
Unsupervised Feature Learning for
3D Scene Reconstruction with Occupancy Maps

Vitor Guizilini, Fabio Ramos
School of Information Technologies, University of Sydney

{vitor.guizilini,fabio.ramos}@sydney.edu.au

Abstract

This paper addresses the task of unsupervised feature learn-
ing for three-dimensional occupancy mapping, as a way to
segment higher-level structures based on raw unorganized
point cloud data. In particular, we focus on detecting pla-
nar surfaces, which are common in most structured or semi-
structured environments. This segmentation is then used to
minimize the amount of parameters necessary to properly
create a 3D occupancy model of the surveyed space, thus
increasing computational speed and decreasing memory re-
quirements. As the 3D modeling tool, an extension to Hilbert
Maps (Ramos and Ott 2015) recently proposed in (Guizilini
and Ramos 2016) was selected, since it naturally uses a
feature-based representation of the environment to achieve
real-time performance. Experiments conducted in simulated
and real large-scale datasets show a substantial gain in per-
formance, while decreasing the amount of stored information
by orders of magnitude without sacrificing accuracy.

Introduction
Nowadays, the task of obtaining information from the sur-
rounding environment is no longer an issue in mobile
robotics. Stereo and RGBD cameras are able to provide
scale-aware per-pixel dense point clouds that include color
information, while 3D laser range sensors produce snapshots
of surrounding structures at sub-degree resolution and sub-
centimeter accuracy. Millions of points can be obtained in
a fraction of a second creating challenges to store and pro-
cess this vast amount of data in an efficient and useful man-
ner. Furthermore, points-clouds are what is called ”low-level
information”, meaning that they encode patterns that could
be used to describe the same environment in a much more
compact way. This is how the human brain works, by intro-
ducing high-level patterns that cluster large segments of the
input data into semantically meaningful classes or features.

In (Lai, Bo, and Fox 2014) the authors explore unsuper-
vised learning of features based on a virtual training dataset,
extending to three-dimensional space the state-of-the-art 2D
classifier Hierarchical Matching Pursuit, or HMP (Bo, Ren,
and Fox 2011; Ren and Ramanan 2013). An alphabet of lo-
cal scans is constructed in (Ruhnke et al. 2010) to describe
the point cloud based on recurrent surfaces, thus benefiting

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from repetitive environments that share similar structures.
Sparse coding is employed in (Ruhnke et al. 2013) to achieve
massive decreases in memory storage requirements, while
producing 3D surface models that outperform the widely
used Octomap (Hornung et al. 2013). Alternatively, the work
in (Deuge et al. 2013) focuses on outdoor datasets, develop-
ing a novel technique for the regular sampling of densely ir-
regular Velodyne scans that allows unsupervised learning of
relevant features, as opposed to standard hand-crafted fea-
tures (Johnson 1997). Recently, much work has been done
on using clustering for unsupervised deep learning (Dosovit-
skiy et al. 2014), such as convolutional clustering in (Dun-
dar, Jin, and Culurciello 2016) to minimize redundancy in
learned features and spherical K-means in (Coates and Ng
2012) to learn a dictionary of features to represent the origi-
nal structures.

Inspired by the above works, in this paper we propose a
novel clustering technique that takes into account the ori-
entation of each cluster, in addition to its spatial coordi-
nates1, and apply this methodology to 3D scene reconstruc-
tion problems. We use as input an unorganized point cloud
composed of occupied points (i.e. obtained by laser scans),
indicating structures captured by the sensor. Unoccupied
points are generated by randomly sampling the beams that
produced occupied points (a ratio of 1 point / 2 meters
was used throughout the paper). Cluster orientation is cal-
culated based on statistical information obtained from this
point cloud, and used to produce planar surface features,
composed of clusters that share a similar normal vector.

