
Improving Reinforcement Learning Pre-Training with Variational Dropout

Tom Blau, Lionel Ott, and Fabio Ramos

School of Information Technologies, The University of Sydney

Abstract— Reinforcement learning has been very success-

ful at learning control policies for robotic agents in order

to perform various tasks, such as driving around a track,

navigating a maze, and bipedal locomotion. One significant

drawback of reinforcement learning methods is that they

require a large number of data points in order to learn good

policies, a trait known as poor data efficiency or poor sample

efficiency. One approach for improving sample efficiency is

supervised pre-training of policies to directly clone the behavior

of an expert, but this suffers from poor generalization far

from the training data. We propose to improve this by using

Gaussian dropout networks with a regularization term based

on variational inference in the pre-training step. We show that

this initializes policy parameters to significantly better values

than standard supervised learning or random initialization, thus

greatly reducing sample complexity compared with state-of-the-

art methods, and enabling an RL algorithm to learn optimal

policies for high-dimensional continuous control problems in a

practical time frame.

I. INTRODUCTION

Automation of many real-world tasks requires being able
to solve sequential problems. That is, problems where there
is some state that evolves over time in response to agent
decisions, and thus involve a sequence of decisions and
states, rather than a single decision such as in the case
of classification. Reinforcement learning has been very suc-
cessful at learning control policies for agents on sequential
tasks. Deep Q-Networks have shown human-level and even
superhuman performance in Atari games [17], which are
partially observable with discrete action spaces. Methods for
continuous action spaces are able to learn gaits for various
fully observable walkers [7]. One significant drawback is
that such methods require a large number of data points
in order to learn good policies. Since such data often has
to be generated by executing policy rollouts on a physical
system (or a physics simulation), getting training data can be
quite expensive in terms of both computation and time. In
the work by Mnih et al. [18], several days of computational
time with 16 CPU cores were required to complete a single
experiment in Atari [3] or TORCS [26] environments. State-
of-the-art performance in robotic control is often achieved by
systems with many processors and robotic agents collecting
data in parallel. In work by Levine et al. [16], an agent
learned to grasp objects with a robotic manipulator based
on camera images, with a learning setup using as many as
14 manipulators working in parallel.

This problem of sample inefficiency is particularly notice-
able in tasks that are partially observable, have continuous
action spaces, have a high dimensionality or large state space,

or all of the above. This is often the case with sensorimotor
control of robotic agents, like grasping or pushing tasks. The
ability to learn control policies for performing such tasks is
highly desirable, as much of global human labor is locked
up in repetitive, low-skill tasks that stand to be automated
by robotic systems with sensorimotor capabilities.

A naive technique for reducing the sample complexity of
a reinforcement learning problem is to initialize the model’s
parameters to good values by using supervised learning on
demonstrations from an expert [4][8]. This has the problem
that small errors accumulate over a sequence of actions, so
that the state of the system gradually drifts away from the
labeled data seen during training. In this work we address this
problem of compounding errors by using the recently devel-
oped regularization technique of sparse variational dropout
(VD)[19], which results in networks that generalize better
beyond the training data.

The main contribution of this paper is demonstrating that
supervised pre-training can be done effectively by using
sparse variational dropout regularization, and that it greatly
accelerates standard RL, compared with standard regularizers
like L2. Additionally, pre-training with sparse VD is less de-
pendent on having a large number of expert demonstrations,
or on having a training dataset that explores a large region
of the state space, in order to achieve good results. This
saves effort in generating expert demonstrations and tuning
the exploration noise used for generating expert demonstra-
tions, which is often either difficult (in the case of human
demonstrations) or done by inefficient grid search. Finally,
the pre-training procedure automatically prunes unneeded
neurons from the neural network, resulting in sparser and
more computationally efficient models.

The structure of the paper is as follows: in Section II
we discuss previous work on pre-training RL models and
the use of variational dropout. Section III then explains
the theoretical background of the algorithm used in our
proposed method, which is described in Section IV. The
approach is assessed in several experiments in Section V.
Finally, Section VI discusses conclusions arising from the
results, as well as directions for future work.

