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Abstract
Eucalyptus represents one of the main sources of raw material in Brazil, and each year substantial losses estimated at
$400million occur due to diseases. The active monitoring of eucalyptus crops can help getting accurate information about
contaminated areas, in order to improve response time. Unmanned aerial vehicles (UAVs) provide low-cost data acquisition
and fast scanning of large areas, however the success of the data acquisition process depends on an efficient planning of
the flight route, particularly due to traditionally small autonomy times. This paper proposes a single framework for efficient
visual data acquisition using UAVs that combines perception, environment representation and route planning. A probabilistic
model of the surveyed environment, containing diseased eucalyptus, soil and healthy trees, is incrementally built using images
acquired by the vehicle, in combination with GPS and inertial information for positioning. This incomplete map is then used
in the estimation of the next point to be explored according to a certain objective function, aiming to maximize the amount
of information collected within a certain traveled distance. Experimental results show that the proposed approach compares
favorably to other traditionally used route planning methods.
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1 Introduction

According to the Brazilian Ministry of Agriculture, Live-
stock and Food Supply (MAPA 2015), eucalyptus and pine
trees occupy 6,664,812ha in Brazil, of which 76.6% cor-
respond to eucalyptus and 23.4% correspond to pines. An
estimated area of 2.9millionha of eucalyptus forests pro-
vides a positive carbon footprint balance and also enables the
exportation of $2billion per year. A 6.9millionha increase is
expected for 2020, which will promote an 8–10million ton
reduction in CO2 emissions.

Among theproblems commonly found in eucalyptus crops
are the occurrence of diseases from the nursery stage until
adulthood, in several locations and seasons. The harmful
effects of diseases on eucalyptus are well-known and cause
an estimated $400million loss per year, which totalizes
$2.8billion in 7years (Negro et al. 2014). Ceratocystis fim-
briata wilt is one of the problematic diseases in eucalyptus
crops due to its fast spreading. Once it has started, the fungal
infestation is difficult to be controlled (Bedendo 1995). The
wilt symptoms appear as a result of the blockage of the ves-
sels by the mycelial growth of the fungus, which keeps water
absorbed by the root system from adequately supplying the
aerial part of the plant (Souza et al. 2015).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9790-x&domain=pdf
http://orcid.org/0000-0002-8802-196X


Autonomous Robots

Because of continuous requests from producers and com-
panies for the identification and control of such diseases,
research has aimed at identifying behavioral changes and
establishing appropriate strategies for disease control. Image
processing, geoprocessing (GIS—Geographic Information
System) and remote sensing have used remote images cap-
tured by satellites, piloted aircrafts and UAVs to evaluate
and monitor crops. Remote sensing technology with UAVs
provides spatial and temporal high-resolution, fast scanning
of large areas and lower data acquisition costs in compari-
son tomanned aircraft, satellites or airborne platforms, while
achieving similar goals. Indeed, UAV surveys enable the use
of remote images of very small pixel sizes, in the order of
centimeters, thus improving image resolution in relation to
other platforms (Jensen 2007; Candiago et al. 2015; Ponti
et al. 2016).

UAVs are aerial vehicles that fly without a human pilot.
They can be controlled remotely (by a certified pilot), par-
tially autonomously (navigating according to a predefined
route monitored by operators) or fully autonomously (con-
taining various degrees of autonomy for carrying out certain
tasks, such as path planning, detection and tracking of objects
and decision-making) (Medeiro and Silva 2010; Bernardini
et al. 2014; FAA 2016).

The Department of Defense (DoD) of the United States,
the Federal Aviation Administration (FAA) and the Euro-
pean Aviation Safety Agency (EASA) have adopted the term
unmanned aerial systems (UAS). A UAS comprises all the
individual elements of a system, such as an UAV, a control
station, data links and any other information necessary in a
flight (Dalamagkidis et al. 2012), and is controlled by tech-
nicians or pilots in a control station. The data link transmits
information between the UAV (send status) and the control
station (send commands) (Park et al. 2017). Currently, the
major focus of research into UAVs is on the increase of their
autonomy (Grocholsky et al. 2006; Ludington et al. 2006;
Medeiro and Silva 2010; Bernardini et al. 2014; Albore et al.
2015b), which consists in the transference of portions of the
operator’s decision-making process to the UAV itself.

Increased autonomy in the decision-making process can
be obtained through navigation based on methods such as:
computer vision; object detection, recognition and tracking
during operation; autonomous refueling; communication and
task-sharing with other UAVs. Therefore, a route planning is
mandatory for the implementation of most newly required
capabilities used to increase the autonomy of UAVs. Con-
comitantly, optimized routes significantly impact monitoring
performance, and by extension all its subsequent applica-
tions. The flight route planning should enable the monitoring
of surveyed areas as much as possible, given a series of con-
straints such as autonomy time, maximum altitude, distance
to base and so forth.

This paper deals with the development of a novel route
planning technique for active classification under uncer-
tain conditions that uses Bayesian optimization (BO). The
objective is to enhance the knowledge on visited areas
and minimize the uncertainties about the classification of
diseased trees while applying a restriction in the distance
traveled. The Bayesian optimization approach combines
environment representation, perception and route planning
into a single framework. Opposed to previous techniques,
that utilize greedy way-point solutions to acquire new obser-
vations, we consider information in a continuous sampling
space, taking into account predictions based on data accumu-
lated over time. At each new iteration, the next samples to
be collected are selected according to an incomplete model
composed of data acquired in previous iterations. The model
is then improved via the incorporation of new samples,
with no derivatives or knowledge about the underlying func-
tion. Therefore, the acquisition function must focus on the
minimization of these unclassified areas to produce a more
accurate map of the environment. The proposed approach
improves on previous work (Vivaldini et al. 2016) taking into
account that vehicles have time constraints due to energy for
real applications. In this way, the distance constraint on the
acquisition function that enforces a maximum distance trav-
eled before the vehicle returns to the base becomes essential
avoiding losses of the equipment and ensuring maximum use
of the autonomy flight time. We also performed experiments
with different sampling strategies and route planning algo-
rithms, to determine the combination that provides the best
results in an active classification scenario.

