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Abstract. We present a continuous Bayesian occupancy representation
for dynamic environments. The method builds on Gaussian processes
classifiers and addresses the main limitations of occupancy grids such
as the need to discretise the space, strong assumptions of independence
between cells, and difficulty to represent occupancy in dynamic environ-
ments. We develop a novel covariance function (or kernel) to capture
space and time statistical dependencies given a motion map of the en-
vironment. This enables the model to perform predictions on how the
occupancy state of the environment will be in the future given past ob-
servations. We show results on a simulated environment with multiple
dynamic objects and on a busy urban intersection.

1 Introduction
The Gaussian process occupancy map (GPOM) [12] is a continuous oc-
cupancy representation of the environment that overcome some of the
limitations with occupancy grids [4]. The method places a Gaussian pro-
cess (GP) [15] prior over functions mapping the 2D or 3D space into the
probability of occupancy. Both laser beams and laser returns are used
as free-space and occupied observations respectively to train a GP clas-
sifier. The resulting model is not limited to a particular resolution and
naturally captures spatial relationships between data points, offering a
principled methodology to reason about occlusions, and informative ex-
ploration strategies [7], [1].
Despite overcoming some of the issues present in discrete representations
such as occupancy grids, GPOM assumed a static world and ignored the
effects of time on the model. In reality, mobile robots frequently operate
in dynamic environments where the motion of pedestrians, vehicles and
other moving objects play an important role in affecting the state of the
world and consequently in determining the outcomes of the automaton’s
actions. In this work, we extend the GPOM to incorporate a temporal
dimension and predict the probability of occupancy at a point in time
and space using information from past observations.
Commonly, dynamic entities are represented as a single point (gener-
ally the estimated centroid of the object [16]) and observations associ-
ated with moving objects are removed before the remaining laser hits
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2 Gaussian process occupancy maps for dynamic environments

are passed to a static-world mapper. Recently, a number of works have
focused on an alternative approach to classical object tracking by mod-
elling motion on a “sub-object” level within geometric maps. The work
in [3] and [11] augment the properties of the occupancy grid map so as to
model predicted velocity in a cell as well as its occupancy. In this model,
concepts such as objects or tracks do not exist. They are replaced by
properties such as occupancy or risk, which are directly estimated for
each cell of the grid using sensor observations from consecutive scans to
propagate motion and hence the cells’ probabilities of occupancy into
the future. Gindele et al. [8] add prior information of the scene to this
model in order to predict more complex mobile object motions such as
vehicles turning at corners, etc.
Here, we adopt a similar approach by modelling motion on a sub-object
level while conserving the continuous nature of our technique and the as-
sociated benefits of operating within a fully Bayesian setting. We adapt
the framework of a Gaussian process classifier to account for the effects
of motion and, consequently, to learn dependencies between consecutive
observations to model occupancy in dynamic environments. Our pro-
posed approach learns the dynamic regions of the map and expands on
the GPOM, enabling it to propagate the hypothesis of occupancy tem-
porally as well as spatially within a single Bayesian model.

2 Dynamic Gaussian Process Occupancy Maps

In GPOM we model the probability of occupancy at a query location x∗
given a set of N observations {xi, yi}Ni=1, as p(y|X,y,x∗) = Φ( αµ∗+β

1+α2σ2
∗

),

where Φ(·) is the cumulative Gaussian distribution, µ∗ and σ2
∗ are the

predictive mean and variance for the posterior of x∗ respectively, and α, β
are parameters of the cumulative Gaussian estimated through leave-one-
out cross validation [12]. The posterior is obtained from a GP(m(x), k(x,x′)),
with mean function m(x) and covariance function k(x,x′). In this work
we generalise GPOM to handle dynamic environments by jointly learning
occupancy properties with a motion model of the environment. A block
diagram illustrating the proposed inference framework is presented in
Figure 1.

2.1 Motion-model adapted Gaussian process

Defining Υ (·) as a vector field estimate of the mean velocity or drift of an
underlying function, we can compute the spatial displacement between
instants tx and t′x of a particle originally at location x as,

ψ(tx, tx′) =

∫ tx′

tx

v(t)dt, (1)

where v(t) is obtained from the velocity vector field. We can then modify
the covariance function to take into account displacements. For example,
for the squared exponential covariance function, the dynamic version
takes the form,

k(x̂, x̂′) = σ2
fexp

(
− |x̂−Ax̂

′|2

2L2

)
, (2)
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Fig. 1: Block diagram of the inference procedure for a GPOM with motion-map
adapted covariance function.

where L =
[
Ls 0
0 lt

]
, A =

1 0 ψ(tx, tx′)1
0 1 ψ(tx, tx′)2
0 0 1

, and x̂ is the concatenation

of the observation’s location input vector, x and tx. Ls is length-scale
hyperparameter matrix pertaining to the spatial dimensions and lt is the
temporal length-scale hyperparameter.

