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Abstract

We tackle the problem of multi-task learning with copula
process. Multivariable prediction in spatial and spatial-
temporal processes such as natural resource estimation and
pollution monitoring have been typically addressed using
techniques based on Gaussian processes and co-Kriging.
While the Gaussian prior assumption is convenient from
analytical and computational perspectives, nature is domi-
nated by non-Gaussian likelihoods. Copula processes are
an elegant and flexible solution to handle various non-
Gaussian likelihoods by capturing the dependence structure
of random variables with cumulative distribution functions
rather than their marginals. We show how multi-task learn-
ing for copula processes can be used to improve multivari-
able prediction for problems where the simple Gaussianity
prior assumption does not hold. Then, we present a trans-
ductive approximation for multi-task learning and derive
analytical expressions for the copula process model. The
approach is evaluated and compared to other techniques in
one artificial dataset and two publicly available datasets for
natural resource estimation and concrete slump prediction.

1 Introduction

Multi-task learning is valuable in many areas of research
such as spatial-temporal modeling, environmental sciences,
numerical optimization and data fusion. In these problems
it is advantageous to predict more than one quantity at a
time (in contrast to single-task learning) to exploit inter-
dependencies. Kernel-based algorithms achieve this by the
use of an appropriate multi-task kernel. Gaussian process
(GP) [15] based regression, as a simple and fully proba-
bilistic model, is often the tool of choice for such prob-
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lems. The GP framework supports an easy specification of
a regression prior using a mean function and a kernel and
delivers closed form solutions at inference stage for the pre-
dictive mean and variance. However, in many cases the as-
sumption of a Gaussian likelihood of the data is incorrect,
but accepted because of the mathematical elegance of the
GP framework and the lack of alternatives with comparable
performance.

Copulas, with roots in statistics [17] are models that sepa-
rate the dependence structure of two or more random vari-
ables from their marginal distribution, thus possessing the
flexibility of using a different probability distribution func-
tion for each variable. Informally, they perform a transfor-
mation that maps each variable through its cumulative dis-
tribution function (cdf) to the unit interval and captures the
dependence between the variables using a coupling term.
This methodology can handle complex joint distributions
between random variables offering tractable solutions for
conditional and marginal operations. Copula distributions
can be extended to stochastic processes [8] with the help of
kernels. It can be shown that the Gaussian process model
is just a special case of the copula process if Gaussian
marginal distributions are used. This makes copula pro-
cesses an appealing replacement for GPs in cases where the
Gaussian assumption is not appropriate. In this paper, we
address the computational costs of copula processes, which
make their application to multi-task problems difficult. We
introduce a general transductive approximation and pro-
vide analytical expressions for multi-task copula processes.
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1.1 Related Work

Copula processes are relatively new in machine learning.
After the fundamental work on copula processes [8], an
alternative to GARCH models for finance applications us-
ing a copula based stochastic volatility model was proposed
[23]. It can also be shown [22] that a heavy-tailed process,
derived from copula theory, can provide robustness against
outliers in the data. In geostatistics the copula process is
called copula based Kriging estimator [9] and had been in-
troduced as a possible improvement over Gaussian random
fields.

Multi-task learning is a more general form of co-Kriging
where predictions for multiple quantities are made at the
same time. Several different methods had been proposed
for multi-task Gaussian processes: The task dependence
can be introduced with shared hyper parameters [12] or an
appropriate prior on the covariance matrix as, for example
an inverse-Wishart distribution [25]. It is also possible to
construct new kernel functions [4, 5] if the GP is considered
as a convolution of a continuous white noise process with
a smoothing kernel [7].

The Bayesian committee machine (BCM) [20] is a lo-
cal approximation for general probabilistic learning algo-
rithms. The BCM divides the complete training data set
into smaller subsets, which are trained individually and
then re-combined again for predictions. It belongs to the
family of transductive algorithms because the predictive
distribution depends on the number and location of the
query points. The algorithm is very popular for Gaus-
sian process regression with its high demand for mem-
ory and computational time, however it is in general not
straight forward how to divide the training data set. Other
global methods for Gaussian processes such as Determin-
istic Training Conditional [16], Fully Independent Train-
ing Conditional [18] and Partially Independent Training
Conditional [6] approximation generate a sparse covari-
ance matrix by identifying and using only a representative
subset of the training data while ignoring or approximating
the other samples in the set. A framework and an excel-
lent discussion about these methods can be found in [6]
and we will show later how our approximation can fit into
it. Recently a structured noise covariance that is indepen-
dent of the inputs but captures residual correlation between
tasks was proposed in [14]. Gaussian process regression
networks [24] model related tasks with an adaptive mixture
of GPs.