A probabilistic model is incrementally built on top of col-
lected data, and the vehicle determines the next point to be
explored by minimizing a certain objective function over
the current incomplete model. The goal is to maximize the
amount of information collected in a given traveled distance,
determined by UAV autonomy, to ensure the mission is com-
pleted safely. The predictive mean and variance are used in
a trade-off scenario between exploration–exploitation in a
principled manner, according to the Bayesian method. The
proposed methodology identifies and monitors any visually
detectable pathogen, and the Ceratocystis fimbriata disease
in real eucalyptus crops was chosen as a particular case study
for experimental validation, however the same technique can
be applied to a multitude of different tasks. Some examples
include search and rescue (Liu 2016), surveillance (Witwicki
et al. 2017), environment exploration (Tai et al. 2017) and
forest fire detection (Ghamry et al. 2016). Similarly, the
introduction of new sensors (i.e. multi-spectral and infra-
red cameras) can greatly increase the amount of information
available for classification, thus producing better models and
allowing the detection of a larger range of patterns.
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2 Related work

Most techniques currently available in the literature tackle
the problem of aerial surveillance and monitoring from two
different perspectives: either based on artificial targets, that
are defined prior to the beginning of navigation (i.e. no clas-
sification model); or focusing solely on the task of UAV
image processing, with no concern for the trajectory traveled
between sample points (i.e. no route planning). The frame-
work proposed in this paper is hybrid, in the sense that it
combines both classification and route planning to produce
an active method of trajectory selection that is constantly
adapting to the flow of new information.

In contrast to currently available hybrid methods, our
approach does not require environment modification of any
kind, since it learns a classification model purely based on
sample images, and thus can be trained to search for any kind
of pattern. Below we provide a brief historical overview of
a few methods for aerial image classification and UAV route
planning proposed over the years, highlighting their differ-
ent advantages and drawbacks to show how our proposed
approach can address some of these limitations.

2.1 Classificationmethods

Reid et al. (2011) developed an automated approach for
vegetation classification in natural environments that is
based on UAV images. Color and texture descriptors were
extracted on a frame-by-frame basis for the construction of
an appearance-based representation, classified by a novel
multi-class generalization of theGaussian process (GP). This
new classification structure was trained and validated with
manually labeled data and used in the construction of a prob-
abilistic map of vegetation types. Tests were performed in
an infested region of Northern Queensland—Australia, and
results show accuracies of up to 88% amongst four tree
classes with two invasive tree species.

Pérez-Ortiz et al. (2016) proposed a novel system for
weed monitoring in sunflower crops using UAV images. The
authors apply machine learning paradigms to minimize the
intervention of the final user while studying the effects of
three different parameters: flight altitude, choice of sensor
and the use of previously trained models at different heights.
Results show that it is possible to train a model at lower
heights in a sub-portion of the experimental field and then
apply it successfully to the rest of the field using a higher
altitude flight.

2.2 Route planningmethods

When route planning is considered, Lavalle and Kuffner
(2000) proposed a method called rapidly-exploring random
trees (RRT), which iteratively builds a graph between a

source point and a goal point, creating a path for robotic
navigation. Expanding on that, Yang et al. (2013) devel-
oped an algorithm that combines RRT with occupancy maps
generated by a Gaussian process. The method consists of a
path planner that collects information about a searching area,
focusing on portions with higher uncertainty and following
an unorganized geometry.

Turker et al. (2015) used Simulated Annealing (SA) for
the path planning of an UAV in a 2D scenario with random
obstacles. Simulated results demonstrated that SA generates
acceptable solutions, being capable of avoiding obstacles
while following the overall planned trajectory. Ho and Liu
(2010) developed an SA framework for robot path planning
based on a Voronoi diagram (VD), Bezier curve (BC) and
the Dijkstra algorithm (DA) to obtain the shortest smooth
path. VD was applied to find a collision-free path, BC
smoothened it and DA found the shortest path to be executed
by the robot. An UAV route planning technique based on the
genetic simulated annealing (GSA) algorithm was proposed
inMeng andXin (2010). A digital elevationmap (DEM) pro-
duces a smooth flight surface, whereas theGenetic Simulated
Annealing (GSA) algorithm plans the route of the UAV on
this surface.

Weinstein and Schumacher (2007) formulated a Mixed
Integer Linear Program (MILP) model for the task alloca-
tion problem based on a vehicle routing problem with time
windows (VRPTW), adding various constraints to represent a
variety of scenarios to the precise engagement of Intelligence,
Surveillance and Reconnaissance (ISR). The focus is cluster-
ing targets, and implementing this information into theMILP
to optimally assign UAVs to targets, considering a single
depot and many target locations. They compare computation
times and solutions for three different cost functions to be
minimized: total distance of all routes, makespan and total
time. Karakaya (2014) presented a modified Max–Min Ant
System (MMAS) algorithm that calculatesminimal distances
covering a larger number of targets in a predefined flight
range. The proposed method was compared with a Nearest
Neighbour (NN) heuristic, and results show an increase of
up to 10% in the number of covered targets.