These planar surface features are capable of describing
the environment in a much more compact way without sac-
rificing accuracy. In particular, we show how this com-
pact representation can be used by the Hilbert Maps frame-
work to greatly decrease the dimensionality of the feature
vector used to project observations into the reproducing
kernel Hilbert space. The original paper (Ramos and Ott
2015) discussed 2D applications of this framework, while
(Guizilini and Ramos 2016) introduced the concept of local-
ized length-scales, in which the position of each feature is
learned based on available data. Here, we propose learning
the shape of each feature alongside its position. The contri-

1A C++ demo of the proposed algorithm is available in https:
//bitbucket.org/vguizilini/cvpp

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

3827



butions of this paper are as follows:

• A novel method for K-means initialization that outper-
forms K-means++ (Arthur and Vassilvitskii 2007) speed-
wise, while maintaining similar final potential values and
automatically selecting the optimal number of clusters.

• An iterative clustering technique that merges clusters with
similar properties, creating super-clusters that combine
the statistical information of its constituents.

• A Planar Surface covariance function, that can be used
by the Hilbert Maps framework to model features in con-
junction with the Squared Exponential covariance func-
tion (Guizilini and Ramos 2016).

Feature Learning
We proposed feature learning in two steps: spatial and ori-
entation. Initially the available data is clustered spatially,
based on Euclidean distance between points. This cluster set
is then analyzed statistically to produce the mean and vari-
ance for each cluster. Orientation is then obtained based on
this statistical analysis, and the initial cluster set is refined
using this new information, to produce the features that will
be used for scene reconstruction.

Spatial Clustering
The k-means algorithm (Lloyd 1982), despite its simplicity
(or thanks to it), has stood the test of time and remains as
the most widely used technique for unsupervised clustering.
It takes as input the dataset X to be clustered and the ini-
tial cluster positions C and returns as output the optimized
cluster positions C′ that minimize the potential function:

φ =
∑
x∈X

min
c∈C

||x − c||2. (1)

Over the years, several extensions have been proposed
to address some of the limitations of the original approach,

Figure 1: Comparison between different K-means initializa-
tion techniques (n = 2156525 and d = 3, obtained from
laser scans in an outdoor environment). Average values of
10 runs with different random seeds.

namely: 1) scalability to large datasets; 2) initial cluster po-
sitioning C; and 3) number k of clusters. The mini-batch
extension, recently proposed by (Sculley 2010), addresses
the scalability issue by subdividing the dataset into smaller
batches, and performing optimization using stochastic gradi-
ent descent. Initialization heuristics (Arthur and Vassilvitskii
2007; Bahmani et al. 2012) are able to provide better start-
ing points for cluster positioning that avoid local minima,
and hypothesis-testing techniques (Pelleg and Moore 2000;
Hamerly and Elkan 2004) automatically elect the optimal
value of k during optimization.

We propose a novel initialization heuristic, ASK-means
(Automatic Stop K-means), that also addresses the issue of
selecting the optimal number of clusters (pseudo-code can
be found in Alg. 1). It builds upon K-means++ (Arthur and
Vassilvitskii 2007), in the sense that it uses the shortest dis-
tance to nearest cluster d(x)2 as the sampling probability
(line 5), however it avoids calculating the cumulative sum
of distances

∑
x∈X d(x)2 by producing instead two random

values: one for the index of point to be tested and another
for the probability of selection (lines 11-12). To decrease
the influence of randomness, this process is repeated a given
number of times and the point with highest distance is se-
lected as the new cluster center (lines 9-19). Every time a
new cluster center is selected, all points closer to it than a
given threshold are removed from the test set (lines 21-28),
thus decreasing the amount of points available for the next
iteration. The process is then repeated to produce a new clus-
ter center until there are no more available points.

A quantitative comparison between ASK-means and K-
means++ can be found in Fig. 1, both in terms of processing
time and potential value per iteration. As expected, process-
ing time is linear for K-means++ as it is for ASK-means
without automatic stop (lines 23-27 are removed from Alg.
1). When automatic stop is introduced (with a threshold of
0.1% the maximum distance between points), the algorithm
becomes slightly slower during the first iterations due to the
extra computational cost. However this extra cost is eventu-
ally compensated by the decrease in the number of avail-
able points, resulting in a speed increase of around 40%.
K-means++ still produces better potential values, followed
closely by ASK-means without automatic stop. When au-
tomatic stop is introduced, the decrease in available points
produces more evenly spaced clusters, but at the cost of
higher potential values. After initialization, the mini-batch
K-means algorithm (Sculley 2010) was able to achieve sim-
ilar potential values (within 10%) for both approaches, with
the same number of iterations.