The novelty of this work lies in the derivation of a transduc-
tive approximation for Bayesian multi-task problems. We
show how the computational complexity can be handled
for a large number of tasks, which normally would grow
significantly, the more variables are estimated simultane-
ously. Furthermore we show the practical consequences

on Gaussian copula processes with a multi-task kernel ob-
tained through process convolution.

2 Copula Processes

Copulas are a statistical framework to decompose a joint
distribution of random variables H(y1,...,¥y,) into their
univariate marginal cumulative distribution functions (cdf)
Iy, ..., F, and a coupling term, the actual copula. Hereby
each random variable gets mapped though its marginal dis-
tribution into the [0, 1] interval, called probability integral
transformation u; = F;(y;). The task is then to find a cop-
ula C, such that

H(ylw--ayn):C(Fl(yl)w'-’Fn(yn)) (1

=C (U1, Un)-

The distribution C has to meet certain requirements [10,
13], but it can be proven [17], that a decomposition as in
Eq. (1) exists for every joint distribution H.

Selecting one specific copula, it is also possible to create a
huge set of different multivariate distributions by varying
different marginal distribution functions. A copula with
favorable analytical properties is the Gaussian copula C
which can be constructed from the multivariate Gaussian
cdf ®,, r with mean p and covariance matrix I" as

C/,L,F (u) = q)u,F (‘I)Ml ri/2 (ul)v ceey (I)/:j’r‘;/ﬂ? (un)> s
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where v = (U1,...,Un), ® . pi/2 is the ith univariate
Gaussian cdf with F}Z-/ % as the square root of the i-th di-
agonal element of matrix I' and p; as the ¢-th element of
vector p. Its density ¢ can be derived as

Nur (q);l,rf (u1), .-, @;jwf (un)>

H?:l N‘uhrgz (éml’ﬁp (uz)>

2
where we used N, the Gaussian density, as the derivative
of ®. A Gaussian copula process can be created [8] if the

Gaussian distribution ®,,  gets replaced by though a Gaus-
sian process.

cpr(u) =

A Gaussian process [15] {Z,} is a collection of Gaus-
sian random variables indexed by x with mean function
m(z) and a positive definite kernel k(x,2’). For a finite
set of input locations X = (x1,...,2,) and correspond-
ing outputs y = (y1,...,Yyn) we write the density of the
finite dimensional subset of {Z,} as hz, (y) = p(Zx) =
Nux),k(x,x)(y) and mean the multivariate normal den-
sity with kernel matrix [K (X, X)]; j = k(x;, z;) and mean
vector [u(X)]; = m(x;). To ease notation we follow
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[22] and assume the mean function to be constant zero and
k(z,x) = v2,Va from now on.

Given these notations we can construct a Gaussian cop-
ula process {Y,} with marginal distribution function
F,...,F,as

Co,x(x,x)(F1(y1)s -, Fu(yn))

- OF;(yi
p(Yx) = co,xx,x)(F1(y1), -+, Fu(yn)) - H Y
i—1

3)

Notice that we can recover the warped Gaussian process
[19] if we use CID(;}Y(Fl(yZ)) as warping functions and can
also get the Gaussian process as a special case if we set

Fy = &g
The predictive distribution p(Yx-

Yx) for y* =

(Y5, .- ym*) at X* = (X7,...,X}) with margins
Fy, ..., F} can be obtained as

. m * y*

PO 1Y) = 3 (FE ) P55 TT 700

“4)

=KX, X)TK(X,X)™!
I=K(X*X") - KX, X)TK(X,X)"'K(X, X*)

i(i)-

2.1 Making Predictions

and w; = &, (

In the inference step we normally want to provide an esti-
mate, a single number with uncertainty bounds rather than
a full predictive distribution. In machine learning this is
often the mean and the variance. This can be problem-
atic for the Gaussian copula process, since (depending on
the marginal distribution function) these quantities may not
exist. Furthermore, since the predictive distribution can be
asymmetric, the variance may not be informative enough.
Hence we suggest to calculate the median and the quantiles
of the predictive distribution and provide the expressions
next. In order to get a quantile Q(p) at input X we use
) =F (2, (%00,0)))

where [i;, fn‘ are the i-th entry from fi, I asin Eq. (4) and
F;‘*1 is the quantile distribution of the corresponding cdf!.
The median as the 0.5 quantile is then, using the equation
above, given by

Q5 = Fr (2, s (#711 (05)))
pye ()

"Notice, that the dependence on X 5, X and y is introduced implicitly
by these variables.