Kim et al. (2017) presents an approach to the drone-aided
delivery and pickup planning of medication products. The
routes are predetermined and the delivery and pickup orders
are known (targets). The Operational Planning (OP) model
was proposed for optimal drone flight schedule for each cen-
ter, and the cost–benefit analysis method was introduced as
a decision-making criterion. A computational analysis was
conducted to compare the performance of the problem using
the Partition method and the Lagrangian Relaxation algo-
rithm, which produced a better performance than the model
without these components. Park et al. (2017) uses a MILP
model and Sequential Tasks Allocation Heuristic (STAH) in
themission planner to determine the essential service ofUAV
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task allocation.Acustomer selects their desired route, limited
to 4 specific locations, and the routes and split jobs to each
location are predetermined, with theUAV then calculating its
trajectory. The MILP model offers an optimal solution only
to small models due to a slow computational time, while
heuristic approximations can determine non-optimal solu-
tions much more efficiently.

2.3 Hybrid methods

Albore et al. (2015b) presented a novel artificial intelligence
planning-based approach for the autonomous production of
an estimated map of pest abundance using UAVs. It veri-
fies pests in a crop field and maps their spatial distribution
using an online classifier, that allows decision-making dur-
ing navigation. Markov random fields were integrated into
the platform to update the information in the UAV’s embed-
ded sensors during runtime, with tests being conducted in
the MORSE simulator. Albore et al. (2015a) expands on
this work to propose an AI planning approach that integrates
the planning process and calculates the probability distribu-
tion in a framework able to deal with task management and
execution under time constraints. There is no prior knowl-
edge of the environment state, and the policies are optimized
and executed during the flight, showing an efficient trade-off
between quality of selected sampling sites and planned nav-
igation within the flight-time limits imposed by battery life.
The platform integrates Markov Fields for knowledge repre-
sentation, updated at runtime with information collected by
the UAV.

Popović et al. (2017) proposed an Informative Path Plan-
ning (IPP) framework for active classification using UAVs
for weed detection. They presented an adaptive strategy that
generates dynamically feasible paths in continuous 3D space
for information-theoretic objective, thus enabling the UAV
to gather data efficiently. The proposed algorithm was val-
idated in simulation against the lawnmower coverage and
the sampling-based Rapidly exploring Information Gather-
ing tree (RIG-tree), using the effects of different planning
strategies. Results show that the proposed algorithm builds
maps with over 50% lower entropy in the same amount of
time when compared to the lawnmower coverage approach.
Note that classification is performed using predetermined
landmarks as targets, which greatly facilitates the classifica-
tion process but is restricted to controlled environments.

3 Methodology

The framework adoptedwasfirst introduced inVivaldini et al.
(2016) and contains four modules (Fig. 1), namely: Coor-
dinates Systems and Transformations; Classification; Map
interpolation and Route Planning. Images obtained by the

Fig. 1 Framework proposed contains four modules, namely: Coordi-
nates Systems and Transformations; Classification; Map interpolation
and Route Planning

UAV are first positioned in relation to a global coordinate
system, whereas the Logistic Regression (LR) model classi-
fies diseased trees from healthy trees and roads. A Gaussian
process interpolates and creates a continuous map of the
inspected area from the coordinates and values of classified
points. Finally, the route planning module ensures a good
coverage of the environment by selecting sample points that
maximize information collected. We have modified the route
planning module to add a constraint for traveled distance and
included the RRT algorithm to generate the best trajectory to
be executed between sampling points.

Three methods for route planning were adopted for exper-
imental validation within the proposed framework, focusing
on efficiency and performance. Tests were performed in the
MORSESimulator, which received real images from anUAV
to emulate an eucalyptus crop scenario. As a result, the pro-
posed framework can be equally used in both simulated and
real environments, requiring only the adjustment of camera
parameters and coordinate systems.

3.1 Coordinates systems and transformations

TheUAV’s orientation, intrinsic and extrinsic camera param-
eters, GPS coordinates and captured images were used as
input information for the active route planning algorithm.
Once the relationships have been obtained, each image is
transformed into an equivalent normal view, which results
in the generation of a new image and the mapping of each
pixel location in relation to itsGPS information.As a conven-
tion, the GPS information refers to the geodetic coordinate
system, and the UAV rotation matrix follows Euler’s XYZ
convention.
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3.2 Logistic regression

For the classification module, a LR (Hyttinen et al. 2015)
model was trained to classify diseased trees from healthy
trees and other structures. LR is quite robust to noise and
avoids over-fitting through the regularization of L2 and L1
norms (Ng 2004). An advantage of such method is the pos-
sibility of obtaining the probability value of the predicted
class, ranging from [0 to 1]. Therefore, confidence intervals
can be set to each classification result as a way to model
uncertainty in the final model. The prediction model can be
easily updated by Stochastic Gradient Descent as new data
becomes available.

3.2.1 Overview

The LR model is a linear classifier that creates a model that
maps relationships between a dependent variable Y and a
series of independent variables X1, X2, . . . , Xn from train-
ing data. It uses only two possible states (0 or 1) for the
dependent variable Y , as it depends on the occurrence of the
event considered, and can be written as:

P(Y = 1) = 1

1 + e−(β0+β1X1+β2X2+···+βn Xn)
(1)

The probability of an eucalyptus tree developing Cera-
tocystis wilt is represented by P , which is the conditional
probability of Y when it assumes a value of 1. Parame-
ters β0, β1, β2, . . . , βn are estimated using the Maximum
Likelihood technique for the measurement of variations in
probability proportions. Such coefficients combined with X
are modeled by a sigmoidal curve, so that when μ(x) →
+∞, probability P(Y = 1), and when μ(x) → −∞,
P(Y = 0).

3.2.2 Contextual block classification

The Contextual Block Classification methodology (Souza
et al. 2015) was used for the detection and classification of
eucalyptus crops affected by the Ceratocystis wilt disease. A
square slidingwindow (block) runs on the image and extracts
visual features. Each block is surrounded by a larger contex-
tual block (Fig. 2). Visual features are extracted from each
block and its contextual block and concatenated to form the
feature vectors.