Orientation Clustering
Once spatial clustering is complete, the next step is to re-
cluster this set based on orientation information, obtained
statistically. Each cluster Ci ∈ C is defined by a collection of
points Ci = {x = {x0, x1, . . . , xd}}Ni

j=1, with mean vector
μi =

1
Ni

∑Ni

j=1 xj and covariance matrix Σi with elements

σrc
i = 1

Ni−1

∑Ni

j=1

∑Ni

k=1(x
r
j − μr

i )(x
c
k − μc

k), where r and
c are row and column indexes of Σi.

Since we are looking for planar surfaces, it is natural to

3828



Algorithm 1 ASK-Means initialization algorithm

Require: dataset X with n points
maximum number of clusters m̄
number of random samples per iteration s
distance function φ(., .) , distance threshold t

Ensure: cluster centers C
1: v ← n % Initialise number of available points
2: m ← 1 % Initialise number of clusters
3: q ← {0, 1, . . . , n} % Index vector for candidate points
4: C ← random point picked from X % Initialise cluster vector
5: d ← minC φ(X , C) % Distance vector to nearest cluster
6: while m < m̄ and v > 0 do
7: r ← max(d) % Maximum distance to nearest cluster
8: p ← ∅ % Candidate indexes for new cluster
9: for i = 1 to s do

10: while true do
11: a ← random integer(0, t)
12: b ← random real(0, r)
13: if dqa > b then
14: p ← qa , break
15: end if
16: end while
17: end for
18: j ← argmax(di , i ∈ p) % Highest distance index
19: C ← Xj % Add highest distance point as next cluster
20: m ← m+ 1 % Increment number of clusters
21: for i = 1 to v do % Update distance vector
22: dqi ← min(dqi , φ(xqi , cm))
23: if dqi < t then % Remove if too close to clusters
24: v ← v − 1
25: qi = qv
26: i ← i− 1
27: end if
28: end for
29: end while

assume that one dimension (thickness) will be significantly
smaller than the others, acting as the normal vector. This nor-
mal vector is defined as the eigenvector u associated with the
smallest eigenvalue λ calculated from each Σi. An example
of initial clustering and orientation calculation for a simple
2D dataset can be found in Fig 3b. The modeling results ob-
tained from this same dataset, using LARD-HM (Guizilini
and Ramos 2016), is shown in Fig. 3c.

Orientation clustering is then performed using a distance-
based search method, with a threshold on the maximum spa-
tial separation dd on the localized length-scale space and on
the maximum angular deviation da between normal vectors.
These two calculations are as follows:

dd(μj ,Σj ,μk,Σk) =
√

(μj − μk)Σ−1(μj − μk)T (2)

da(uj , uk) = cos−1(uj · uk), (3)

where Σ = (
√
Σj +

√
Σk)

2 is the weighted length-scale
between two clusters. This formula was selected due to its
intuitive way of providing a separation threshold, that is in-
dependent of the covariance values themselves. A value of
2, for example, indicates that the boundaries of 95% cer-
tainty (two standard deviations) for each cluster are in close
proximity. Since it is faster to compute, the angular devia-

(a) Without orientation align-
ment

(b) With orientation alignment

Figure 2: Effects of 3D orientation alignment.

tion threshold is used as an initial filter, and the square root
of covariance matrices can be precomputed for efficiency.