II. RELATED WORK

The high sample complexity of RL algorithms is often
mitigated by adding a pre-training phase that initializes the
model parameters to good values. One of the simplest ways
of doing this is by executing a supervised learning algorithm
on a set of expert demonstrations, a technique known as



Behavioral Cloning (BC). A behavioral cloning approach
is often used independently of reinforcement learning, and
indeed predates the current wave of RL algorithms [20].
However, BC is known to perform poorly when the expert
demonstrations are not sufficiently similar to states encoun-
tered by the learned model, a condition known as covariate
shift [13]. In complex environments with large state spaces,
this requires various techniques to improve the quality of the
training dataset.

Bojarski et al. [5] learned how to drive a car based on im-
ages from a front facing camera. Artificial shift and rotation
was added to the input images to improve generalization.
Duan et al. [8] used BC in the context of a meta-learning
procedure, training a model that can learn to perform a new
block-stacking task based on a single demonstration. A small
amount of noise was injected into the expert demonstrations
in order to generate training data that is more diverse. The
authors report that this noise injection is critical to the
performance of the learned model, but do not explain how
to choose this noise. The DART [15] algorithm presents
a more principled approach to shaping the noise injected
into the expert demonstrations. An optimization procedure is
used to find noise that simulates the errors a learned policy
would make, thus reducing the covariate shift between the
states seen at training time and the ones seen at test time.
Our proposed approach also uses noise injection to improve
the quality of the training data. However, the addition of
variational dropout regularization reduces the sensitivity of
training to choosing a correct magnitude of noise. This is
particularly when injecting exact noise is impractical, such
as with a human demonstrator, or in physical systems which
might sustain physical damage if the noise is too large.

The DAgger algorithm [21] seeks to reduce the covariate
shift between training and test data by iteratively alternating
between exploring the state space with the learned policy
and training the policy to mimic expert decisions on the
encountered states. This procedure is computationally quite
expensive, particularly if acquiring an expert demonstration
is time-consuming. The approach proposed in this paper only
requires generating demonstrations once, and these can be
reused to train any number of policies.

Rusu et al. [22] used a BC approach to clone the
Q-function of an expert model trained with deep Q-
learning [17]. The student was trained to minimize the KL
divergence between its output and that of the expert, in some
cases resulting in a model that outperformed the expert.
Model compression was also achieved by choosing smaller
architectures for the student model, and even significantly
compressed models were able to outperform the teacher.
Our proposed method also achieves model compression,
but it does so by pruning out neurons that are found to
be unneeded, rather than by having to specify a smaller
architecture.

In addition to the use of noise injection, we propose to im-
prove the results of BC by the new regularization technique
of variational dropout [19]. Dropout is a well known regular-
ization technique that improves the generalization of learned

models by preventing co-adaptation of parameters [25]. Dur-
ing training, in each forward pass, each weight is zeroed
out with some probability p, which is usually 0.5. More
recent works proposed frameworks for learning appropriate
dropout probabilities from the data [2, 1, 24, 19], but for
the most part are concerned only with classification and
regression problems, and not with the reinforcement learning
regime. Gal and Ghahramani [10][11] examined dropout
as an approximation of Bayesian inference, and developed
dropout methods that can be used to select exploration noise
in reinforcement learning problems. Our work seeks to apply
the regularizing power of adaptive dropout to reinforcement
learning in a different way, by combining such techniques
with a behavioral cloning approach.

III. BACKGROUND

A. Behavioral Cloning
While supervised learning is concerned with single deci-

sion tasks, such as classification or regression, reinforcement
learning is concerned with sequential decision tasks. In such
tasks we have a system with some state, which changes with
each decision, and to solve the task we must make a sequence
of decisions that gradually bring the system to some goal
state.

Behavioral cloning is an approach for learning control
policies that solve sequential decision tasks using supervised
learning techniques. Given a sequential decision task and
some expert solver for that task, a training dataset can be
generated by executing the expert and collecting pairs of
state observations and expert decisions. An imitator policy
is then trained on this dataset, using a supervised learning
algorithm to minimize the discrepancy between the output
of the imitator and the output of the expert. The weakness
of this approach arises from the differences between the
kind of sequential decision tasks dealt with in reinforcement
learning and the single decision tasks which are the focus
of supervised learning. In the context of single decision
tasks, each prediction error is self-contained. However, if we
execute a policy trained to imitate some expert, each error
causes the state of the system to drift further away from parts
of the state space represented in the training dataset, until the
policy is required to make decisions for states entirely unlike
those seen during training. This is often referred to as the
compounding error problem.