In a remote sensing, for the extraction of the features
vector, the spectrum of color and texture features are com-
monly applied to classification problems using machine
learning (Reid et al. 2011). Both the RGB channels and
the image converted to grayscale are used, and therefore
each image’s pixel can be represented by a 4-element vector

Fig. 2 Contextual block methodology, adapted from Souza et al.
(2015). A square sliding window (block) runs on the image and extracts
visual features. Each block is surrounded by a larger contextual block.
Visual features are extracted from each block and its contextual block
and concatenated to form the feature vectors. And, finally, the LR clas-
sify diseases trees from healthy trees and others structures

px,y = {red, green, blue, gray}T , where (x, y) are coor-
dinate values of each index. Mean M = 1

|P|
∑

x,y∈P
ex,y and

variance V = 1
|P|

∑

x,y∈P
(ex,y − M)2 values are employed for

each sample pixel P . The mean and variance of the pixels
for the image converted to CIELab color space were also
used in the feature vector, since the brightness component L
can be decoupled (Gonzalez andWoods 2002) and it capture
variations in image brightness. A texture descriptor Local
Binary Patterns (LBP) (Ojala 2002) is used in the 4-channel
of vector p, in which each 4-connected neighbor generates
a histogram of 16 bits that are inserted into the feature vec-
tor. Finally, entropy H(A), which measures the amount of
information on the grayscale image, is also inserted into the
feature vector.

A manually classified map (ground-truth) assigns each
feature vector to one of two classes, i. e, 1 for diseased trees or
0 for healthy trees and other structures. Finally, the LR classi-
fier is trained based on this information to create a model that
can probabilistically discern diseased trees in newly obtained
images.

3.3 Gaussian process regression

A Gaussian process (Rasmussen and Williams 2006) is a
Bayesian technique for non-parametric regression and clas-
sification. It is non-parametric because it does notmaintain an
explicit model of the underlying phenomenon, but learns the
transformation between input and output directly from train-
ing samples (observations). It is Bayesian in the sense that
it places prior distributions (hypotheses) on observed vari-
ables and updates these distributions to produce a posterior
distribution as new data become available. It is a regression
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technique because it produces continuous smooth outputs at
arbitrary resolutions and indicates not only the best estimate
given the current information, but also the uncertainty inher-
ent to that particular estimate.

For the problem at hand, we assume a dataset D =
(X , y) = (xi , yi )Ni=1, composed of N training inputs xi con-
taining spatial coordinates for the observed environment and
their respective probability of disease yi , as given by a clas-
sification algorithm such as LR (Sect. 3.2). The correlation
between the underlying function f (.) and those probabilities
is given by:

y(xi ) = f (xi ) + ε, (2)

where ε is an independent noise component commonly mod-
eled as a zero-mean Gaussian distribution with variance
σ 2
n , i.e. ε ∼ N (0, σ 2

n ). The other two functions, i.e, mean
and covariance, are also used for the encoding of our prior
knowledge in relation to the underlying function. The mean
functionm(x; θm) represents themost probable value at each
point in the input space and is commonly assumed to be a
constant value σm . The covariance function k(xi , x j ; θk), on
the other hand, models the correlation between any two given
points in the input space.

The literature reports a variety of well-established covari-
ance functions (Rasmussen and Williams 2006) that rely
on different techniques to model those correlations and are
designed for specific modeling scenarios. Indeed, the selec-
tion of the best-suited covariance function for a particular
problem is a field of research in and of itself, as shown
in Duvenaud et al. (2013). We used the Rational Quadratic
covariance function,1 defined as:

k(xi , x j ) =
(

1 + (xi − x j )
T�−1(xi − x j )

2α

)−α

(3)

where θk = (�, α), with � and α being a length-scale diag-
onal matrix controlling smoothness. The parameters θ =
(σm, θk, σn), which serve as coefficients for the functions,
are usually known as hyperparameters and are obtained by
the maximization of the log-marginal likelihood function:

log p(y|X) = logN (y|m(X; θm), Knn + σ 2
n I ) (4)

This equation provides a natural balance between data fit
and model complexity through the Occam’s Razor principle
(Rasmussen and Williams 2006) for the avoidance of over-
fitting (i.e. excellent performance during training and poor

1 In previous works (Souza et al. 2015), several different covariance
functions were considered, and the Rational Quadratic produced better
classification results.

performance during testing). After the optimized hyperpa-
rameters are obtained, the value at a test point x∗ is given by
a Gaussian distribution with mean and variance μ∗ and V∗,
respectively:

μ∗ = K∗n
(
Knn + σ 2

n I
)−1

(y − m(x∗)) (5)

V∗ = K∗∗ − K∗n
(
Knn + σ 2

n I
)−1

Kn∗, (6)

where Knn is the n × n covariance matrix with Ki j =
k(xi , x j , θk), K∗n is the covariance matrix between test and
training points, and K∗∗ is a diagonal matrix that encodes
the covariance between test points. Such estimates are con-
tinuous, and inference can be made at an arbitrary resolution
in at a point of the input space. A common approach for the
transformation of these estimates into valid probability dis-
tributions between two discrete classes (in our case, diseased
trees or other structures) is the “squashing” ofmean estimates
by a response function, such as the logistic function, defined
as:

f (x) = L

1 + e−k(x−x0)
(7)

where x0 defines the sigmoid’s x-value at its midpoint, L
determines the curve’s maximum value and k its steepness.
Such parameters can be determined according to the train-
ing data and optimized alongside the GP hyperparameters.
For the proposed framework, these parameters are deter-
mined during the training process based on ground-truth
information, to determine the proper scale and sensitivity
of the underlying problem. Once they are optimized, the
online learning process takes place by introducing newpoints
into an initially empty non-parametric model, obtained dur-
ing navigation and representing observations of an unknown
environment. Further training can then be conducted to
improve the representativeness of the current model by refin-
ing its parameters, however we noticed during experiments
that they are already stable enough, and further training did
not improve results.