When two clusters are deemed close enough, their points
are merged together to produce a new cluster, with mean and
covariance values calculated based on this new collection of
points. The same process is repeated iteratively, until there
are no more changes in the number of clusters. The results
of orientation clustering on a simple 2D dataset can be seen
in Fig. 3d, where the 100 clusters from Fig. 3b were reduced
to 11, each one correctly representing a wall in the environ-
ment. Note that the LARD-HM framework has issues deal-
ing with such sparse datasets since it uses Euclidean distance
to determine nearest neighbors for training and querying.

Alignment in 3D Space
So far we were only concerned with the orientation of the
normal vector (i.e. smallest eigenvector), since it determines
the similarity between planar surfaces. However, for three-
dimensional spaces the orientation of other eigenvectors are
also relevant, determining the alignment of the surface in
relation to the point cloud it describes. The effects of such
misalignment can be found in Fig. 2a (the extrusion of the
dataset shown in Fig. 3), where several walls are correctly
placed but wrongly rotated on the normal axes.

Because of that, we propose an extra step that corrects the-
ses misalignments, taking place after the orientation cluster-
ing. In this step, the normal axis of each cluster is main-
tained, while the other two rotate according to the Ro-
drigues’ rotation formula:

R(u, θ) =[
c + u0u0(1 − c) −u2s + u1u0(1 − c) u1s + u2u0(1 − c)

u2s + u0u1(1 − c) c + u1u1(1 − c) −u0s + u2u1(1 − c)
−u1s + u0u2(1 − c) u0s + u1u2(1 − c) c + u2u2(1 − c)

]
,

(4)

where u is the rotation axis, c = cos(θ) and s = sin(θ).
This is a convex optimization problem on θ that minimizes
the spatial separation between each point and its respective
cluster center. Since each individual point does not have a
covariance matrix, the weighted length-scale matrix in Eq.
2 becomes simply Σ = Σi. Once the optimal angle θ is
determined, the covariance matrix of each cluster is rotated
by this amount in relation to the normal vector to produce the
final cluster set C, that will be used for scene reconstruction.

3829



(a) Raw dataset (b) Initial clustering (c) LARD-HM (initial clustering)

(d) Orientation clustering (e) LARD-HM (orientation clustering)(f) SHAPE-HM (orientation cluster-
ing, colored by cluster)

Figure 3: 2D example of orientation clustering. Pink dots represent cluster centers, red ellipses indicate covariance matrices
within two standard deviations, and blue lines depict normal vectors.

Scene Reconstruction
In this section we show how to use the cluster set C from
Section to produce a 3D model of the environment that esti-
mates the probability of occupancy at any point in the input
space. We exploit the presence of planar surface features to
greatly decrease the number of parameters required to prop-
erly generate this 3D model, thus increasing computational
speed and decreasing memory requirements.

Hilbert Maps Overview
Initially proposed in (Ramos and Ott 2015), Hilbert Maps
is a technique that represents real-world complexity in a
linear fashion by operating on a high-dimensional feature
vector, that projects observations into a reproducing kernel
Hilbert space (RKHS). Assuming a dataset D = {xi, yi}Ni=1,
where xi ∈ R3 is a point in the three-dimensional space and
yi = {−1,+1} is a classification variable that indicates the
occupancy property of xi, the probability of non-occupancy
for a query point x∗ is given by:

p(y∗ = −1|Φ(x∗),w) =
1

1 + exp (wTΦ(x∗))
, (5)

where φ(x∗) is the feature vector and w are the weight pa-
rameters, that describe the discriminative model p(y|x,w).
To estimate the optimal weight parameters w̄ we minimize
the regularized negative log-likelihood (NLL) function:

NLL(w) =

N∑
i=1

log
(
1 + exp

(
−yiwTΦ(xi)

))
+R(w). (6)

where R(w) is a regularization function such as elastic net.
A useful property of Eq. 6 is its suitability for stochas-

tic gradient descent (SGD) optimization (Bottou 2010), in
which the information contained in each point provides one
small step towards a local minimum, given by:

wt = wt−1 − ηtA
−1
t

δ

δw
NNL(w), (7)

where η > 0 is the learning rate and the matrix A is a pre-
conditioner to accelerate convergence rate (in most cases, A
can be set to the identity matrix). Note that this technique
lends itself naturally to online learning since new informa-
tion can be added to the current model by incrementally per-
forming the stochastic update step given by Eq. 7.