Common approaches for mitigating the compounding error
problem focus on providing better training data. Trivially, if
the entire state space is seen in training, then there is no risk
of drifting into previously unexplored regions. However, this
requires an impractical amount of training data for all but
the simplest tasks. More sophisticated approaches seek to
explore a region of the state space that overlaps as closely as
possible with the region that the trained policy will encounter.
However, the compounding error problem is fundamentally
one of generalization. If the learned policy generalizes poorly
to unseen data, then compounding errors accumulate quickly,
and the system soon reaches a state from which the learned
policy is unable to recover. On the other hand, if the learned



policy generalizes well, then it can correct for small errors in
previous time steps and avoid drifting far from the training
data, or possibly even reach the goal from unfamiliar states.
For the most part, state-of-the-art BC algorithms do not
address the issue of generalization, and serve only to reduce
the probability of seeing novel states at test time, making
them brittle. This is where regularization techniques such as
sparse variational dropout come in.

B. Sparse Variational Dropout
This section briefly summarizes the principles of the sparse

VD technique presented by Molchanov et al. [19]. Let p(w)
be some prior distribution over the weights of a neural net-
work, and let p(w|D) be the posterior after observing train-
ing dataset D of size N, given by Bayes rule. When |w| is
large, an analytical solution is intractable, so we approximate
p(w|D) using a parameterized distribution q�(w). We use
variational inference to find parameters � that minimize the
Kullback-Leibler divergence DKL(q�(w)||p(w|D)) which is
equivalent to maximizing the variational lower bound L(�),
defined as:

L(�) = LD(�)�DKL(q�(w)||p(w)) (1)

LD(�) =
NX

n=1

Eq�(w) [log p(yn|xn, w)] (2)

Note that the KL divergence in this definition depends on
p(w) and not on p(w|D). Using the reparameterization
trick [14] we can get an unbiased Monte Carlo estimator
of LD(�):

LD(�) ' N

M

MX

m=1

log p(eym|exm, f(�, ✏m)) (3)

where (exm, eym)M
m=1 is a Monte Carlo sample of size M,

and f(�, ✏m) = w is a deterministic function depending on
a fixed non-parametric noise ✏m. The KL term of the lower
bound can similarly be approximated from the same Monte
Carlo sample. To apply this framework to neural network
training, we need to define a probability distribution over
network weights, as well as the function f(�, ✏m).

Binary dropout [12] is a common regularization mecha-
nism for improving the generalizability of a neural network.
In a binary dropout network, forward passes are stochastic,
as the output of each neuron is multiplied by a realization
sampled from a Bernoulli distribution Bernoulli(1 � p).
This is equivalent to multiplying the neuron by zero with
probability p, in which case it has been ”dropped out” in
that forward pass. Gaussian dropout extends the idea of
multiplication by a random variable to use noise sampled
from a Gaussian distribution N (1,↵). Applied to a network
with parameters ✓, this is equivalent to putting a distribution
on the weights wij ⇠ N (✓ij ,↵✓2ij). This can be rewritten as:

wij = ✓ij(1 +
p
↵ij✏ij) ✏ij ⇠ N (0, 1) (4)

which is a suitable reparameterization to use as the function
f(�, ✏m) in eq. (3), where � = {✓,↵}

We now have a differentiable estimator of the lower bound,
and can proceed to optimize eq. (1) using stochastic gradient
descent. In addition to a regularizing effect, this procedure
also has a sparsifying effect on the model. Srivastava et al.
[25] have shown that multiplicative Gaussian noise with ↵ =
p

1�p
corresponds to binary dropout with probability p. As

any given ↵ij becomes arbitrarily large, it therefore becomes
equivalent to dropping out the corresponding weight with
probability p = 1. This can be made explicit by zeroing out
weights with ↵ values that exceed a certain threshold.

