our

proposed method. Both GP regression and GP classification

are briefly described as follows.

A GP is a collection of random variables, any finite

number of which have a joint Gaussian distribution. It is

fully specified by its mean function µ(x) and kernel function

K(x,x′), i.e., f ∼ GP(µ,K) [1].

Given a n dimensional dataset with m observations

{(xi,yi), i = 1,2, · · · ,m}, where x is the n dimensional input

vector, comprising the n×m input matrix X , and y is the

scalar as part of the output vector y, the GP regression mean

predictive distribution can be expressed as [1]

f̄∗ = K(X∗,X)[K(X ,X)+σ
2
nI]−1y, (1)

where X∗ is the testing data matrix, K(X ,X) is the kernel

matrix of the training data, K(X∗,X) is the kernel matrix of

the training as well as testing points and σ
2
n is the Gaussian

noise variance of the observations.

If y has a discrete value of {1,-1}, it turns out to be a GP

binary classification problem. The probabilistic interpretation

for the output is [1],

p(y∗ = +1|X ,y,x∗) =
∫

g( f∗)p( f∗|X ,y,x∗)d f∗, (2)

where p( f∗|X ,y,x∗) is the distribution over the latent func-

tion f corresponding to the test case f∗, g can be any sigmoid

function that ‘squashes’ the prediction output to guarantee a

valid probabilistic value within the range of [0,1].

III. THE CHARACTERIZING MEASURE: ADJUSTED

PENETRATION RATE (APR)

For the MWD data we work with, the data typically

includes Penetration Rate (PR), Pulldown Pressure (PP),

Torque (RP, reflecting Rotation Pressure), Rotation Speed

(RS) and Bit Air Pressure (BAP). Of these, PR, PP and RP

are the measurements used in our proposed approach. As

indicated in Section I, due to geological variability, there is

not a one-to-one correspondence between the MWD data and

the rock types. In addition, a full mathematical description

of the interaction between the drill bit and the rock is

unavailable. Taking these difficulties into consideration, we

explore the physical meaning beneath the MWD data and aim

to extract a characteristic measure that not only captures the

inherent rock hardness but also explicitly relates MWD data

to rock types.
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Fig. 3. The major steps of the automatic rock recognition algorithm.

Of the various MWD measurements, PR is a key mea-

surement and responds to the rock hardness as well as the

applied forces of PP and RP. Two assumptions are made:

1) With constant PP and RP, PR reflects the rock hard-

ness. The lower the PR, the harder the rock and vice

versa.

2) The rock hardness is generally related to the rock type

such that the rock hardness decreases from BIF to ore

and then to shale.

However, for both manual drilling and autonomous

drilling, PP and RP are variable. We need to define a measure

that can capture the inherent properties of the rock regardless

of the changes in PP and RP.

We utilize the concept of “capacity factor" from [3]. The

capacity factor Ktc is defined in eq.(3) as rotation speed (RS)

divided by the square root of torque (RP),

Ktc =
RS√
RP

(3)

As a performance parameter of a torque converter for

automatic transmissions, the capacity factor indicates the

ability of the converter to generate the observed rotation

speed with the applied torque. It is a reflection of the

resistance of the fluid in the converter.

In our case, we look for a measure that represents the

resistance of the rock being drilled. Similar to the torque

converter, this measure can be defined as the ability to

generate the observed speed with the applied external forces.

What makes it different from the torque converter is that

the speed we are concerned with is the vertical PR and the

applied forces are from both PP and RP.

As shown in eq.(4), we decompose the definition into three

parts. Firstly, similar to eq.(3), we define a capacity factor

which indicates the ability of achieving the RS with the

applied RP. Since the change of RS and PR are correlated, we

then define a ratio of PR over RS, indicating how much PR

can be obtained out of RS. Putting the first two parts together,

it is equivalent to the capacity factor w.r.t. PR. However, PR

is generated by both PP and RP. Therefore, the product of

the first two parts is further corrected by PP. In this way, the

resistance of the rock is defined. We name this definition as

the Adjusted Penetration Rate (APR).

