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Abstract

Gaussian Processes (GPs) provide an extremely powerful
mechanism to model a variety of problems but incur an
O(N3) complexity in the number of data samples. Common
approximation methods rely on what are often termed induc-
ing points but still typically incur an O(NM2) complexity in
the data and corresponding inducing points. Using Random
Fourier Feature (RFF) maps, we overcome this by transform-
ing the problem into a Bayesian Linear Regression formula-
tion upon which we apply a Bayesian Variational treatment
that also allows learning the corresponding kernel hyperpa-
rameters, likelihood and noise parameters. In this paper we
introduce an alternative method using Fourier series to ob-
tain spectral representations of common kernels, in partic-
ular for periodic warpings, which surprisingly have a con-
vergent, non-random form using special functions, requiring
fewer spectral features to approximate their corresponding
kernel to high accuracy. Using this, we can fuse the Random
Fourier Feature spectral representations of common kernels
with their periodic counterparts to show how they can more
effectively and expressively learn patterns in time-series for
both interpolation and extrapolation. This method combines
robustness, scalability and equally importantly, interpretabil-
ity through a symbolic declarative grammar that is both func-
tionally and humanly intuitive - a property that is crucial for
explainable decision making. Using probabilistic program-
ming and Variational Inference we are able to efficiently opti-
mise over these rich functional representations. We show sig-
nificantly improved Gram matrix approximation errors, and
also demonstrate the method in several time-series problems
comparing other commonly used approaches such as recur-
rent neural networks.

1 Introduction
Non-parametric modelling methods (Ghahramani 2005)
such as GPs (Rasmussen and Williams 2006), infinite Hid-
den Markov Models, infinite latent factor models, and
Dirichlet process mixtures are flexible modelling methods
that, in contrast to parametric models, assume the data dis-
tribution cannot be defined by a finite set of parameters θ.
A commonly used technique is GP regression which defines
a distribution over functions: p(f). Such methods can give
useful probabilistic inference capabilities and are highly
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applicable for decision making processes - such problems
include environmental or disease modelling, robotics, and
control systems, and these can in turn influence planning
decisions by humans or automated systems. Regarding tem-
poral modelling, the ability to accurately model long term
forecasts in the form of multi-step ahead predictions is of-
ten critical to making informed decisions and indeed these
processes often contain fully or quasi-periodic trends which
are difficult or impossible to model by only using individual
kernels.

Although GPs in their original formulation are an ex-
cellent method for modelling data, they are often unable
to take into account all the information present in large
datasets. Recent developments in stochastic gradient optimi-
sation which take advantage of automatic-differentiation and
Variational Inference methods (Kingma and Welling 2014;
Tran et al. 2016) have extended the applicability of machine
learning to huge datasets. Furthermore, Bayesian machine
learning algorithms have a number of well defined methods
for learning model parameters and hyperparameters from
training data, that do not involve cross validation. When
used in combination, stochastically optimized Bayesian ma-
chine learning algorithms allow practitioners to learn prob-
abilistic predictors from large data sets with minimal tuning
and retraining.

Previous works investigating periodicity in the context of
GPs often assume pre-existing structures within the data and
set the periodicity to be reasonable based on expert knowl-
edge of the problem (Senanayake, Simon Timothy, and
Ramos 2016) (e.g. yearly), constrained random initialisation
based with or without random restarts (Solin and Särkkä
2014), heuristic re-optimisation (Klenske et al. 2016). We
demonstrate that one can use a natural formalisation using
the Fast Fourier Transform (FFT) for seeding kernel hyper-
parameter periodicities and then optimise within a full vari-
ational model. This step further demonstrates a reduction
in computational burden of either relying on a good ran-
dom initialisation for selecting periodic hyperparameters or
spawning large numbers of periodic kernels across a sweep
of frequencies.

In this paper we make use of some of these recent devel-
opments in stochastic gradient methods and stochastic vari-
ational inference for supervised regression tasks. This paper
thus presents a novel compositional model and methodology



for capturing short and long term temporal trends in signals.
Our presented contributions (i) show that GPs are indeed
scalable to large datasets in their dual form, (ii) demonstrate
the general methodology for deriving convergent Fourier Se-
ries Features (FSF) representations of periodic analogues of
stationary kernels, as well as empirically evaluate their Gram
matrix reconstruction error, (iii) show FSF may be integrated
into compositional kernel learning, (iv) show how FSF can
be formulated in a Bayesian Linear Regression model with
variational inference using stochastic marginalisation over
standard length-scale hyperparameters as well as periodic
ones, and (v) demonstrate Fourier Series Features in a com-
positional feature-space framework and evaluate their pre-
dictive performance on four real world time-series datasets.