IV. METHOD

Our proposed method represents a control policy using
a neural network with multiplicative Gaussian noise. The
network parameters, both W and ↵, are first tuned in a
pre-training phase using a variational dropout procedure as
described in section III. This is then followed by a standard
RL procedure to produce the final policy. Figure 1 shows a
high-level overview.

We treat a control problem as a Markov Decision Process
(MDP), which is defined by a tuple (S,A,⇡,P, r, �, T )
where: S is the set of all possible states. A is the set of
all possible actions. ⇡ : S ⇥ A ! [0, 1] is some stochastic
policy mapping state-action pairs (s,a) to the probability of
choosing action a 2 A in state s 2 S . we use ⇡✓ to denote
a policy with parameters ✓. P : S ⇥ A ⇥ S ! [0, 1] is a
state transition function mapping tuples (st, at, st+1) to the
probability of arriving at state st+1 after taking action at at
state st. r : S ! R is a reward signal assigning a scalar
reward value to each state. � 2 (0, 1) is a discount factor.
T 2 N is the time horizon. If a terminating state has not
been reached within T state transitions, the current trajectory
terminates regardless.

We define a parameterized stochastic policy of the form
⇡✓(s) = N (µ�(s),� (s)), where s is a state observation,
µ�(s) and � (s) are parameterized functions with parameter
sets � and  respectively, and ✓ = {�, }. Executing the
policy at state s is equivalent to sampling a realization from
the Gaussian distribution. µ�(s) and � (s) are represented
by deep convolutional neural networks with multiplicative
Gaussian noise on the weights. The networks have an archi-
tecture designed for sensorimotor control of robotic arms,
shown in fig. 2. The architecture has two input sources-
RGBD images and robot joint angles. Image inputs, as seen
in the top half of fig. 2 are passed through 3 convolutional
layers which learn to extract features from raw pixel data,
and then through 3 fully-connected layers which learn system
dynamics as a function of image features. Joint angle inputs,
shown in the bottom of the figure, are passed through
3 fully-connected layers that learn system dynamics as a
function of the robot configuration. The two streams are
then concatenated, and passed through a final fully-connected
layer which learns a mapping from the combined high-level
features to policy moments. The output of a network is a
vector of means or SDs of the stochastic policy, with one
value for each dimension of the action space.



Fig. 1. Reinforcement Learning with Supervised Pre-training

Fig. 2. Robot control DCNN architecture

Let ⇡exp(s) be some expert that returns a good action
for any state s. We execute ⇡exp(s) to sample K expert
trajectories where each trajectory is a sequence of states Ti =
[si,0, si,1, . . . , si,li�1]. As seen in the top half of fig. 1, in
each trajectory, the state of the system is evolved according
to the following equations:

si,0 ⇠ p0 (5)

ai,t ⇠ N (⇡exp(si,t),⌃) (6)

si,t = P(si,t�1, ai,t�1) (7)

Where p0 is the distribution of initial states and the transition
dynamics P(·, ·) are assumed to be have very small variance.
Note that in eq. (6) we add constant data generation noise
⌃ to the expert decision, which is distinct from the policy
exploration noise � . This is known to improve supervised
learning from demonstration [8]. We define the training
dataset D as:

D = {(si,t,⇡exp(si,t)) : i 2 [1,K] , t 2 [0, li � 1]} (8)

Note that in each element of D we pair a state with the
noiseless decision of the expert, rather than with the noisy
action defined by eq. (6).

Let wij be the j-th weight in the i-th layer of a network.
For each wij 2 W there is a corresponding trainable
parameter ↵ij 2 ↵ defining the variance of the Gaussian
distribution over that weight, in accordance with eq. (4). In
the pre-training phase, the output of a neuron in a forward
pass is computed by sampling weights from the respective
distribution, and both W and ↵ are trained by stochastic
gradient descent on the dataset D to maximize the lower
bound defined in eq. (1). The log-likelihood in eq. (3) is
computed based on the outputs of both µ�(s) and � (s).
However, only the parameters of µ�(s) are trained in this
stage, while those of � (s) remain fixed. In the RL phase,
shown in the bottom half of fig. 1, we drop the weights wij

such that ↵ij > e
3, which corresponds to binary dropout

with probability p > 0.95. The output of a neuron in a
forward pass is computed in the same way as a standard feed-
forward network. We train W but not ↵ of both µ�(s) and
� (s), using Trust Region Policy Optimization (TRPO) [23]
in the same environment from which we derived the expert
demonstrations.