Incorporating a motion model into the covariance function enables the
GP to learn dependencies in the observations along the direction of mo-
tion rather than along the temporal axis as can be seen in Fig. 2a and
2c. During the training phase, both the spatial and dynamic elements of
the model learnt jointly. Improving the estimate of the underlying func-
tion’s motion, increases the marginal likelihood of the Gaussian process.
Similarly, optimising the GP’s spatial representation of the function al-
lows for a better alignment of consecutive sets of observations using the
motion model.

Motion-model adapted covariance functions offer some useful capabilities
in terms of training a Gaussian process to represent the spatial and
dynamic behaviour of an underlying function. However, using such a GP
to model occupancy in a map proves problematic due to the model’s
assumption that the entire function is subject to the same motion.

A possible solution to the limitations of the technique is to modify the
displacement function so that it is also dependent on location as well as
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Fig. 2: Predictive mean functions (left column) and their associated covariance
contours (right column) after training. The results shown are from a GP em-
ploying a constant velocity motion model (top row) and a constant acceleration
model (bottom row) for ψ(tx, tx′) in Eqn. 2. Observations of the function are
represented as black crosses.

time, ψ(tx, tx′ ,x). The notion of associating a location with information
about the motion of objects at that point is not a new one. Gindele et
al. [8] and Brechtel et al. [2] predict the hypothesis of occupancy based
on past map states and on velocity values assigned to each cell using
prior map knowledge such as a GPS nav-map to propagate occupancy in
dynamic regions of the environment. Ellis et al. [5] and O’Callaghan et
al. [13] use information from pedestrian trajectory traces to learn motion
maps for the environment with applications in object tracking, anomaly
detection and path planning. In our case, we seek to learn a motion map
that will enable the GP to shape its covariance contours and to determine
the extent of temporal dependencies.
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2.2 Motion-map adapted Gaussian process

Remodelling Eqn. 2 to accommodate for spatial changes in velocities, for
the 2-D case, we obtain:

A =

1 0 ψ(tx, tx′ ,x)1
0 1 ψ(tx, tx′ ,x)2
0 0 1

 . (3)

As before, the input vector, x′, is translated using A when used as train-
ing data in the Gaussian process. The displacement vector ψ(tx, tx′ ,x)
represents the spatial displacement undergone by a point initialised at
x over a time interval of tx′ − tx. Crucially, its value now also depends
on the initial location of the observation rather than simply the time
stamps,

ψ(tx, tx′ ,x) =

∫ tx′

tx

v(x(t))dt− x, (4)

where the velocity, v(x), at any point is governed by the motion map.
The estimated motion map will inevitably have some degree of error
in it and so it is important that this uncertainty is reflected in the
GPOM’s hypothesis of occupancy estimates. Consequently, we employ
a non-stationary covariance function with the ability to locally alter its
temporal length-scale, lt(x), based on the observed quality of the motion
map in each region.
[10] provide a comprehensive list of analytical solutions for many pop-
ular stationary covariance function’s non-stationary form. Here, we use
a summation of two non- stationary Matérn class covariance functions
with ς values of 3/2 (Eqn. 5) to model the covariance in the temporal
domain as it provides a good balance between capturing sudden changes
in the function while also learning long-term trends of the data.

k(x, x′; lt(x), lt(x
′)) = (5)

σ2

(
lt(x)exp

(
−
√

3
|x− x′|
lt(x)

)
− lt(x′)exp

(
−
√

3
|x− x′|
lt(x′)

))
,

where σ2 = 2
√
lt(x)lt(x′)/(lt(x)2 − lt(x′)2).

2.3 Learning the Motion Map

Motion-map adapted Gaussian processes enable the GPOM to handle
dynamic objects by propagating the effects of the movement into the
inference model. In this section, we discuss one possible method for de-
riving the motion map which we represent here as a mean velocity field
Υ (·) and an associated error field ε(·) based on previous observations of
the environment.
The procedure initially builds an occupancy map for each scan. A large
body of literature exists on various optical flow techniques, [6] and [9],
for extracting regions of motion between two images. Here we opt for a



6 Gaussian process occupancy maps for dynamic environments

GPOM(D  )t

GPOM(D   )t-1

Frame2 Same

Frame1 Diff

Fig. 3: The stages involved in generating the motion clusters. First stage: Occu-
pancy maps for 2 consecutive scans. Second stage: Frame1 and Frame2 of the
respective scans. Third stage: Diff and Same maps.

straightforward and fast agglomerative clustering of query points deemed
occupied followed by data association to estimate changes between scans.