2 Preliminaries
Kernel methods (Schölkopf and Smola 2002) are perhaps
one of the most widespread examples of non-parametric
modelling methods in which κ : X × X → R is some ker-
nel on an input domain X ⊂ RD. This kernel k may corre-
spond to an embedding in a high-dimensional Hilbert space
H through a feature map Φ : X → H via an inner prod-
uct between points from the feature map with κ(x,x′) =
〈Φ(x),Φ(x′)〉H.

GP regression is a method of learning some probabil-
ity distribution over functions f(x∗) given inputs x ∈ RD
given training data D = {Xn, yn} where n = 1, 2, ..., N .
The model f ∼ GP(0, k(x,x′; θ)) is a collection of Gaus-
sian random process priors with Gaussian noise: yn =
f(xn) + εn where ε ∼ N (0, σ2). This gives the predictive
form p(f(x∗)|x∗,D) = N (E[f(x∗)],V[f(x∗)]) which has
a closed form solution for the mean E[f(x∗)] = κT∗ (K +
σ2I)−1y and variance V[f [x∗] = κ(x∗,x∗) − κT∗ (K +
σ2I)−1κ∗ where Kij = κ(xi,xj) is the Gram matrix of
the kernel function, k∗ is an N -dimensional vector with the
ith entry being κ(x∗,xi) and y a vector of the N observa-
tions. Typically this solution involves an O(N3) complexity
arising from an N ×N matrix inversion which significantly
hinders scalability to massive datasets.

There have been several past works investigating long
term trends in temporal problems: (Ghassemi and Deisen-
roth 2014; Senanayake, Simon Timothy, and Ramos 2016;
Solin and Särkkä 2014; Roberts et al. 2013).

2.1 Random Fourier Features
The work by (Rahimi and Recht 2007), broadly termed Ran-
dom Fourier Features, motivates using a randomized lower-
dimensional feature mapping that allow scalability. Addi-
tionally, there exist various works that focus on either addi-
tionally learning or alternatively representing these spectral
fequencies such as FastFood (Le, Sarlós, and Smola 2013),
A la Carte (Yang et al. 2015) and Quasi-Monte Carlo fea-
ture maps (Avron et al. 2016) and in fact these extensions
may be directly applied within our presented framework.
RFF constructions involve approximating the feature map
Φ̂ : X → CC where CC is the space of C-dimensional com-
plex numbers. This gives the definition of the approximate

feature map

κ(x,x′) ≈ 〈Φ̂(x),Φ(x′)〉CC . (1)

The key result from (Rahimi and Recht 2007) from which
Fourier Features can reconstruct positive definite kernels is
summarised below following Theorem 1:

Theorem 1 (Bochner 1933) A complex-valued function g :
RD → C is positive definite if and only if it is the Fourier
Transform of a finite non-negative Borel measure µ on RD:

g(x) = µ̂(x) =

∫
RD

e−ix
Tωdµ(ω), ∀x ∈ RD (2)

Without loss of generality assuming the measure µ has an
associated probability density function p, we have

κ(x,x′) = g(x− x′) =

∫
RD

e−i(x−x
′)Tωp(ω)dω. (3)

allowing a shift-invariant kernel to be approximated as

κ(x,x′) =

∫
RD

e−i(x−x
′)Tωp(ω)dω

≈ 1

C

C∑
c=1

e−i(x−x
′)TωC

= 〈Φ̂(x), Φ̂(x′)〉CC , (4)

yielding the kernel approximation of κ(x,x′) as:

κ(x,x′) ≈ 1

C

C∑
c=1

[
cos(ωTc (x− x′))

]
. (5)

where C is the number of spectral samples from the den-
sity p. This is in fact a Monte Carlo (MC) approximation
to the integral. Through the standard trigonometric identity
cos(u− v) = cos(u) cos(v) + sin(u) sin(v) we arrive at the
2C-dimensional mapping Φ : X → R2C the final represen-
tation:

Φ̂(x) =
1√
C

[
cos(xTω1), ..., cos(xTωC),

sin(xTω1), ..., sin(xTωC)
]
. (6)