V. EXPERIMENTAL RESULTS

We conduct experiments on two different sensorimotor
tasks- a reaching task and a grasping task- in order to
assess the effectiveness of our algorithm relative to BC
without dropout as well as standard reinforcement learning.
For supervised learning we used ADAM with either L2 or
sparse VD regularization as appropriate. All networks were
implemented using the Lasagne library [6]. For reinforce-
ment learning we used TRPO. The implementation is based
on the rllab library [7]. Experiments were carried out in the
V-REP robot simulation environment [9].

A. Reaching Experiments
In the first set of experiments the task is to operate a 6-

DOF Kinova Jaco robotic arm so as to position the gripper
over a cup standing on a table. The cup itself is a non-
interactable object, so that there is no concern of the arm
colliding with it. Thus, this a reaching rather than a grasping
task. The time horizon is H = 25, and each iteration of
TRPO consists of 200 time steps. Observations include a
128x128 pixel RGBD image taken from a fixed position,
as well as the angle values of each joint. Agent actions are
vectors of angle deltas, prescribing a change to the angle
of each arm joint, such that each individual delta is in the



Fig. 3. A V-REP simulation of a robotic grasping task. Note on the right
side a visualization of the policy inputs. The top window is a heat-map of
depth-values, assigning warmer colors to pixels nearer to the sensor. The
bottom window is an RGB image.

range
⇥
�⇡

5 ,
⇡

5

⇤
. This range is a compromise between having

optimal policies that induce very short trajectories (if the
range contains [�⇡,⇡] the entire state space is reachable in
a single action), and having optimal policies that only induce
very long trajectories (if the range is a subset of

⇥
� ⇡

H
,
⇡

H

⇤

then many cup positions can’t be reached within the time
horizon even by optimal policies). The arm is initialized to
the default pose of a Jaco arm, while the cup is initialized
to different locations on the table. Training samples are
generated in the following manner:

We start by generating a set of uniformly distributed cup
positions. For each cup position, inverse kinematics is used
to compute a set G containing several distinct valid joint
configurations, each of which results in the end effector being
placed over the cup. Let j(s) be the vector of arm joints
angles at an arbitrary state s 2 S . The expert policy ⇡exp(s)
is defined by the following equations:

g
⇤(s) = argmin

g2G

|g � j(s)|1 (9)

⇡exp(s) =
⇡

5
⇤ g

⇤(s)� j(s)

maxi |g⇤i (s)� ji(s)|1
(10)

Where the factor ⇡

5 scales the action so that all joint angle
deltas are in the range

⇥
�⇡

5 ,
⇡

5

⇤
. We now have all the

components required to execute eqs. (5) to (8) and generate
the training data.

Rewards follow the equation:

Rt = �|at�1|2 � dt + c1 · succt � c2 · failt (11)

Where dt is the Cartesian distance of the gripper from the
cup at time step t, succt is 1 if the system is in a goal state
and 0 otherwise, and failt is 1 if the system is in a failure
state and 0 otherwise. c1 and c2 are coefficients controlling
the size of the success and failure rewards. We set c1 = 20
and c2 = 50 to prevent situations where it is more rewarding
to fail quickly or to stop near the goal than to attempt to reach
the goal itself.