APR =
RS√
RP

· PR

RS
· 1

PP
=

PR

PP
√

RP
(4)

Looking at eq.(4) from the numerical point of view, it
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Fig. 4. Blast holes as well as the assumed rock types “ground truth" for
our testing.

is different from previous empirical equations [7][6][10][9],

because we compensate the PR by dividing it by the product

of PP and RP square root, to establish APR1. In this way,

APR explicitly links MWD data with rock hardness, given

the two assumptions listed above.

As mentioned in Section I, the blast holes from which the

MWD data collected are 5-6m apart. Thus, the calculated

APR values (using eq.(4)) are also discretely and sparsely

located. At such spacing, it is difficult to identify the exact

boundaries between the rock types. With regards to that,

we propose to apply GP regression on the APR values

of discrete blast hole to obtain a more continuous (dense)

distribution of the rock hardness. We take this to be the

3D continuous rock hardness distribution, with which the

rock type boundaries can be better identified and extracted

by clustering. A summary of our proposed rock recognition

algorithm is shown in Figure 3.

IV. EXPERIMENTS AND RESULTS

A. APR Rock Hardness Distribution

We have tested our approach using MWD data collected

from an iron ore mine in Australia. Figure 4 shows the

1Regarding the unit of APR, it is beyond the scope of this paper. In our
context, APR is used as a ratio which separates different rock types. Hence,
it can be viewed as having similar significance to raw PR.
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Fig. 5. Boundary detection over hardness distribution. (a) Projection of rock hardness distribution on a 2D plane. (b) Projection of rock hardness distribution
into 1D. Black line: BIF-ore boundary threshold, pink line: ore-shale boundary threshold. (c) Detected rock boundary. Black line: BIF-ore boundary, pink
line: ore-shale boundary. (d) Rock types ’ground truth’.

blast holes as well as the assumed rock types “ground truth"

for one of our tests. It covers typical transitions between

the three major rock types we are concerned with. The

“ground truth" was provided by an experienced geologist

using various geological data sources, e.g., chemistry and

geological logging analysis. This is assumed to represent a

reasonable approximation of the true geology. In Figure 4,

the redder colours correspond to higher APR values (lower

rock hardness) and blue corresponds to lower APR values

(higher rock hardness). Since the rock hardness increases

from shale to ore and then to BIF, the lowest hardness red

colour zones correspond to shale, the highest hardness blue

zones are the BIF and the medium hardness, green, represents

the ore.

Our proposed APR rock recognition method was applied

to the test site and the results are shown in Figure 5. Figure

5(a) is the APR rock hardness distribution projected onto

a horizontal 2D plane. A further 1D projection along the

north axis is shown in Figure 5(b). From this 1D projection,

the rock types are extracted using preset thresholds. By

incorporating the established rock types, the threshold for the

BIF-ore boundary is set to 0.25 and the ore-shale boundary

is 0.4. The extracted boundaries are shown in Figure 5(c),

where the black lines are the BIF-ore boundaries and the

pink lines are the ore-shale boundaries. Compared with the

“ground truth" in Figure 5(d), it can be seen that the results

are satisfactory.

In Figure 6, a comparison is made between the rock hard-

ness distributions based on raw PR and APR. By comparing

with the “ground truth" in Figure 6(c), we can see that the

results of APR are clearly more consistent with the actual

geology.

B. Comparison of APR with an Alternative Measurement -

SED

A comparison has also been made between APR and an

existing widely cited rock property characterizing measure -

Specific Energy of Drilling (SED) [7], which is defined as,

e =
F

A
+

2πNT

Au
, (5)

where F is the thrust (equivalent to PP in our context), N is

our RS, T is torque (equivalent to RP in our context), u is

our PR and A is the cross-sectional area of the hole which

is a constant.