Comparing two consecutive maps the algorithm identifies query points
in each that have a high probability of being occupied and also have a
high probability of being either occupied or free space in the other map.
The resulting maps, referred to as Frame1 and Frame2 in the figure,
are then subtracted from each other and element-wise multiplied by one
another to produce Diff and Same, respectively. The Diff map contains
clusters of value −1 representing an area that an object has just vacated
and clusters of value +1 in an area where an object has just moved
into. Same highlights regions that have remained occupied in both scans
and may possibly contain a stationary object. Sample outputs of these
3 stages are shown in Fig. 3.

The algorithm then clusters the positive valued cells as objects and the
non-zero cells from Diff and Same as motion clusters. For each motion
cluster in Diff, the algorithm searches for an adjacent object. If one is
found, this object is assumed to have either just vacated or occupied that
cluster depending on the value of that cluster (+1 or −1). The direction
of motion is obtained by calculating the angle between the centroid of
the motion cluster and the associated object cluster. The magnitude of
the motion is simply the width of the cluster. Stationary objects are
identified as clusters in Same that do not have a neighbouring motion
cluster from Diff.

These clusters and their velocities are then stored in memory and the
procedure is repeated for each pair of consecutive scans in the training
set. A regressor is trained using a portion of these clusters to infer a
velocity at any point in space, i.e. the mean velocity field Υ (·). Finally,
the error of this field is assessed using clusters withheld from the training
and a second regressor is then trained to approximate our estimated
accuracy of Υ (·) over the entire region.
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2.4 Relating ε(·) to lt(·)
Theoretically, the latent temporal length-scale hyperparameter function,
lt(x), can be learnt while maximising its marginal likelihood such as in
[14]. Implementing such a scheme unfortunately is quite expensive due
to the large search space for learning the parameters of the function
combined with the relatively slow iteration time of the optimiser due to
the requirement of inverting an n× n covariance matrix each time.
A convenient approximation is to learn a parametric mapping, h(·), from
a point’s estimated translation error, ε(x) to the temporal length-scale,

lt(x) ≈ h(ε(x)) = a ∗ ε(x)−( 1
b
). (6)

The chosen form of the mapping is described by Eqn. 6. The parameter
b controls the rate of decay of lt as ε(x) increases while a serves as a
scaling parameter.
This approach to learning the temporal length-scale results in two ad-
ditional dimensions being added to the search space during training.
However, it is a significantly more constrained problem than attempting
to train a latent non-parametric function, lt(·) during optimisation of the
marginal likelihood.

3 Experiments and Results

In this section, we examine the performance of the proposed DGPOM
algorithm. Initially, we use a synthetic dataset simulating the observa-
tions received from a car-mounted laser rangefinder sensor positioned at
a T-junction. The second experiment involved gathering range data at a
city intersection. Both experiments include quantitative and qualitative
analysis.

3.1 Simulated Data Experiment

Figure 4 presents a summary of a synthetic scenario. The rangefinder
sensor is positioned at x = (15; 0) and observes cars passing the junction
at velocities of 2 m/s or -1 m/s depending on which lane the vehicle
occupies. Each scan contains 70 beams covering a 180◦ sweep with a
maximum range of 20 metres sampled at a frequency of 1 Hz.

The motion map Υ (·) and ε(·) for the environment are learnt with
data acquired a priori. The motion clusters and their velocities are shown
in Fig. 5a. A subset consisting of 500 of these points was used to train
a regressor to model the horizontal and vertical components of Υ (·).
Fig. 5b presents the regressor’s output for the horizontal component of
the estimated mean velocity field. Both lanes are clearly distinguishable
from the plot with the regressor also learning that vehicles observed in
the lane traveling from left to right tended to move at approximately
twice the speed of the vehicles in the opposite lane. The mean velocity
field also estimates an average velocity of 0 m/s in the area occupied by
the building at the top of the scene. A quiver plot of the resulting mean
velocity field is superimposed onto the environment in Fig. 5c.
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Fig. 4: Ground truth of simulated experiment.
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Fig. 5: a) The resulting motion clusters with their associated velocity vectors
(dynamic and static). b) Output of regressor modelling the horizontal component
of Υ (·). c) A quiver plot of the motion map’s velocity superimposed on the
environment.