Nonstationary Length-Scales
In (Guizilini and Ramos 2016) the authors introduced the
concept of nonstationary length-scales to the Hilbert Maps
framework, in which scale varies throughout the input space.
This variation is determined by the data distribution and is
calculated using a statistical analysis similar to what is de-
scribed in Section . Each one of the M clusters c ∈ C acts
as an extra dimension in the RKHS, and contributes to the
feature vector in the following manner:

φ(x) =

⎡
⎢⎢⎣

k(x, c1,Σ1)
k(x, c2,Σ1)

...
k(x, cM ,ΣM )

⎤
⎥⎥⎦ . (8)

3830



(a) Without length-scale weighting (b) With length-scale weighting

Figure 4: Effects of length-scale weighting in nearest neigh-
bors search (compare to Fig. 3e-f).

To enforce sparsity, only the k closest clusters of x are
selected to produce the feature vector φ(x), following the
intuition that points far away will have less impact on each
other’s estimates. In (Guizilini and Ramos 2016) a standard
kd-tree (Muja and Lowe 2009) is maintained to efficiently
calculate nearest neighbors using Euclidean distance as the
measure of proximity. While this approximation is enough
for a highly dense cluster distribution, it suffers as sparsity
increases during the orientation clustering process, leading
to wrong nearest neighbor associations (see Fig. 4). Because
of that, we employ an anisotropic search for nearest neigh-
bors based on (Pereira and Andreazza 2010), in which the
covariance matrix of each cluster is used to split the input
space and produce a tree-like structure that is maintained for
efficient queries.

Planar Covariance Function
In Eq. 8, k(x, c,Σ) is commonly referred to as the covari-
ance function, that defines the relationship between points
(i.e. how they influence each other in the input space). The
Squared Exponential covariance function (Eq. 9) is arguably
the most common one, and is used in (Guizilini and Ramos
2016) to model the influence of each cluster in different por-
tions of the input space during training and inference.

ksq(xi, xj ,Σ) = exp

(
−1

2
(xi − xj)Σ

−1(xi − xj)
T

)
.

(9)
However, if a particular cluster is known to belong to a

planar surface (i.e. it was produced from a sufficiently large
number of clusters with similar normal vectors), it is pos-
sible to achieve better modeling results with a covariance
function that takes into account this information. Here we
introduce the Planar Surface covariance function, defined as:

kps(xi, xj ,Σ) =
{
1 if dk < λk | k = {1, 2, 3}
0 otherwise

, (10)

where d = U(xi − xj), with U = {u1, u2, u3} being the
eigenvectors of Σ, and λk are the corresponding eigenval-
ues for U . This transformation is necessary in order to align
the distance vector in relation to the eigenvectors, so they
can be properly compared to the eigenvalues. Fig. 3f shows
the result of using this covariance function on a simple 2D
dataset.

Experiments
In this section we validate the proposed algorithm using
three different datasets: Room, a simulated indoor environ-
ment; Corridor, a real indoor environment; and Outdoor,
a real outdoor environment2. Clustering results from these
datasets can be found in Table 1, where: n is the number
of occupied points; V is the approximate volume covered in
m3; z is the initial number of clusters; and w and o (where
applicable) are the number of final clusters dedicated to pla-
nar surfaces and other objects, respectively. In all experi-
ments, ASK-means (Sec. ) was used with a threshold of
0.1% the maximum distance between points.

Table 1: Statistics from the three datasets used in this paper.

n V z w o
Room 582463 7653 8120 42 −−

Corridor 759328 31521 7637 83 −−
Outdoor 228090 86546 10560 23 1750

As it can be observed, there was a considerable decrease
in the number of points necessary to describe each environ-
ment, of around two orders of magnitude from n to z and
another two from z to w. This information was then used as
input for the Hilbert maps framework, using the planar sur-
face covariance function (Eq. 10) to model clusters that fall
within this category and the squared exponential covariance
function (Eq. 9) to model all other clusters (this distinction
was done only for the Outdoor dataset, that represents a less
structured environment).