Note that, while the original Gaussian process imple-
mentation (Rasmussen and Williams 2006) has difficulties
scaling up to larger datasets, since it has a computational
complexity that increases cubically with the number of data
points, over the years several extensions have been proposed
to alleviate this limitation. InSnelson andGhahramani (2006)
an approximation is introduced, that uses a small subset of
inducing points to project input data into a lower-dimensional
manifold, thus decreasing complexity during training and
inference. Stochastic variational inference is used in Hens-
man et al. (2013) to allow training using mini-batches of
available data, so the entire dataset is never touched and
online updates can be performed as new data is collected.
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These extensions would allow the GP framework to be used
in much larger environments while still maintaining efficient
routines for data incorporation and retrieval.

3.4 Bayesian optimization

3.4.1 Overview

BO is a sequential design technique that searches for themax-
imum of an unknown function f (.) that is too costly to be
evaluated directly (Snoek et al. 2012), or too complex for ana-
lytical calculations. Instead, it employs the Bayes theorem to
incrementally combine prior information with observations
(samples) and produce new estimates of an underlying func-
tion f (.) while attempting to reach its maximum. At each
new iteration, the next samples to be collected are selected
according to an incompletemodel composed of data acquired
in previous iterations. The model is then improved via the
incorporation of new samples, with no derivatives or knowl-
edge about the underlying function.

Here, we use a GP model as the prior function, with
components that model both the mean value of f (.) and
its respective variance (uncertainty about the estimate). All
observations are treated as noisy samples collected from an
unknown function f (.). The next point to be sampled at each
iteration is selected by the minimization of an intermediate
and predetermined function h(.), henceforth referred to as the
acquisition function. The selection of the acquisition func-
tion is crucial for a proper BO performance (Marchant and
Ramos 2012), since it determines the intrinsic behavior that
will lead to new samples at each iteration.

3.4.2 BO for path planning

The GP framework (described in Sect. 2.3) contains results
from the classification algorithm (LR) that range from0, indi-
cating diseased trees, to 1, indicating healthy trees or other
structures. In-between values represent ambiguous areas, and
0.5 indicates complete uncertainty about the classification of
a particular point. Therefore, the acquisition function must
focus on the minimization of these unclassified areas to pro-
duce a more accurate map of the environment. We propose
the codification of such behavior by the following acquisition
function:

h(x) = −σ 2
v ∗ exp

(

−1

2

(
μ − 0.5

σl

)2
)

(8)

Algorithm 1 Continuous path Bayesian optimization
Require: f , h, C
for i = {1, 2, 3, . . . , iterations} do

Find β∗ = argmaxβ r(C(u, β)|h)

{x, y}C ← C(u, β∗)|1u=0
GP ← {x, y}C

end for

where a Gaussian distribution with mean 0.5, amplitude σv

and standard deviation σl is employed. Since we deal with
minimization during the optimization process, the negative
sign is used to flip the Gaussian distribution.

The traditional BO derivation is discrete, i.e. only the final
destination of each iteration is taken into account. However,
here we extend it to a continuous domain (Marchant and
Ramos 2012), in which the trajectory between start and end
points is also considered. This is of particular interest for the
application at hand, because it enables the aircraft to obtain
images as it navigates between points with no additional
effort. A score s for each trajectory C is calculated by the
integration of the acquisition function over its length:

s(C(u,β|h)) =
∫

C(u,β)

h(u)du, (9)

where β are trajectory coefficients and u = [0, 1]. If Eq. 9
cannot be analytically calculated,2 approximations such as
sampling or rectangle-rule quadrature (Stoer et al. 2002)may
be used. Once the optimized trajectory β∗ has been deter-
mined, samples {x, y}C are obtained along the way (i.e. at
fixed-length intervals) and added to the GP model as new
training points. The process is then repeated for the produc-
tion of a new optimized path based on the updated model (as
shown in Algorithm 1).

3.5 Simulated annealing

Simulated Annealing (SA) is based on the physical process
of metal cooling and the traditional optimization problem
(Ingber and Rosen 1992). It uses a principle of evolving the
solution over time, in which the annealing expression most
used in the literature corresponds to liquid metals that are
cooled to achieve a low-energy state. SA is a probabilistic
algorithm that approximates the global optimum of a func-
tion. In other words, it sweeps all the search space to find
a general solution. The cooling concedes small movements
in the solution space, which eventually converges to a final
result (Kirkpatrick et al. 1983). Algorithm 2 (Engelbrecht

2 We employ line segments as the template for trajectory calculations,
however Eq. 9 can be equally applied to any sort of curve, such as splines
(Egerstedt and Martin 2001).
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Algorithm 2 Simulated annealing
Require: C, NS, T and Output: X∗
while T > 0.1 do

while kNeighbors < NS do
Generates a new solution X ′
Calculates fitness f (X ′) and f (X)

prob = 1/(1 + e
f (X ′)− f (X)

T )

if ( f (X ′) < f (X)) or (prob > r) then
X∗ ← X ′ and f (X) ← f (X ′)

end if
if T > 2.5 then 	 Global search

xN P ← XMAX
yN P ← YMAX

end if
if T < 1.5 then 	 Local search

xN P ← (XMAX/2)
yN P ← (YMAX/2)

end if
kNeighbors ← kNeighbors + 1

end while
T ← T ∗ C

end while

2006) shows the pseudo-code for the SA when applied in a
path planning strategy.

3.5.1 SA for path planning

The SA algorithm is responsible for choosing the optimal
goal points for an aircraft to visit during navigation, in order
to minimize the distance travelled and ensure an adequate
coverage of the inspected area.

For a new solution X ′, SA will:

1. Assign value to neighbors in x-axes and y-axes, where the
minimum and maximum values are selected empirically
(xNeighbors and yNeighbors for global search and
xNeighbors and yNeighbors for local search).