DGPOM outputs Using the Dynamic GPOM framework the prob-
ability of occupancy can be inferred at various instances in time and
space. The outputs from two of those instances are displayed in Fig. 6.
The ground truths at t = 3 and t = 5 (top row) show two vehicles in each
lane (blue rectangles) with a large amount of occlusion created by the
cars closer to the sensor. The red lines represent the range-finder sensor’s
observations at that time step. Incorporating observations from previous
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Fig. 6: Results for simulated experiment at two separate instances in time. t = 3
(left column) and t = 5 right column. Top: Ground truth of the environment’s
state. Middle: Probability of occupancy versus location which incorporates ob-
servations from previous time steps. Bottom: Predictive variance maps.
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scans using the DGPOM framework enables the algorithm to accurately
infer a large amount of the scene (middle row). Despite not observing
the car at (17; 7.5) in the first image directly, the procedure uses the
learnt motion map to infer a strong covariance between that location
and previous observations of the vehicle resulting in a high probability
of occupancy in the mapper’s output at the aforementioned location.
Similar behaviour can also be seen in the second column at (5; 7.5). The
associated predictive variance maps (bottom row) offer an insight into
how the scene was reconstructed. The dark blue regions of high con-
fidence rely primarily on the most recent observations. Light blue and
green areas indicate estimates in regions that have not been observed in
the most recent scans and, due to a degree of inaccuracy in motion map,
Υ (·), are less confident in the hypothesis of occupancy.
The additional flexibility afforded to the algorithm by incorporating lo-
cation as an extra parameter in determining the behaviour of the covari-
ance function enables the GP to exploit strong temporal dependencies
between scans containing multiple dynamic and stationary objects. As
a result, the probability of occupancy for the entire region can be han-
dled within the same Bayesian setting without the need for filtering out
dynamic objects and handling them in a separate procedure. Large co-
variances along traffic lanes learnt by the covariance function allows the
GP to accurately infer the location of the car by propagating the influ-
ence of past observations forward through time using the velocity vectors
of the motion map.

Table 1: Comparison of areas under the ROC curve at various instances in time
(columns) using 3 different approaches.

Query Time ((tx∗)

Algorithm tx∗ = 3 tx∗ = 4 tx∗ = 5 tx∗ = 6 tx∗ = 7 tx∗ = 8 tx∗ = 9

DGPOM <D+1 0.9497 0.9301 0.9300 0.9288 0.9480 0.9372 0.9435
GPOM <D 0.7736 0.8040 0.8248 0.8227 0.8364 0.8376 0.8850

GPOM <D+1 0.8383 0.8773 0.8903 0.8954 0.9267 0.8922 0.8974

ROC Tests With a known ground truth it is possible to determine
the precision of the estimates using the ROC curves once more. Table
1 shows the results of a comparison between the inference algorithm’s
outputs and two variations of the standard GPOM; GPOM (<D) employs
a D-dimensional Gaussian process and hence ignores the observations’
time stamps while GPOM (<D+1) includes time as an additional feature
in the classic GP architecture. The table lists the areas under the ROC
curve produced by each algorithm over a series of time steps with the
DGPOM consistently outperforming its static counterparts. All three
algorithms utilise rangefinder data acquired at the query time (tx∗) and
three previous scans. While the hypothesis of occupancy for the GPOM
(<D) in motionless regions such as the building wall is comparable to the
DGPOM, the static-world assumptions it makes result in an inability to
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reconstruct the vehicles accurately. The dynamic objects in the scene
also negatively influence the performance of the GPOM (<D+1) leading
to a short temporal length-scale. Consequently, only the observations
acquired at the query instances have any significant influence on the
probability of occupancy estimate.

3.2 Real Data Experiment

A Pioneer 2-AT robot equipped with a SICK LMS291 laser rangefinder
gathered observations from 3 minutes of traffic flow at a busy intersec-
tion. Fig. 7 provides an aerial view of the area including the location
of the robot during testing. Superimposed on the image are the laser re-
turns from the static objects (manually classified) and the mean velocity
field. The road lanes can be identified clearly in the plot as well as a
number of zero-magnitude velocity vectors around the buildings.

Fig. 7: Aerial image of the outdoor environment used in the experiment with the
learned velocity field superimposed on top of it.