The scene reconstruction results for each dataset, using
only the orientation clustering statistic information, are de-
picted in Fig. 5, first for the entire scene (two leftmost
columns) and then for particular zoomed-in areas. As it can
be seen, the orientation clustering technique presented here
was able to correctly identify virtually all the planar surfaces
present in the scene, and furthermore, it was able to cor-
rectly distinguish between different planar surfaces. The in-
troduction of unoccupied points, obtained by randomly sam-
pling the empty space between the sensor and each occupied
point, served to shape these planar surfaces into more intri-
cate structures (i.e. windows in the first row). When these
unoccupied points were not available, planar surfaces with
similar orientations tended to cluster together, filling up gaps
due to limited sensor coverage or resolution (i.e. ground in
the second and third rows).

In Fig. 6 classification results using the proposed algo-
rithm, henceforth referred to as PS-HM (Planar Surface
Hilbert Maps), are shown in comparison to the original al-
gorithm, LARD-HM (Localized Automatic Relevance De-
termination Hilbert Maps), and Octo-Map (Hornung et al.
2013). Note that, for structured environments, PS-HM was
able to achieve a better correct classification percentage for
every training/testing ratio, even though only around 1% of

2Both real datasets were obtained from http://kos.informatik.
uni-osnabrueck.de/3Dscans/

3831



Figure 5: 3D scene reconstruction results (the rows depict different datasets in this order: Room, Corridor and Outdoor). Each
planar surface cluster is colored with a different random color, while other clusters are in white. In the third row points belonging
to planar surfaces are colored red, while the ones belonging to other objects are in white.

the original cluster points were effectively used. This trans-
lated into a higher processing speed during training and
query, proportional to the decrease in number of clusters,
and lower memory storage requirements. The ability of PS-
HM to fill in gaps by merging statistical information from
different clusters also contributes to its higher correct clas-
sification scores when dealing with sparse data. It is worth
noting, as sparsity increases the threshold for ASK-Means
used the select the number of clusters was also increased by
the same percentage, to account for points further away.

Empirical tests indicate that orientation clustering con-
sumes around 20% of the spatial clustering processing time.
However, this step only has to be done once, when new data
is acquired, and thus is overshadowed by the speed gains

Figure 6: Classification results using the proposed algorithm
(PS-HM), with orientation clustering, in comparison to the
original algorithm (LARD-HM) and Octo-Map, for different
ratios of training/testing points.

during training and query. The segmentation between planar
surfaces and other structures also serves as a preprocessing
step for other techniques, decreasing the number of candi-
date points. When there is a predominance of non-planar
surfaces, PS-HM converges back to LARD-HM, since spa-
tial clustering will have a smaller effecting of merging in-
formation and therefore most clusters will be modeled by
the standard squared exponential covariance function. This
can be seen in the results from the outdoor dataset, which
contains non-structured objects that were not merged during
orientation clustering.

Conclusion

This paper introduced a novel clustering technique that takes
into account the orientation of points in the input space,
in order to detect the presence of planar surfaces. Its goal
is to decrease the amount of information required for a
proper modeling of the environment, using state-of-the-art
3D scene reconstruction algorithms. Results show that the
proposed technique is able to decrease by two orders of mag-
nitude the amount of clusters required for an accurate 3D
scene reconstruction, thus increasing computational speed
and decreasing memory requirements. Furthermore, it is also
able to reliably segment planar surfaces from other objects
in non-structured environments, which can then be more ef-
ficiently processed by other techniques to detect more com-
plex shapes. Future work will focus on algorithm speed, and
the detection and modeling of other feature types based on
statistical information and unsupervised learning.

3832



Acknowledgements
This research project was supported by funding from the
Faculty of Engineering & Information Technologies, The
University of Sydney, under the Faculty Research Cluster
Program.