2. Generate a random number for xDistance
= [−xNeighbors, xNeighbors] and yDistance =
[−yNeighbors, yNeighbors], xDistance and
yDistance are summed for the current solution.

3. Calculate the uncertainty average of the image in X and
X ′, e.g. determine the map values of X ′ − threshold
until X ′ + threshold for the x-axis and the map values
of X ′ − threshold until X ′ + threshold to the y-axis. 4)
Calculate the average uncertainty value (aUncertainty),
which serves as input to the fitness function (Eq. 10) for
the solution X ′.

As reported in Sect. 3.4.2, the diseased trees are repre-
sented by a value of 0 and healthy trees or other structures are
represented by a value of 1. Intermediate values are ambigu-
ous or obscure areas, and0.5 represents the lackof knowledge
about the classification at a particular point. The SA fitness
function aims to reduce this ambiguity and is useful for

the construction of a confidence map of classified regions.
The fitness function codifies such behavior in the following
way:

f (X) = |1 − | exp(0.5 ∗ (aUncertainty − 0.5)2)|| (10)

The above equation describes the objective function of the
SA, where aUncertainty represents the uncertainty average
of the image in position (x, y) on the current classification
map. SAminimizes the objective function described inEq. 10
for the choice of positions (x, y) with values close to 0.5.

In summary, X is the initial solution, X ′ is the new solution
for each iteration of the algorithm (candidate), X∗ is the best
solution found and f is the objective function (fitness). The
candidate solution X ′, which suggests a position in a given
neighborhood considering both coordinates x and y of the
map, is then used as X in the next iteration.

3.6 Rapidly-exploring random trees

A Rapidly-exploring Random Tree (RRT) searches non-
convex spaces with high dimensionality through the build of
a space-filling tree to store possible paths. In comparison to
other randomized algorithms, such as randomized potential
fields and probabilistic roadmaps, RRT naturally extends to
general non-holonomic planning problems (including kino-
dynamic representations (Donald et al. 1993)). An RRT
iteratively expands through the application of control inputs
that move the system towards randomly-selected points.
Due to the use of Voronoi diagrams, RRT tends to explore
unsearched areas (Donald et al. 1993).

The RRT algorithm is illustrated in Algorithm 3. In this
algorithm, xinitial stands for a pre-existent tree to which ver-
tices will be added. L is the initial number of vertices of
the tree. This algorithm represents one iteration of the tree-
building process. At each iteration, a new vertex is added to
the tree, obeying the following procedure: First, a randomly
generated vertex is created in the unsearched space. Then, a
new edge is drafted between the new point and the nearest
vertex in the tree. If the new edge does not cross any part of
the searched space, it is added to xinitial .

Algorithm 3 Creation of a random tree
Create Tree (xinitial , L,�x)
for i = {1, 2, 3, . . . ,L} do

xrandon ← Random Postion()

xnearest ← Nearest V ertex()
xnew ← New Edge(xnew,�x)
Graph.include vertex(xnew)

Graph.include edge(xnear , xnew)

Return G
end for
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Fig. 3 The UAV followed a predefined route on a farm containing
eucalyptus trees to collect data. The final dataset consists of 154 images,
fromwhich we used 15 due to the presence of diseased trees for training
and testing

4 Platform simulation

We used the Robotic Operating System (ROS) and the
Modular OpenRobots Simulation Engine (MORSE) as com-
munication protocol and simulation platform, respectively.
This configuration has been widely adopted for the test-
ing and evaluation of robot software in several missions
(Echeverria et al. 2011; Milliez 2014; Albore et al. 2015b;
Degroote et al. 2016; Zhou et al. 2016; Park et al. 2017; Mul-
gaonkar and Kumar 2014). ROS is a robotic meta-operating
system that provides hardware abstraction, low-level device
control, implementation of commonly used functionality,
message-passing between processes and package manage-
ment (Quigley et al. 2009). It has now become the standard
communication protocol in robotics applications, due to its
transparency and efficiency during data transfer between dif-
ferent software modules or machines.

MORSE is a fully open-source simulation suite based on
Blender that aims at simplifying the definition and develop-
ment of integrated complex robotics experiments. Blender
simulates photo-realistic 3D worlds with an associated
physics engine, bringing enough realism for the evaluation of
complete sets of components within a wide range of applica-
tion contexts (Echeverria et al. 2012). One of the advantages
of usingMORSE is that it applies the Software Architecture-
In-the-Loop (SAIL) principle, where the same architecture
used in the simulation can be directly applied to the real
UAV, modifying only the simulated inputs of the data by the
physical sensors and actuators (Lemaignan et al. 2014).

It is important to note that all images used in this work are
from a real farm containing eucalyptus (Fig. 3), captured by
an eBee robot (Fig. 4) with an IXUS 127 HS Canon - RGB
camera at 890m average altitude and a 4608 × 3456 pixel
resolution. Each image has an area of 25,715m2 and repre-
sents different scenarios (Fig. 5). These images were then

Fig. 4 The eBee robotic platform used during experiments, to capture
high-resolution images of eucalyptus crops

Fig. 5 Examples of different scenarios from the test set were used as
the texture in the simulated environment. The images are from a real
farm. a Scenario1, b Scenario2, c Scenario3, d Scenario4, e Scenario5

used as textures in the simulated environment, so different
route planning strategies can be efficiently tested multiple
times under the same set of environmental circumstances.