Figure 4 compares the performance of models pre-trained
with sparse VD and standard L2 regularization, as well as

Fig. 4. Policy performance over time for policies different pre-training

a model that has no pre-training, and the inverse kinematics
expert used to generate demonstrations for pre-training. The
VD and L2 models were trained on 8000 expert demonstra-
tions with an expert noise ⌃ = 0.5. Performance is mea-
sured in the number of successful trajectories per episode,
where episode length is 200 time steps. Sparse VD clearly
outperforms the baselines by a significant margin, and at
convergence even outperforms the IK expert. The sparse VD
model overtakes the L2 model’s final performance at around
1.25e5 time steps, meaning it requires less than one quarter
as many samples. Figure 5 shows the effect of the training
dataset’s size on the performance of models in the RL stage.
We consider datasets with 2000, 4000, and 8000 samples.
Each sparse VD model outperforms its L2 counterpart by
a significant margin, demonstrating that variational dropout
regularization provides an improvement independently of
the amount of training data. Furthermore, even the worst-
performing VD model, pre-trained with 2000 samples, shows
comparable performance to the best L2 model trained with
8000 samples. In other words, the use of variational dropout
instead of L2 regularization leads to a performance increase
equivalent to quadrupling the size of the dataset used for
pre-training. This gain is particularly valuable if acquiring
expert demonstration for the training dataset is expensive
or time-consuming. Figure 6 has a comparison between VD
and L2 models pre-trained on datasets with different levels
of injected noise. Expert noise of magnitude ⌃ = 0.05,
⌃ = 0.25 and ⌃ = 0.5 was examined. For all noise levels,
the trend lines for the VD models evince a quadratic shape
at the beginning of training before tapering off. Of the L2

models, only the trend line for noise with standard deviation
of 0.05 shows this quadratic behavior, and the remaining
models have a more linear shape. The implication of this
is that VD models are much less dependent on having
well-tuned noise in the expert demonstrations in order to



Experiment Sparsity
8000 demonstrations; ⌃ = 0.5 0.677
4000 demonstrations; ⌃ = 0.5 0.526
2000 demonstrations; ⌃ = 0.5 0.359
8000 demonstrations; ⌃ = 0.25 0.685
8000 demonstrations; ⌃ = 0.05 0.766
Grasping 0.693

TABLE I
NEURON SPARSIFICATION RATIO FOR POLICIES TRAINED WITH VD IN

DIFFERENT EXPERIMENTS.

achieve this convergence behavior. In table I we see the
fraction of policy network neurons that were pruned by the
sparse VD pre-training step, for each of the experiments. All
experiments show a significant degree of sparsification, and
in the most extreme case the number of weights is reduced
to less than a quarter of the original architecture. Further,
there is a trend of greater sparsification with an increasing
number of demonstrations or with decreasing expert noise. In
spite of this considerable reduction in network size, the VD
models all either perform comparably or greatly outperform
their L2 counterparts.

B. Grasping Experiments

In the second set of experiments we use a grasping task
that is similar to, but more difficult than, the reaching task
of the previous section. The cup is now an interactable
object that can cause collisions. The time horizon and action
space remain unchanged from the previous task. Image
observations have a resolution of 256x256, an increase found
to be necessary in order to discern gripper orientation from
the images. Training samples are generated in a manner
similar to the reaching task, with some differences:

For each cup position, we compute a set G of joint
configurations that place the end effector a small distance dg

from the cup and oriented towards the cup. In most states,
the expert policy follows eqs. (9) to (10). When the gripper is
within a distance of dg from the cup and oriented towards it,
inverse kinematics is used to compute a goal configuration
that maintains the same orientation but places the gripper
directly on the cup. If this is a valid configuration that results
in no collision, we set it as g

⇤(s) and follow eq. (10).
Rewards for the grasping task are sparse. a reward of �1

is given for each time step, a reward of �25 is given for
a collision, and a reward of 25 is given for success. This
ensures rewarding minimal length successful trajectories, and
also avoids rewarding quick failure over longer trajectories.
Figure 7 shows a comparison between a sparse VD and
L2 model for the grasping task. The VD model shows a
clear improvement over L2 regularization. However, after
3e5 time steps both models still fall significantly short of
the performance of an inverse kinematics expert, which
achieves a total cumulative reward of almost 20. Neither
model appears to have converged, and it is possible that
both could match the expert’s performance with sufficient

training, but verifying this requires a prohibitive length of
time. A model without pre-training was unable to learn a
policy for this sparse-reward task, failing to achieve even a
single successful trajectory.