— Fi*_l ((I)

pi, I

since the 0.5 quantile, the median, of a Gaussian distribu-
tion is its mean.

2.2 Multi-Task Copula Processes

In contrast to single-task learning, where the objective is
to estimate a scalar valued quantity, the aim of multi-task
learning is to estimate more than one variable at a time. The
applications of multi-task learning are broad, but very often
the estimation of a primary variable of interest can be im-
proved if we take other correlated variables (secondary or
co-variables) into account. Fig. 1 illustrates this concept.
A typical situation is the case where only a small sample
set of the primary variable is available, but a larger data set
for the secondary variables. This can happen, for example
if the primary variable is much more difficult or expensive
to estimation and occurs frequently in geology or environ-
mental setting.

The challenge to extend a kernel-based algorithm (such as
GPs or the Gaussian copula process) to a multi-task ver-
sion gets reduced to the problem of defining an appropri-
ate multi-task kernel. Some multi-task kernels are inspired
from co-Kriging theory [21] as, for example the intrinsic
correlation model (ICM) and linear model of corregional-
ization (LMC). Others are more recent such as the convolu-
tional kernel [7]. Given kernels for the individual tasks, the
convolutional kernel attempts to find a kernel for all cross-
task dependencies such that the resulting kernel matrix is
still positive definite. For example, the cross-task kernel
between a squared exponential, k(r) = exp(—r?/1%y),
and a Matérn kernel with smoothness v = 3/2, k(r) =

(14 V3r/lnr) exp(—v/3r/lar) is
k(2 2") = kM(r) = VA (g)lﬂl N [2 cosh <\lfr>

M

V3r r V3r r
—elm erf()\Jr) —e'lm erf()\>
ZSE ZSE

where \ = fllSE erf(z) = ffo e dz,r = ||z —
2'||? and lsg, [5s are the length scales for the squared ex-

ponential (task d) and the Matérn (task g) respectively [11].

We do not have to change anything on the equations for
the copula processes, but use a multi-task kernel instead
of the ordinary kernel function. We can then merge the
inputs and outputs from different tasks into the sets X and y
respectively and do the same for test inputs X * and outputs

*

y*.

2.3 Parameter Estimation

The copula process model is not entirely parameter free as
the kernel and the univariate marginal distributions are usu-
ally parameterized in some way. We will denote the set
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(a) Single-Task Gaussian Copula
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(b) Multi-Task Gaussian Copula

Figure 1: Comparison between single-task (left) and multi-task (right) Gaussian copula processes for an artificial dataset.
The dashed lines representing the (latent) true functions with noisy samples marked as circles and triangles. The obser-
vations for the primary task (circles) are corrupted noisy versions of the true function. The noise was sampled from a
generalized extreme value distribution. For the observations of the co-task (triangles) we simply added a zero mean Gaus-
sian noise. The solid lines are the predictive median, whereas the shaded region is the area in between the 0.05 and 0.95

quantiles.

of all these parameters with 6. One of the advantages of
Bayesian methods is the ability to estimate such parameters
from data rather than using cross-validation. We follow the
standard procedure and using a maximum likelihood ap-
proach. More specifically, we are going to minimize the
negative log-likelihood

L(0) = —log(P(Yx;0)),

where P(Yx;0) is as in Eq. (3), but we now explicitly an-
notate the dependence on #. A common approach to min-
imize this non-convex function is to use conjugate gradi-
ent optimization with random restarts or simulated anneal-
ing. This requires numerous evaluations of L. As it can
be seen from Eq. (3), the biggest computational costs are
introduced by Ny x(x,x)(y) from the numerator in Eq. (2)
which is given by

1 1 T 1
——y" K(X, X
(%)n/le(Xm'exp( g¥ KX X) y)’

where costs are dominated by the inversion of K (X, X)
with O(n?). Especially for multi-task problems this be-
comes rapidly troublesome. Recall, that n is the number
of elements in X and y and that, in the case of multi-task
learning, we collected the data from all tasks in these two
sets. If we assume that each of our ¢ tasks has roughly the
same number of training examples, say 7, then the com-
plexity is O((tn)?). This makes multi-task learning com-
putationally very difficult and we introduce approximation
scheme next to attack this problem.