For the testing environment, we adopted each scenario
independently and added a simulated UAV (quadrotor) with
Rotorcraft attitude, velocity and waypoint motion controller.
The UAVwas also equipped with a GPS, an IMU and a cam-
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Fig. 6 TheUAVwas added in the testing environment to capture images
with pixel resolution 4608 × 3456 at an average height of 890m. The
UAVwas also equipped with a GPS and an IMU to provide information
for the module Coordinates Systems and Transformations

Fig. 7 Examples of: a healthy eucalyptus tree and b eucalyptus with
Ceratocystis wilt

era, collecting images with pixel resolution 4608 × 3456 at
an average height of 890m. Flight stabilization was obtained
through actuator controls using a linear model available in
theMORSE simulator, which allows it to perform the desired
trajectory accurately.

The simulated UAV (Fig. 6) can then travel to these areas
and obtain the necessary information from its sensors and
camera, as a real vehicle would do in a real environment.
Each captured image has an area of 1200m2 and depicts a
subset of the full-size image at arbitrary positions and altitude
values.

5 Experimental results

Results were evaluated in all scenarios (Fig. 5) from the
test set. The datasets provided sufficient examples of healthy
eucalyptus crops and diseased trees for the evaluation of the
experiments. As addressed in Sect. 1, eucalyptus trees have
the biotic stress known as Ceratocystis Wilt (Fig. 7). The
study related to diseases in eucalyptus trees was developed
by Adimara B. Colturato and originally presented in Souza
et al. (2015).

The LR model was trained and tested as the classifica-
tion module (Sect. 5.1). The same classification module was
included in the proposed framework for all tests, without

Table 1 Hand-crafted features per channel extracted from the dataset

R G B Gray RGB

Mean 1 1 1 1 0

Variance 1 1 1 1 0

CieLAB (mean) 0 0 0 0 3

CieLAB (variance) 0 0 0 0 3

LBP (histogram) 0 0 0 16 0

Entropy (mean) 0 0 0 0 1

Entropy (variance) 0 0 0 0 1

Total 2 2 2 18 8

modification. Different methods for the route planning mod-
ule were applied to evaluate the performance of the proposed
approach, as shown in Sect. 5.2).

5.1 Evaluation of logistic regressionmodel

As stated in Sect. 3.2.2, we manually defined 32 features
per class (Table 1). The Contextual Block methodology dou-
bles the number of features, as there are 32 features from the
Internal Block and 32 features from the Contextual Block,
summing up to 64 image descriptors. Figure 8 shows a clas-
sified image and the probability output from the LR model
(colors range from blue, which represents healthy trees and
other structures, to red, which represents diseased trees).

The dataset was split into ten images for training and five
for testing, which led to 10,993 samples of diseased trees
and 73,031 samples of healthy trees and other structures.
The sizes of the Contextual Block and Internal Block were
changed for the selection of the best model for the classifica-
tion module. Internal block values were chosen from 4 × 4
and 8×8 pixels and Contextual blocks were 10×10, 20×20
and 30×30 pixels. Evaluation was performed by comparing
pixels from the ground-truth and the classified image. Table 2
shows the F-score for each block size to the LR model. We
verified that smaller internal blocks (4 × 4 pixels) leads to
models with better scores when allied to a contextual block
size of 30×30 pixels. Our intuition for this behaviour is that
smaller internal blocks reach essentially only the treetops,
while larger blocks take information that is not just from the
canopies, but soil and other nearby objects, so smaller blocks
tend to have a better classification score.

5.2 Route planningmodule

BO, SA, RRT, Random Points and Grid Trajectory meth-
ods were evaluated as potential candidates for this module.
Each method provides a global route and search for news
points of destination starting from the source of the UAV up
to a distance of 2000m (estimated battery autonomy time).
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Fig. 8 Classification of images captured by the UAV. Red pixels represent diseased trees and blue pixels represent healthy trees/other structures. a
Image captured by UAV, b classified image, c classification probability from the Logistic Regression classifier

Table 2 F-score for each contextual block size

Contextual block × Internal block

10 × 4 20 × 4 30 × 4 10 × 8 20 × 8 30 × 8

0.75 0.81 0.85 0.71 0.79 0.82

Bold value indicates the best result relative to all other comparisons

As a baseline, the Grid Trajectory method covers the entire
area adopting a predefined route and its estimated distance is
around 1000m. The Random Points method raffles random
destination points without a heuristic function. For all meth-
ods, each point represents an image captured by the UAV that
is collected during the execution of the route.

Continuous BO (CBO) also provides route planning
between intermediate points (the local route). Therefore,
it considers uncertainty along the path from one point to
another for a better selection of each destination. The BO
parameters for path planning were selected empirically and
defined in all experiments to be σ 2

v = 100 and σ 2
l = 0.02. The

SA considers only the uncertainty of the destination node,
which is the result of the global route. The RRT follows a
method similar to the CBO and initially defines a destination
point and then a route, considering the uncertainty along the
way. In RRT, whenever the UAV takes a picture, the captured
area is labeled as visited and considered an obstacle, so the
UAV avoids the region except when it is inevitable (i.e. when
it must visit a closed region surrounded by obstacles).

We analyzed theBOandSAapproaches for route planning
and adopted the RRT algorithm to provide the path planning,
due to its performance achieved in previous studies (Vivaldini
et al. 2016). Two tests were performed combining the RRT
algorithm. These tests are described below:

1. BO chooses the goal point and RRT suggests the path.
2. SA chooses the goal points and RRT suggests the path.

We also tested the Offline CBO method, which calculates
all points for path planning prior to the execution of the route.
The algorithm was implemented to validate the efficiency of
BO, evenwithout the knowledge necessary to choose the next
point. It is also the standard approach for online applications,
sincemost UAVs lack the computational power necessary for
the real-time processing of available information. The results
of the comparisons are shown in the following sections.

5.2.1 Active classification

In each scenario, the GP map was initialized with values of
0.5, which indicates an unknown environment. The values
were then updated by the active classification results during
UAVflight.We considered the classification values of 0 to 0.3
as diseased trees (red), 0.3 ≤ p(X) ≤ 0.7 as uncertain areas
(green) and 0.7 to 1 as healthy trees/other structures (blue)
(Fig. 9). The trajectory and final map classification after the
completion of each route planning method for scenario 1,
when using different techniques, is shown in Fig. 10.