SED is an indication of the energy needed when drilling

rocks. Therefore, the SED value has the opposite trend to

the APR value, e.g., shale has the lowest hardness and the

corresponding SED is low, while APR is high.

In Figure 7, a comparison is made between APR and SED.

On the basis of the “ground truth" shown in Figure 7(c), it

can be seen that the SED results are less accurate. Figure

7(d) also shows that compared with APR, SED is much

less sensitive to the changes in rock type that occur in the

northerly direction.

C. Comparison with GP Classification Results

In addition, the rock types and boundaries at the test

site were also detected using GP classification [1][2]. The

test was performed in two ways: cross validation within the

dataset itself as well as using data from three neighbouring

test sites as training datasets. To guarantee a more reliable

labelling of the training data, for either the cross validation

dataset or the training datasets from the three neighbouring

test sites, the blast holes near the boundaries were removed.

The classification results are plotted in Figure 8. By

comparing with the “ground truth" in Figure 8(c), it can

be seen that even with cross validation within the dataset

itself, GP classification can only correctly detect most of

the shale zones and part of the ore zones. The BIF zone

is totally missed. With the GP classification trained by the

neighbouring test sites, the results are completely misleading.

The shale zone is interpreted as ore and the ore is interpreted

as BIF. This result indicates that even with the removal of
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Fig. 6. Comparison of GP regression results based on raw PR and APR. (a) GP regression result on raw PR. Black line: BIF-ore boundary threshold,
pink line: ore-shale boundary. (b) GP regression result on APR. Black line: BIF-ore boundary threshold, pink line: ore-shale boundary. (c) Rock types
’ground truth’.
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Fig. 7. Comparison between APR and SED. (a) Rock boundary of SED (reversed and normalized). Black line: BIF-ore boundary, pink line: ore-shale
boundary. (b) Rock boundary of APR. Black line: BIF-ore boundary, pink line: ore-shale boundary. (c) Rock types ’ground truth’. (d) 1D projection of
APR and SED distributions.

the holes of high uncertainty, the classification results are

unsatisfactory.

D. Discussion

To summarize, extensive comparisons of results from ac-

tual MWD datasets have shown that our hybrid GP regression

and clustering approach for rock recognition using APR has

stable and satisfactory performance.

Currently, straight line boundaries are used to separate

different rock types. Since the ground truth of an unmined

site is never precisely known due to the local and more

general variations in the geology, such an approximated

separation has already provided valuable information for

mine operations. Further work could be done to extract more

flexible boundary curves together with the development of a

solid way of validation from the geological point of view.

It should also be noted that our proposed approach rep-

resents an attempt to handle situations when there is not a

clear causal relation between the input data features and the

expected output class labels. Mapping from the raw MWD

data to APR tunes the feature(s) more explicitly related

to the output (rock type) labels. GP regression on APR

encompasses the inherent correlation between neighbouring

APR values to properly reconstruct the feature space at a

desired resolution. As a result, it leads to a more reliable and

accurate classification result. All these allow the subsequent

clustering to be implemented in a very simple way. Hence,

this approach has the potential of being applied to other

applications, where a principal measure can be extracted

through a good analysis and understanding of the underlying
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Fig. 8. 2D projection of Gaussian Process classification results. Gaps have been left in the vicinity of the boundaries. (a) Cross validation results within
one bench. (b) Classification results using training data from three neighbouring benches. (c) Rock boundary ’ground truth’.

physical meaning, together with a GP regression to create a

more separable new feature space.

V. CONCLUSIONS

A novel hybrid approach has been proposed to reliably

categorize rock types from MWD data. It captures the rock

hardness measure - Adjusted Penetration Rate (APR). From

the APR collected at discrete blast holes, a continuous rock

hardness distribution is created by GP regression, which can

then be reliably related to rock types by clustering. The

proposed solution does not rely on initial labelling. It works

well for the geological conditions present at the iron ore mine

used for our tests.
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