3 Transductive Multi-Task Learning

As mentioned in the previous section, many learning algo-
rithms, such as the ones we used in this work, can only han-
dle a limited number training data efficiently. This makes

it even harder to apply to multi-task problems, since each
task carries additional data. In Kriging, Gaussian processes
and Gaussian copula processes we have to do a covariance
(kernel) matrix inversion, which scales cubic with the num-
ber of training data. In this section we present a trans-
ductive approach for multi-task algorithms inspired by the
Bayesian committee machine [20].

Informally speaking, we are going to perform multi-task
learning with the primary variable of interest and each of
the secondary variables individually and combine the re-

sults at the end. This will reduce the computational costs to
O(tn3).

Theorem 1. Let Yx,,...,Yx, be the random variables
modeling each of the t tasks and we assume without the
loss of generality that we want to make predictions for the
primary variable Yx« for task 1. Using the assumption that
any two Yx,, Yx, withi # j € {2...,t} are conditionally
independent given Yx, and Yx-, we can approximate the
Sfull multi-task model as

[Ty P(Yx; |V, Yax,)
P(YX{‘ YX1 )t_Q

- const.

P(Yx;

YX17~'~7YXt) ~

Proof. With the help of the Bayes’ rule and chain rule we
write

P(Yx:|Yx,, ., Vx,)
P(Yx;)P(Yx,[Yx;) - P(Yx, [Yx,, .-

S Yx, o, Yxr)

P(Yx,,-.-,Yx,)

b
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Figure 2: a) shows the setup of the toy example. The primary variable to estimate is the black dashed line in the middle
and the black circles are the noisy samples. Above and below are the co-variables and their samples (black triangles).
The copula median estimate for the primary variable is the blue solid line in the middle nearly on top of the primary
variable. The shaded region denotes the area between the 0.05 and 0.95 quantiles. b) shows how the prediction time and
the estimation error behaves if the number of query points gets enlarged. It can be seen, that the predictions getting better
with more query points. This is a property of transductive algorithms.

which is true in general. In the next step we are making our

independence assumptions which yields

P(YX; Yx,,.--,Yx,)
PO P(Yxy, Vo) Ty P(Yx,
= P(Vx.,....Vx))
P(Yx:)P(Yx,[Yx: ) i, P(Yx,|Yx,, V)
P(Yx. . Y, P(Yy, [Vx: )12
P(Yx;:) [Timy P(Yxi, Yx, [Yx;)
P(Yx,.....Yx,) P(Yx, [V )2
Il POV Y, Yx)
P(YX;‘ |Yx, )2

Yx,, Yx;)

- const,

where we multiplied in the second step the whole equation
with P(Yx,|Yx:)""'/P(Yx,|Yx;)""! and used Bayes’
rule again in the last step. O

Notice, that with this approximation, we never have to learn
a model for more than two tasks at a time, which gives the
computational speedup and also provides a way to easily
distribute the computation to several machines.

If we apply the approximation to Gaussian copula pro-
cesses, the numerator and denominator are conditional
Gaussian copula densities of the form as in Eq. (4). This is
advantageous since we only have to deal with products and
quotients of Gaussian distributions introduced by Eq. (2),
for which analytical solutions are available. More pre-
cisely, the approximate predictive distribution for the Gaus-

sian copula process is then

P(Yx:

Yiroo o Yo) 2 ey p(FE ), F(0)
2w
i our

where /1 and I can be obtained from

t . . t—2

=2 7V 1, diag(D1 ;) A1.01

and ﬂl,fl, ﬂu,fl,i are defined as in Eq. (4) if we
calculate the predictive distribution for P(Yx:|Yx,) and
P(Yx:|Yx,, Yx,) respectively. For example flyi would be
obtained as

Ii=K(X7,X7) — K([X1, X,], X7)"
LK (X1, X [ X0, X)) 7K ([XG, X)L XT),

which is also the main contributor to the complexity of
O(8(t — 1)) = O(tn3). Eq. 5 above can be further re-
duced with the rules for products and quotients of Gaussian
distributions which can be found in standard textbooks and
in [20], but we omit it here due to paucity of space. Please
note also that all y7, ..., y;, are from the primary task and

so are their univariate marginal distributions FY, ..., F}..