2.2 Kernel Compositions
While standard kernels such as the Squared Exponential
(SE) provide suitable expressiblity for modelling many
problems, alone, they are incapable of identifying and con-
taining more realistic complexities present within time-
series. While there exists Multiple Kernel Learning for GPs,
this is largely concerned with a weighted sum of standard
kernels. More recently, a promising body of work termed
Compositional Kernel Learning (CKL) and Structure Dis-
covery has appeared in the Automatic Machine Learning
(AutoML) literature (Klenske et al. 2016; Duvenaud et al.
2013). While these methods use the full kernel, we present
a scalable method in the dual space using Fourier decom-
positions in terms of basis functions. One of the most use-
ful features of CKL is interpretability by humans in which



each kernel and their compositions have an intuitive real-
world interpretation; and indeed recent work by (Schulz
et al. 2016) demonstrates parallels between human thought
processes and favourable interpretation by humans with
compositional kernel rather than functionally similar non-
compositional alternatives.

Multiple Kernel Learning methods (Gönen and Alpaydın
2011), also termed Kernel Compositions, have appeared in
the kernel and in particular GP literature in recent years.
Originally focusing on standard kernels and weighted sums
but expanding towards more complex compositions, they
provide a potentially more expressive way of modelling. In
the last few years there has been a surge of work delving
into such compositions and we are inspired by these works
as a motivation for attempting to make them even more scal-
able through recent advancements in variational inferences
and spectral methods for kernels. Indeed our system easily
lends itself to automatic probabilistic search over the sym-
bolic compositions through methods in the kernel search
literature such as in Automatic Bayesian Covariance Dis-
covery (ABCD) (Lloyd et al. 2014), and Bayesian Optimi-
sation over Models (Malkomes, Schaff, and Garnett 2016;
Rainforth et al. 2016).

3 Fourier Features for Periodic Kernels
In most applications regarding GPs one encounters the
Squared Exponential (SE) (MacKay 1998) kernel most of-
ten. For demonstration we explore the SE, however in our
implementation we draw from a variety of kernels including
the SE, Matèrn 1/2, Matèrn 3/2. Following (MacKay 1998)
and using the warping u(t) = [sin(t), cos(t)]T one can con-
struct an isotropic stationary periodic kernel within an exist-
ing non-periodic stationary kernel. First consider the general
distance metric appearing in many stationary kernels:

‖u(t)− u(t′)‖2

= (sin(t)− sin(t′))2 + (cos(t)− cos(t′))2

= 4 sin2(
t− t′

2
) = 2(1− cos(τ)), (7)

where τ = t− t′. The SE kernel defined as:

κSE(x− x′) = exp

(
−
‖x− x′‖2

2l2

)
. (8)

which has hyperparameter length-scale l and corresponding
spectral density ω ∼ N

(
0, l-1IC

)
.

Following the definition of (8) it is possible to construct a
warping of an input t with the function u(t). Using this for-
mulation we can substitute (7) into (8) to obtain the standard
Periodic SE kernel:

κperSE(t, t′) = κperSE(τ) = exp

(
−cos(w0τ)− 1

l2

)
.

(9)
Following a process analogous to deriving Random

Fourier Features for standard stationary kernels, we demon-
strate an alternative method for arriving at the periodic ker-
nel and show a direct link to the Taylor series expansion

from (Solin and Särkkä 2014) while also formalising it
within the Fourier Features framework.

To begin, note that κperSE is both periodic and symmetric
over τ . Due to periodicity we can represent the kernel as a
Fourier Series over the interval [−L,L] where L is the half
period and fundamental frequency ω0 = π

L . We first state the
Fourier Series representation of some time-domain function:

f(t) ≈ Fk[f(t)] =

∞∑
k=−∞

cke
ikω0t, (10)

with coefficients

c0 =
1

2L

∫ L

−L
f(t)dt, (11)

ck =
1

2L

∫ L

−L
f(t)e−ikω0tdt, ∀k ∈ N+. (12)

For even functions, such as stationary periodic kernels, the
the Fourier Series only exists at integer multiples of the fun-
damental periodic frequency ω = kω0 where k ∈ N+ and
exists only in terms of the cosine-only series from (10). We
then evaluate the integral to find the kth coefficient ck:

ck =
1

2L

∫ L

−L
el
−2(cos(ω0τ)−1)e−ikω0τdτ

=
e−l
−2

2L

∫ L

−L
el
−2(cos(ω0τ)) cos(kω0τ)dτ

=
2πIk(l−2)

el−2 , (13)

where we have used the substitution ω0 = π
L , L = π,

and In(z) is the Modified Bessel function of the first
kind of integer order n and argument z. The solution is
found after noting the special function identity In(z) =
1
π

∫ π
0
ez cos(θ) cos(nθ)dθ (Abramowitz and Stegun 1972)

which allows one to collapse the oscillatory integral into a
convergent form.