VI. CONCLUSIONS

In this work we connected the fields of variational dropout
and reinforcement learning through a behavioral cloning pro-
cedure with VD regularization that pre-trains an RL policy.
Our results show that VD regularization provides significant
gains in performance on high-dimensional continuous control
tasks compared with the state of the art, converging more
quickly and achieving higher performance. In a reaching
task, the VD policy is even able to exceed the performance
of an expert using inverse kinematics. The improvement is
consistent across different quantities of training data, and in
some tasks VD pre-training allows a considerable reduction
in the number of expert demonstrations while still achieving
comparable results. Further, results show that faster conver-
gence during the RL stage is consistent across different levels
of noise injected into the expert demonstrations. Finally,
VD pre-training sparsifies the policies considerably, greatly
reducing the computational cost of forward and backward
passes.

While models trained with sparse VD are less dependent
on having well tuned noise in the expert demonstrations in
order to achieve fast convergence with a quadratic shape in
the performance graph, they still suffers overall when they
have poorly tuned noise. There is room for improvement
by combining sparse VD pre-training with techniques for
learning appropriate expert noise from the data. Further, the
pre-training procedure trains only the mean function µ�(s)
of the policy, and leaves the SD function � (s) untouched.
Since µ�(s) is a dropout model, it inherently contains
information about its own uncertainty. There is potential to
use this uncertainty information to learn an appropriate SD
function.

REFERENCES

[1] Alessandro Achille and Stefano Soatto. Information
dropout: learning optimal representations through noise.
arXiv preprint arXiv:1611.01353, 2016.

[2] Jimmy Ba and Brendan Frey. Adaptive dropout for
training deep neural networks. In Advances in Neural
Information Processing Systems, 2013.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-
ing. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intel-
ligence Research, 2013.

[4] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[5] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon



Fig. 5. Policy performance over time for policies pre-trained with training datasets of different sizes

Fig. 6. Policy performance over time for policies pre-trained on datasets with different injected noise



Fig. 7. Policy performance over time for a robotic grasping task

Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[6] Sander Dieleman, Jan Schlter, Colin Raffel, Eben
Olson, Sren Kaae Snderby, Daniel Nouri, et al.
Lasagne: First release., August 2015. URL
http://dx.doi.org/10.5281/zenodo.27878.

[7] Yan Duan, Xi Chen, Rein Houthooft, John Schulman,
and Pieter Abbeel. Benchmarking deep reinforcement
learning for continuous control. International Confer-
ence on Machine Learning, 2016.

[8] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Ope-
nAI Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot im-
itation learning. In NIPS, 2017.

[9] M. Freese E. Rohmer, S. P. N. Singh. V-rep: a versatile
and scalable robot simulation framework. In Proc. of
The International Conference on Intelligent Robots and
Systems, 2013.

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference
on Machine Learning, 2016.

[11] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete
dropout. In Advances in Neural Information Processing
Systems, 2017.

[12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[13] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In NIPS, 2016.

[14] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,

2013.
[15] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan,

and Ken Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on Robot Learning,
2017.

[16] Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data
collection. ArXiv e-prints, 2016.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 2015.

[18] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. International
Conference on Machine Learning, 2016.

[19] Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine
Learning, 2017.

[20] Dean A Pomerleau. Efficient training of artificial
neural networks for autonomous navigation. Neural
Computation, 1991.

[21] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
A reduction of imitation learning and structured pre-
diction to no-regret online learning. In International
Conference on Artificial Intelligence and Statistics,
2011.

[22] Andrei A. Rusu, Sergio Gomez Colmenarejo,
Çaglar Gülçehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray
Kavukcuoglu, and Raia Hadsell. Policy distillation.
arXiv preprint arXiv:1511.06295, 2015.

[23] John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, and Pieter Abbeel. Trust region pol-
icy optimization. International Conference on Machine
Learning, 2015.

[24] Suraj Srinivas and R Venkatesh Babu. Generalized
dropout. arXiv preprint arXiv:1611.06791, 2016.

[25] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 2014.

[26] Bernhard Wymann, Eric Espié, Christophe Guionneau,
Christos Dimitrakakis, Rémi Coulom, and Andrew
Sumner. TORCS The Open Racing Car Simulator.
http://www.torcs.org, 2014.