If we follow [6], we can also see our transductive approx-
imation as an inducing approach, where the so called in-
ducing variables are defined to be Yy, and Yx-. Using
this point of view, it may be easier to see that the quality of
prediction can depend on the number of query points Yx:
used. As in general for transductive algorithms, the predic-
tion becomes better, the more query points are used (see
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Fig. 2). As a consequence, even if only a few estimations
are needed, one should include artificial dummy test inputs
in the prediction step and then discard them. In most cases
this is not a serious problem, since the training/parameter
estimation phase is the one, which takes an order of mag-
nitude more time than the prediction phase.

4 Experiments

The experiments in this section share the following setup:
In the first step, we train a standard Gaussian copula pro-
cess for each task individually and determine which combi-
nation of kernel and marginal function is the best for each
specific task. This procedure yields good results in general.
We use either the squared exponential or the Matérn kernel
and take the convolutional multi-task kernel approach to
calculate the cross-kernels. For the marginal distribution
functions we choose one from the following set: The nor-
mal, log-normal, exponential, generalized extreme value
(GEV), gamma, t-distribution or a parzen window estima-
tor. In the second step we use maximum likelihood on the
full multi-task Gaussian copula process to optimize the pa-
rameters for the kernel and the marginal distributions all-
together.

4.1 A Toy Dataset

The experiment is done on an artificial dataset to demon-
strate the methodology. The dataset consists of three highly
dependent tasks (see Fig. 2(a)), where only noisy samples
of the true (latent) functions are available to the algorithm.
The transductive Gaussian copula process is used as de-
scribed in and can be summarized as follows: First, we
learn two distinct multi-task copula processes, the primary
variable (middle) together with each of the secondary vari-
ables (top and bottom). In the second step we merge the
results again to obtain a single multi-task copula process.
In this toy example, the full model is omitted, since it is
nearly identical to the approximation.

As mentioned in the previous section, the performance of
transductive algorithms can depend on the number and lo-
cation of the query inputs. Fig. 2(b) illustrates this property.
We slowly increasing the number of query inputs, starting
with only one and calculate the root-mean-squared-error
(RMSE) and the time needed for the prediction averaged
over 20 trials. The prediction time increases as expected
with the number of query points while the prediction accu-
racy improves. As we will see, the choice of query points
does not have a significant impact on the other two datasets.

4.2 The Jura Dataset

The second experiment is performed on the Jura dataset
which contains 359 samples of two categorical variables

Cd[Ni, Zn]  Cu [Pb,Ni,Zn]
StGCP 0.56 £0.07  14.43 +£2.62
MtGCP 042+0.06 6.57+1.04
TransGCP  0.44 £ 0.09 6.96 £ 1.43
CK 0.51 7.8
StGP 0.57 15.8
MtGP 0.44 7.5
D200 ~ 0.46 -
F359 ~ 0.47 -
P200 ~ 0.45 -

Table 1: A comparison between various algorithms for
the elements Cd and Cu. The table shows the mean of
the absolute error and corresponding standard deviation.
The first three rows are our implementation of the single-
task Gaussian copula process (StGCP), multi-task Gaus-
sian copula process (MtGCP) and the transductive approxi-
mation (TransGCP). The other rows are the numbers for the
single-task Gaussian process (StGP) and multi-task Gaus-
sian process (MtGP) from [1] and co-Kriging (CK) from
[3]. The last three entries are from [2, Fig. 8] and are the
DTC, FITC and PITC approximations with 200, 359 and
200 inducing points respectively.

Opt. Time Time/Eval.
MtGCP Cd [Ni, Zn] 898 s 0.517s
TransGCP Cd [Ni, Zn] 429 s 0.363 s
MtGCP Cu [Pb,Ni,Zn] 1046 s 0.625 s
TransGCP Cu [Pb,Ni,Zn] 621 s 0.409 s
D200 Cd [Ni, Zn] 185s -
F359 Cd [Ni, Zn] 691 s -
P200 Cd [Ni, Zn] 385 s -