References
Arthur, D., and Vassilvitskii, S. 2007. K-means++: The
advantages of careful seeding. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1027–
1035.
Bahmani, B.; Moseley, B.; Vattani, A.; Kumar, R.; and Vas-
silvitskii, S. 2012. Scalable k-means++. In Proceedings of
the VLDB Endowment, volume 5, 622–633.
Bo, L.; Ren, X.; and Fox, D. 2011. Hierarchical matching
pursuit for image classification: Architecture and fast algo-
rithms. In Advances in Neural Information Processing Sys-
tems (NIPS).
Bottou, L. 2010. Large-scale machine learning with
stochastic gradient descent. In Proceedings of the Inter-
national Conference on Computational Statistics (COMP-
STAT), 177–186.
Coates, A., and Ng, A. 2012. Learning feature representa-
tions with k-means. In Neural Networks: Tricks of the Trade,
volume 7700. Springer Berlin Heidelberg, 2nd edition. 561–
560.
Deuge, M. D.; Quadros, A.; Hung, C.; and Douillard, B.
2013. Unsupervised feature learning for classification of
outdoor 3d scans. In Proceedings of the Australasian Con-
ference on Robotics and Automation (ACRA).
Dosovitskiy, A.; Springenbert, J.; Riedmiller, M.; and Brox,
T. 2014. Discriminative unsupervised feature learning with
convolutional neural networks. Computing Research Repos-
itory (CoRR).
Dundar, A.; Jin, J.; and Culurciello, E. 2016. Convolutional
clustering for unsupervised learning. In Proceedings of the
International Conference on Machine Learning (ICML).
Guizilini, V., and Ramos, F. 2016. Large-scale 3d scene re-
construction with hilbert maps. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems
(IROS).
Hamerly, G., and Elkan, C. 2004. Learning the k in k-
means. In Advances in Neural Information Processing Sys-
tems (NIPS), volume 16, 281–288.
Hornung, A.; Wurm, K.; Bennewitz, M.; Stachniss, C.; and
Burgard, W. 2013. Octomap: An efficient probabilistic 3d
mapping framework based on octrees. Autonomous Robots
34(3):189–206.
Johnson, A. 1997. Spin-Images: A Representation for 3-
D Surface Matching. Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh PA, USA.
Lai, K.; Bo, L.; and Fox, D. 2014. Unsupervised fea-
ture learning for 3d scene labeling. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 3050–3057.

Lloyd, S. 1982. Least-squares quantization in pcm. In IEEE
Transactions on Information Theory, volume 28, 129–136.
Muja, M., and Lowe, D. 2009. Fast approximate near-
est neighbours with automatic algorithm configuration. In
Proceedings of the International Conference on Computer
Vision Theory and Applications (VISAPP), volume 4, 331–
340.
Pelleg, D., and Moore, A. 2000. X-means: Extending k-
means with efficient estimation of the number of clusters.
In Proceedings of the International Conference on Machine
Learning (ICML), 727–734.
Pereira, E., and Andreazza, C. 2010. Anisotropic k-nearest
neighbor search using covariance quadtree. Mecanica Com-
putacional (Computational Geometry) 24(60).
Ramos, F., and Ott, L. 2015. Hilbert maps: Scalable contin-
uous occupancy mapping with stochastic gradient descent.
In Proceedings of Robotics: Science and Systems (RSS).
Ren, X., and Ramanan, D. 2013. Histograms of sparse codes
for object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Ruhnke, M.; Steder, B.; Grisetti, G.; and Burgard, W. 2010.
Unsupervised learning of compact 3d models based on the
detection of recurrent structures. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems
(IROS), 2137–2142.
Ruhnke, M.; Bo, L.; Fox, D.; and Burgard, W. 2013. Com-
pact rgbd surface models based on sparse coding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
1429–1435.
Sculley, D. 2010. Web-scale k-means clustering. In Pro-
ceedings of the International Conference on World Wide
Web (WWW), volume 19, 1177–1178.

3833