A contour plot generated from sampling the ε(·) function has also been
superimposed on the aerial image in Fig. 8. Comparing the Υ (·) with
motion clusters from a test set indicated a degree of error in the mean
velocity field along the roadways as well as a large error in the region
of the intersection. A certain level of error is to be expected due to
variations in speed between vehicles however the considerable error over
the junction is primarily due to the fact that the direction of motion in
this region can fluctuate greatly here. Consequently, the local temporal
length-scale in this region will be affected, resulting in past observations
having a comparatively small influence on the hypothesis of occupancy.
The parameters of Eqn. 6 converged to a = 0.8625 and b = 1.242 after
training corresponding to an lt < 0.5 across the centre of the intersection.
A possible solution to address is discussed in Section 4.
The outputs of the DGPOM’s inference algorithm at four time steps and
the observations acquired at each instant are displayed in Fig. 9. To illus-
trate the sense of motion in the estimates, the outputs in the second and
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Fig. 8: Contours from the error map superimposed over the environment.

fourth row are at a query time of one time step after the first and third
rows, respectively. Similar to its performance on the synthetic dataset,
the algorithm’s probability of occupancy map predicts high probabilities
in locations occupied by vehicles despite being occluded from the sensor
at the tx∗ . In the first set of outputs, the algorithm predicts the presence
of two cars at the center of map, x∗ ≈ (0; 13), using data from previous
scans. There is an increase in uncertainty in the second set of prediction
as the time since both cars were last observed increases. The accuracy
of the Υ (·) in some areas enables information obtained from scans in the
past to accurately predict the location and outline of both buildings on
either side of the intersection. wall
To analyse the performance of the DGPOM’s predictions as time since
the last observation increases, a ground truth is required. Although the
exact state of the environment at any given instant is unknown, it is ap-
proximated by an occupancy map generated using observations acquired
exclusively at the given tx∗ and comparisons are made only in areas
where this map has a high degree of confidence. Fig. 10 shows the aver-
aged behaviour of the area under the ROC curve as time since the last
observation is increased. Initially, there is a shape falloff in performance
mainly due to the predicted probability of occupancy in regions such as
the centre of the intersection rapidly reverting to the global mean of 0.5.
Eventually the curve begins to saturate once the dynamic regions return
to a global mean due to a lack of new observations while the hypothesis
of occupancy areas of the map believed to be static remains confident.
The y-axis is scaled from 0.5→ 1 to represent the range from a random
guess to a perfect reconstruction of the approximated ground truth.

4 Conclusions

In this paper, we introduced a version of the GPOM algorithm to deal
with dynamic environments. We developed a continuous occupancy map
capable of learning static and dynamic regions and integrating observa-
tions from multiple points in time into a single continuous probabilistic
spatio-temporal model of the environment. The proposed motion-model
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Fig. 9: Sequence of images illustrating the output of the DGPOM at different
instances in time. From top to bottom: t = 4, t = 5, t = 29, t = 30. Left column:
Range observations recorded at each time stamp. Middle column: Probability of
occupancy versus location. Right column: Predictive variance verus location.
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Fig. 10: Averaged decay and saturation of the area under the ROC curve as the
time since the last observation increases. The error bars represent the 1 standard
deviation boundary.

adapted covariance function enables the parameters of an equation de-
scribing the drift of an underlying function to be learnt in tandem with
the hyperparameters by maximising the marginal likelihood. The bene-
fits of this framework could make interesting contributions to modelling
phenomena that vary in space and time while also being subject to drift
such as air pollution.

However, to model spatially non-uniform drift (multiple dynamic ob-
jects), the search space for jointly optimising the GP and latent dis-
placement function becomes infeasibly large. Consequently, we constrain
the problem by assuming the function or motion map, Ψ(·), is temporally
intransigent. Dependencies between observations are propagated tempo-
rally as well as spatially while employing a non-stationary covariance
function to adjust their magnitude depending on the estimated accuracy
of the translation Ax.

Results using the DGPOM are encouraging although the implementa-
tion will need to exploit its parallelisable properties using multiple cores
to be used in an online setting effectively (similar to [3], [8], [2], [11]).
Static obstacles such as buildings are represented clearly despite consid-
erable occlusions. In dynamic regions, the motion of cars is inferred us-
ing past observations and the motion map. The hypothesis of occupancy
is weighted by the estimated error of the mean velocity assumption to
prevent inaccurate modelling of the motion leading to the creation of
phantom obstacles.
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