Table 2: The table shows the comparison between the full
multi-task copula process (MtGCP) and the transductive
approximation (TransGCP) for Cadmium (Cd) and Copper
(Cu). The first column indicates the algorithm followed by
the primary variable and the secondary variables in brack-
ets. The second column shows the total time needed for
the marginal likelihood optimization (Opt. Time) and the
last column show the time needed per marginal likelihood
function evaluation (Time/Eval). The last three entries are
from [2, Table 8] and the algorithm did not run on the same
machine as our results. We just provide the figures for com-
pleteness and a rough baseline.
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(land uses and rock type) and the concentration of seven
chemical elements (Cadmium, Cobalt, Chromium, Copper,
Nickel, Lead and Zinc) from a 14.5 km? region of the
Swiss Jura. As in the previous experiment the primary vari-
able has fewer samples than the secondary variables. This
can occur in real datasets if, for example, the concentration
of one element is harder or more expensive to estimate or
the dataset contains missing values. For comparison rea-
sons we use exactly the same setup as in [3, 1]:

o the dataset is divided into 259 training samples and
100 test samples for the primary variable, but all 359
samples are used for the secondary variables;

e for Cadmium (Cd) as the primary variable, the sec-
ondary variables are Nickel (Ni) and Zinc (Zn);

e for Copper (Cu) as the primary variable, the secondary
variables are Lead (Pb), Nickel (Ni) and Zinc (Zn).

Furthermore we are using the Matérn kernel for Cd, Ni and
Cu and the squared exponential kernel for Zn and Pb. We
are modeling the marginal distribution functions for Cd, Ni
and Cu with a generalized extreme value distribution and
for Zn and Pb a Gamma distribution is used.

We compare the mean absolute error (MAE) for various
algorithms in Table 1 and show the comparison between
the full multi-task copula process and the transductive ap-
proximation in Table 2. The number of test inputs did not
have a significant influence (less than 1%) on the prediction
results and therefore the numbers were omitted.

We also included results from [1, 2] showing the approxi-
mation for convolved multi-task Gaussian processes. Note
that the convolved Gaussian processes approximation uses
less inducing inputs and is therefore not expected to be as
good as our transductive approach. Furthermore we did not
run the Gaussian process approximations on the same ma-
chine and therefore the runtime (in seconds) is not directly
comparable, but were included for completeness.

4.3 The Concrete Slump Dataset

Our last experiment is performed on the concrete slump
dataset with 103 data points, 7 input variables (cement,
slag, fly ash, water, SP, Coarse Aggr. and Fine Aggr.)
and 3 output variables (slump (cm), flow (cm) and 28-day
compressive strength (mpa)). The goal is to estimate the
variable slump with flow and compressive strength as sec-
ondary variables. We split the dataset randomly into 83
training and 20 evaluation points and calculate the average
over 100 runs (see Table 3). We found that the combina-
tion of Matérn kernel and the generalized extreme value
distribution yielded the best results for all three variables.
Interestingly the predictions of the transductive approxima-
tion are (on average) better than the predictions of the full

MtGCP TransGCP
RMSE 5.65 £ 2.15 5.47 +1.89
MAE 4.08 +1.47 3.97+1.29
Opt. Time 386 + 150 s 320+ 105 s
Time/Eval 0.18 £20.09s 0.09 £0.06 s

Table 3: The table shows the comparison between the full
multi-task copula process (MtGCP) and the transductive
approximation (TransGCP) for the slump dataset. The rows
are the root mean squared error (RMSE), mean absolute
error (MAE), total time needed for the marginal likeli-
hood optimization (Opt. Time) and the last row shows
the time needed per marginal likelihood function evalua-
tion (Time/Eval). All results are averaged over 100 trials +
standard deviation.

model. This can happen since the optimization problem
for the transductive Gaussian copula process is slightly eas-
ier than the one from the full model and the optimizer can
sometimes find a better solution. As for the Jura dataset we
did not found any significant changes in predictions if we
vary the number of query points.

5 Conclusions

This work introduced a new transductive approximation
methodology for multi-task learning to solve the computa-
tional challenges in copula processes. Copula processes are
extremely useful in cases where the assumptions of Gaus-
sian processes are invalid. They allow a different marginal
distribution for each query variable while capturing the
inter-task dependencies. We showed how the Gaussian
copula process framework could be extended to multi-task
learning with appropriate kernels and addressing computa-
tional challenges. We derived closed-form expressions for
the transductive approximation which reduces the compu-
tational costs from O((tn)?) to O(ti3). Furthermore we
investigate experimentally, on one synthetic, and two real
public datasets, the different properties of the transductive
learning approach.
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