We now have an approximate representation of the kernel
as an infinite Fourier series κ(τ) ≈ Fk[κ(τ)]:

κperSE(τ) ≈ Fk[κ(τ)]

=

∞∑
k=−∞

Ik(l−2)

exp(l−2)
cos(kω0τ). (14)

This can thus be decomposed into a truncated sum k =
±1,±2, ... ± K which admits a decomposable form in the
same way as standard Random Fourier Features from (5)
into (6). Thus we have a ”convergent” Fourier Feature rep-
resentation in the sense that there is no randomness in the
frequency domain but instead an exponentially converging
series.

This leads to the corresponding Fourier Series Features

Φ̂(x) =
[
qk cos(xT kω0), ..., qK cos(xTKω0),

qk sin(xT kω0), ..., qK sin(xTKω0)
]
, (15)



Figure 1: Gram matrix approximation errors for Fourier Series Features (FSF), periodically warped Random Fourier Features
(RFF+W) and Quasi-Monte Carlo Fourier Features with Halton sequence (QMCHal+W), as a function of length-scale l and
total features 2C. The rightmost plot depicts comparative slices from the preceding heatmaps. Normalized Frobenius error
calculated from ‖K̃−K‖F

‖K‖F where K̃ and K are respectively the approximate and full Gram matrices. Note we have omitted the
heatmap for QMCHal+W due to space.

where

q2k =

{
Ik(l
−2)

(l−2) if k = 0,
2Ik(l

−2)
(l−2) if k = 1, 2, ...,K.

This method of constructing a periodic kernel is notable as
it demonstrates that periodically warped representations of
stationary kernels permit an integral convergence in terms
of truncated series of special functions by removing any
randomness that was required by the MC sampling for the
original stationary kernel. The general process is similarly
applicable to periodically warping other isotropic stationary
kernels.

Extending the analysis, we note a contrast with (Solin and
Särkkä 2014) which approaches the problem with a Tay-
lor series expansion, which is only locally convergent. By
instead using a Fourier series expansion we benefit from
global convergence. Following (Stein and Shakarchi 2011),
let SN (f)(x) =

∑N
−N f̂(n)e2πinx/L be theN th partial sum

of the Fourier series of f , for a positive integer N . Thus
we have from the theorem of mean square convergence in
(Stein and Shakarchi 2011), the given Lemma 1.2: If f is
integrable on the circle with Fourier coefficients an, then
‖f −SN (f)‖ ≤ ‖f −

∑
|n|≤N cnen‖ for any complex num-

ber cn.

3.1 Quality of Kernel Approximation
The clearest way to demonstrate the quality of the kernel ap-
proximation is by measuring against the full Gram matrix K
generated by the analytic solution of the kernel. We show
the error between K and the approximated Gram matrix K̃

with K̃ij = κ̂(xi, xj). Figure 1 demonstrates the normal-
ized Frobenius norm for the approximated kernel against
the full SE kernel across multiple length-scales and total
number of components. We used N = 2000 random val-
ues drawn uniformly on the interval [−2, 2] with kernel pe-
riodicity T = 2, noting the result is representative over

larger ranges and higher samples. It is clear that both pe-
riodically warped RFFs and state of the art performant low-
discrepancy Halton QMC Features (Avron et al. 2016), even
with D = 1, require significantly more random samples to
achieve a similar approximating error norm.

4 Feature Space Compositions
Formulating the periodic feature as (15) permits the kernel to
be naturally consolidated into a Compositional Fourier Fea-
ture (CFF) architecture allowing one to easily express peri-
odic compositions alongside standard RFF kernel approxi-
mations.