5.2.2 Uncertainty decrease over distance

Five scenarios were used, and for each one we analyzed
different route planning methods comparing distance and
uncertainty over the map area (generated by LR model and
GP interpolation). Figure 11 shows the decrease of uncer-
tainty over distances on the map. As the vehicle navigates
in an initially unknown environment, the results validate the
similar nature of the methods adopted, since they define both
destination points and a route considering uncertainty along
the path. As expected, all methods decrease values of uncer-
tainty as new points are added. The challenge is then to
reliably decrease the values within a smaller travelled dis-
tance.
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Fig. 9 Classification estimates during navigation. Diseased trees are
depicted in red, healthy trees/other structures are depicted in blue and
uncertain areas are depicted in green. a Initial map (first image), bmap

after navigation to the first sample point, c intermediary map, after nav-
igation to six sample points (Color figure online)

Fig. 10 Trajectory and coverage results using different route planning techniques. The top row depicts points sampled during navigation, and the
bottom row shows the resulting map after navigation. a CBO, b offline CBO, c BO+RRT, d random, e SA, f SA+RRT, g trajectory, h RRT

For scenarios 1, 2, 3 and 4, CBO and BO + RRT have the
same end result at the end of the flight in 2000m, but CBO

reaches its lowest values in approximately 1800m, whereas
BO + RRT reaches its smallest uncertainty values between
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Fig. 11 Uncertainty decrease over distance. a Scenario 1, b Scenario 2, c Scenario 3, d Scenario 4, e Scenario 5

Fig. 12 Normalized root mean square error (NRMSE) decrease over distance. a Scenario 1, b Scenario 2, c Scenario 3, d Scenario 4, e Scenario 5

800 and 1000m and ensures a total coverage of each scenario
(i.e Fig. 11). The grid trajectory demonstrates the smallest

number of uncertain areas, because its path guarantees a good
coverage of the scenario. The random method provided a
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worse result for not having ametric fromwhich to choose the
path. SA showed theworst performance and required a longer
distance to travel the entire map. On the other hand, when
SA + RRT was adopted, the results improved significantly
and were similar to those of Offline CBO.

A well-known problem of SA is the local minimum, since
wecannot guarantee that it has foundanoptimal solution after
convergence. Thus, a complementary method is necessary
for this purpose, in our case the RRT. Also, CBO and Offline
CBO introduce extra information about the problem, in the
form of mean and variance values for uncertainty in ambigu-
ous areas. Furthermore, the BO framework has an acquisition
function, that is used to minimize these ambiguous regions
(non-classified) in a structured manner, thus producing a
more reliable map of the environment.

5.2.3 NRMSE decrease over distance

The predicted probabilities in the GP map and the reference
image (classified by a geologist and serving as ground truth
for the purposes of training and validating) were compared
using the Normalized Root-Mean-Square Error (NRMSE)
metric. This metric quantifies how similar the predicted
image is to the reference image, ranging from 1 (completely
different) to 0 (same image). Therefore, the estimated prob-
abilistic aspect provided by LR and interpolated with GP
was not discarded. Figure 12 shows a faster decrease of
NRMSE when using CBO-based approaches in comparison
to SA-based methods, as its routes are more informative. In
Scenarios 3 and 5, the result of CBO is very close to that of
BO + RRT, while BO + RRT provided the best results in Sce-
narios 1, 2 and 4. SA obtained the worst final error, as it tends
to produce a substantial amount of overlapping between its
images. The Grid Trajectory provides a lower final error for
the entire area, due the presence of non-overlapping images.
In general, NRMSE from Offline CBO was better than SA +
RRT, because the latter contained more areas without classi-
fication at the end of the mission.

6 Conclusion

This paper proposes a novel route planning algorithm for
active classification using UAVs, aiming to maximize col-
lected information within a given distance, determined by
vehicle flight autonomy. Two techniques, namely CBO and
SA, were evaluated by themselves and with the addition of
RRT, providing both way-points for navigation and the tra-
jectory between them. A LR classifier was used to classify
the image frames collected, searching for diseased trees, and
a GP was used to interpolate this information, producing a
navigational map. In contrast to traditional methods of route
planning, which have pre-established targets, the proposed

active classification technique can adapt to the constant flow
of new information. From its current position, it uses CBO
to search for the best destination point to be visited given its
current goal (i.e., exploration or exploitation), to maximize
the amount of information collected at each step. From these
points, an RRT algorithm identifies trajectories considered
relevant to be traversed.

The main advantage of the proposed BO + RRT frame-
work is the combination of route and path planning with
active classification. The BO algorithm selects the best desti-
nation points from its current incomplete environmentmodel,
while RRT calculates the best path to be taken to reach the
next destination point. During the execution of the path,
active classification from LR is applied to update the current
environment as new data is incorporated, decreasing over-
all uncertainty. The proposed framework can be applied to
a wide variety of different scenarios, in which we have an
established target but do not know its location in an unknown
environment. The vehicle can incrementally learn an incom-
plete model of the environment and use this information to
constantly adapt its navigation path.

As future work, the authors plan to employ this methodol-
ogy in an online scenario using embedded systems, which
would enable onboard processing in the UAV itself. The
introduction of different sensors (i.e. multi-spectral and ther-
mal cameras) would also greatly increase the amount of
information available for the classification algorithm, both
increasing the accuracy of generated maps and allowing the
detection of a wider variety of pattern. Additionally, by pro-
moting changes in altitude during flight it would be possible
to generate multiple resolution maps, with lower resolutions
producing a larger field of view for faster initial surveys and
higher resolutions producing more detailed representations
for better classification accuracy.
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