The feature space operations sum and cartesian product
are the applicable kernel compositions for our regression
framework. In operator notation these are as defined as fol-
lows:

(κ1 + κ2)(x,x′) = κ1(x,x′) + κ2(x,x′)

= [Φ̂1(x)Φ̂2(x)][Φ̂1(x′)Φ̂2(x′)]T , (16)

defines the sum or concatenation of the feature maps (6) and,

(κ1 × κ2)(x,x′) = κ1(x,x′)× κ2(x,x′)

=

n,m∑
i

Φ̂
(i)
1,2(x)Φ̂

(i)
1,2(x′). (17)

defines the feature space product of the feature maps (6),
where Φ̂1,2(x) = Φ̂1 × Φ̂2 is the Cartesian product. Us-
ing compositional Fourier Features, depending on the com-
position, our data is transformed into a compositional fea-
ture map with resulting dimensionality C : Φ̂(x) ∈ RN×C .
For instance, it is possible to create the compositional
structure as an interpretable string literal: composition =
”(LINEAR + SE) × PER1” which provides an abstract
modelling structure which is crucial for human interpretabil-
ity. By using a custom LALR(1) (DeRemer 1971) grammar,
these compositional operations upon the feature space are
automatically created and executed at runtime by generating



Figure 2: Models learned with constant, misspecified periodic hyperparameter (left), and constant with FFT (right).

Figure 3: The effect of kernel compositions using Linear,
SE, Periodic SE. Training data is marked green, truth with
red, and prediction with blue over seen and unseen time-
stamps. The top row depicts two separately learned mod-
els using just a Linear and Periodic kernel. These are able
to individually model the data however can only capture a
limited structure. Similarly, the SE at the bottom left can
approximately model previously seen time-series data, how-
ever when extrapolating, diverges because time is a contin-
uously increasing variable. The bottom right consists of a
more elaborate composition which shows how one can cap-
ture far more information and then extrapolate more accu-
rately using compositions.

a parse tree and evaluating each operator node. Figure 3 de-
picts Fourier Series Features alongside conventional features
to demonstrate the additional expressiveness that composi-
tions allow.

5 Variational Bayesian Linear Regression for
Fourier Features

One of the primary advantages of using Fourier Feature ap-
proximation is it allows us to estimate a function in the
RKHS as a linear function in the dual space of Φ̂(x) instead
of the primal space of κ(·, ·) which is typically restricted by
large matrix inversions. We thus utilise Bayesian Linear Re-
gression (Murphy 2012) and factorise over latent variables

Figure 4: Comparison between our method and GRUs for
long term forecasting.

including the linear model’s weights w, intercept b and ap-
proximating kernel hyperparameters.

5.1 Variational Inference
Variational Inference (VI) (Blei, Kucukelbir, and McAuliffe
2017) is a term that describes methodologies for determining
probabilistic posterior inference through tractable optimisa-
tion. Fundamentally, it consists of two parts: 1. Assume an
approximating distribution q(z;λ) over latent variables, and
2. Optimise over the parameters λ to bring the variational
distribution q(z;λ) closer to the true posterior p(z|x). Thus
the posterior is approximated through minimizing some di-
vergence measure:

λ∗ = argmin
λ

Div(p(z|x), q(z;λ)). (18)

Typically the posterior is intractable and so VI aims to
learn the approximate generating model instead. One of
the ways to minimize divergence is by using the Kullback-
Leibler (KL) from q(z;λ) to p(z | x),
λ∗ = arg min

λ
KL(q(z;λ) ‖ p(z | x)) (19)

= arg min
λ

Eq(z;λ)
[

log q(z;λ)− log p(z | x)
]
. (20)

The form of the problem in (20) depends on the posterior
and is therefore intractable, however one can instead take
advantage of the property

log p(x) = KL(q(z;λ) ‖ p(z | x))

+ Eq(z;λ)
[

log p(x, z)− log q(z;λ)
]
,

where the left hand side is the logarithm of the marginal
likelihood and p(x) =

∫
p(x, z)dz is termed the model evi-

dence.



This evidence is a constant relative to the variational pa-
rameters λ, allowing one to minimize KL(q‖p) by maximiz-
ing the Evidence Lower Bound (ELBO),

ELBO(λ) = Eq(z;λ)
[

log p(x, z)− log q(z;λ)
]
.

Both p(x, z) and q(z;λ) are tractable within the ELBO
and thus we have an optimisable objective:

λ∗ = arg max
λ

ELBO(λ).

There are various ways to perform this optimization, how-
ever we adopt the approach from (Kingma and Welling
2014) which allows convenient reparameterisations of dis-
tributions, allowing automatic differentiation approaches to
follow the variational distributions’ gradients:

∇λ ELBO(λ) =

Eq(ε)
[
∇λ
(

log p(x, z(ε;λ))− log q(z(ε;λ);λ)
)]
,

in which the gradient of the ELBO is an expectation over
some base distribution q(ε) which does not rely on the vari-
ational parameters.

5.2 Bayesian Linear Regression Model
We posit the model as a fully Bayesian linear regression
model with Automatic Relevance Determination (ARD)
prior following (Drugowitsch 2013). Our data consists of N
samples each of dimensionality D: x ∈ RN×D and corre-
sponding outputs y ∈ RN . With compositional dimension
defined from 4 we have the model:

p(w) = N (w|0,α−1I)

p(y|w, Φ̂(x)) =

N∏
n=1

N (yn|Φ̂(x)
T

nw,β−1). (21)

We place Gamma hyper-priors α and β with Log-Normal
variational posteriors on the likelihood and weight inverse
variances respectively. Normal priors with Log-Normal vari-
ational posteriors over all standard hyperparameters θ are
used for the approximating kernel hyperparameters which
are globally termed θ = [β,α,w,T, l] containing likeli-
hood and weight precisions β, α, regression weights w,
periodic and lengthscale hyperparameters T, l respectively.
Inference is then performed within a probabilistic program-
ming framework (Tran et al. 2017).

5.3 Periodic Hyperparameter Learning
In related works there is often an ad-hoc method for choos-
ing (as constant) or initialising (random seed) the periodic
hyperparameter T . We propose it is justified and straightfor-
ward to apply the Fast Fourier Transform (FFT) (Weisstein
2004) to extract the most significant frequencies from avail-
able training data. If the goal of modelling and inference is
to capture important periodicites then the FFT is the natural
method to easily expose important fundamental frequencies
within the time-series. Figure 5 shows these extracted peri-
ods on the Airline and Melbourne Daily Temps datasets and
we demonstrate empirically in Table 2 the benefit of initial-
ising the periodic hyperparameters with the FFT in contrast
to random sampling. These values are then learned via the
aforementioned system as another parameter within θ

6 Experiments
In this section we present various model evaluations first
focusing on the periodic hyperparameters, performance in
general, and then contrast to classical methods and recent
recurrent neural networks. The datasets vary in size from
144 to 39432 samples. With the Airline dataset we train on
the first 8 years and predict the last 4. For the remaining
datasets we train on the first 80% of the data and test on
the remaining 20%. Running times in Table 1 demonstrate
how GP methods break down with larger samples while our
proposed method scales tractably.

6.1 Periodic Hyperparameter Evaluation
We investigate here the significance of misspecification of
the periodic kernel hyperparameter, i.e. random vs FFT. We
demonstrate a more suitable initialization procedure by tak-
ing the real FFT of the (training) signal and using the top P
periods to seed kernel hyperparameter T before variational
learning. We posit that carrying out an initial FFT is a natu-
ral method to expose the underlying data’s latent periodicity.
This analysis highlights how crucial it is for the correct to
seed the latent periods well. Figure 2 demonstrates how an
accurately seeded hyperparameter allows the model to cap-
ture periodicity in the data than blind initialisation.

While Figure 2 demonstrates it may be sufficient to ap-
proximately specify the periodicity as constant using meth-
ods like the FFT, this brings other pitfalls such as sampling
artifacts. It is important to recognise the FFT will always
produce sub-optimal results due to the nature of data sam-
pling never being truly perfect and hyperparameter optimi-
sation allows one to overcome such misspecifications.

6.2 Carbon Dioxide Levels
We test on the classic Mauna Loa from 1965 to more recent
readings in the beginning of 2017 (Keeling et al. 2017). This
dataset has been examined in great detail in the past (Ras-
mussen and Williams 2006; Duvenaud et al. 2013) and so
provides a good baseline for validating our methodology.

6.3 Airline Passengers
Consisting of 144 samples this data depicts airline passen-
ger numbers from 1949 to 1961 (Box, Jenkins, and Reinsel
1976). The time-series here exhibits an increasing trend over
time with observably constant periodicity - traits which can
intuitively be expressed in a compositional grammar of ker-
nel functions: LINEAR+LINEAR∗(PER1+PER2+
PER3) + (SE2) ∗ (PER1 + PER2 + PER3). This sym-
bolic form expresses a broad structural belief over the sig-
nal and following humanly interpretable natural language
description from (Lloyd et al. 2014) the composition may
be interpreted as: ”a linearly trending function, with linearly
increasing periodic amplitude and locally periodic compo-
nents”. The CVFF regression model is able to learn this
series for an accurate extrapolation while The RNN mod-
els appear to capture local patterns but are unable to learn
longer term structures and degenerate quickly outside of the
forecast window due to the propagation of errors over time
without having access to new data.



Figure 5: Time-series (left) with corresponding normalized spectrums (right) with primary periodicities by magnitude.

RMSE SMSE

Dataset CFGP VRFF CVFF LSTM GRU CFGP VRFF CVFF LSTM GRU

Airline 17.726 (0m 10s) 251.651 16.984 (0m 30s) 373.031 50.715 0.052 10.496 0.048 22.612 0.421
CO2 2.396 (1m 19s) 3.6252 2.433 (1m 1s) 4.421 6.36 0.111 0.253 0.114 0.392 0.812
Melbourne 4.681 (11m 58s) 6.064 4.201 (2m 12s) 11.612 6.347 0.607 0.977 0.469 3.581 1.071
Zone Temps NA 16.853 12.082 (4m 20s) 23.319 17.864 NA 0.988 0.788 1.894 1.117

Table 1: Average performance in RMSE and SMSE for standard Random Fourier Features using Compositional Full GPs
(CFGP), Variational RFF with RBF (VRFF), our Compositional Variational Fourier Features (CVFF), and LSTM and GRU
recurrent neural networks. Running times for equivalent compositions with full GP and FF methods are provided.

Initialisation P Airline Melbourne

Uniform
1 135.26 6.21
2 225.4 8.28
3 65.85 7.04

FFT
1 55.52 4.16
2 33.56 4.2
3 24.88 4.21

Table 2: Comparison of RMSE with our method for an in-
creasing number of latent periodicities. Each P th FFT com-
ponent is selected in decreasing magnitude. We observe that
when the periodicity hyperparameter is seeded randomly,
there is no apparent improvement in performance. Con-
versely, even a single primary periodicity seeded by the FFT
can significantly improve performance.

6.4 Melbourne Daily Average Temperatures
The dataset (BOM 2014) contains daily temperatures from
Melbourne, Australia and represents a more challenging
problem than the previous two dataset in two ways. First,
it has many more samples at around 3000 instead of in the
hundreds, and secondly contains a lot of high frequency in-
formation. We show that by combining Periodic Fourier Fea-
tures with standard features we are able to plausibly model
the data into the future and further discover long and short
term periodicities very quickly using the FFT.

6.5 Smart Grid Hourly Temperatures
This dataset is from a 2012 Kaggle competition (GEFCom
2012) and consists of an 11-dimensional time-series with
39432 samples. We focus on a single zone with identification

number 3. Similar to the Melbourne Temps dataset, this data
exhibits extremely high noise and both short and long term
periodicities. While our model is able to capture the general
underlying trend of the data and extrapolate into the future,
short term patterns are not captured effectively. This can be
explained by the FFT selecting the stronger low frequency
components and ignoring higher frequency oscillatory be-
haviour. Comparing against the RNN methods one can see
the model does not degenerate for longer term extrapolations
as it does not rely on more recent observations.

7 Conclusion
In this paper we have described how to integrate periodic
transformations of the standard SE kernel into the Fourier
Feature framework while also showing that it requires very
few features in practice to achieve convergent downstream
behaviour. We have further shown how it is possible to in-
tegrate these periodic Fourier Features into a composition
framework defined by an interpretable grammar which has
the added benefit of being far more humanly intuitive and
interpretable than alternative methods for modelling tempo-
ral patterns such as RNNs. By adopting a Bayesian param-
eterization of the kernel hyperparameters, as well as a more
principled way of initialising periodic hyperparameters and
optimizing them jointly over their variational distributions,
we can simultaneously scale learning with stochastic opti-
mization while avoiding overfitting and providing predictive
uncertainty for extrapolations. Avenues for extending this
work include defining the compositional grammar itself in
a fully probabilistic manner such as in (Malkomes, Schaff,
and Garnett 2016) and optimizing these jointly in fully or
partially hierarchical manner.
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