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a b s t r a c t

This paper proposes a novel algorithm for computing robot motion estimates from ranging sensors. The
algorithm utilises the recently proposed CRF-Matching procedure which matches laser scans based on
shape descriptors. Themotion estimates are computed in a sound probabilistic framework by performing
inference on a probabilistic graphical model. The Sampling-Product inference algorithm is proposed
for obtaining probable association hypothesis from the probabilistic model. The hypothesis are used to
generate estimates on the uncertainty of translational and rotational movements of the mobile robot.
Experiments demonstrate the benefits of the approach on simulated data sets and on laser scans from an
urban environment. The approach is also combined with the well-established delayed-state information
filter for a large-scale outdoor simultaneous localisation and mapping task.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Reliable navigation in mobile robotics requires the computa-
tion of robust motion estimates. Solutions based on inertial mea-
surement units or GPS can provide an estimate and corresponding
uncertainties directly. For ranging sensors however this task is
significantly more complex. The difficulty lies in obtaining robust
point correspondences between consecutive scans fromwhich the
motion estimates are computed. Solutions based on the Itera-
tive Closest Point (ICP) [1,2] can, in general, provide reasonable
motion estimates. However, for reliable navigation with a scan-
matching procedure [1], deterministic estimates of the motion are
not enough; it is also necessary to quantify the uncertainty on these
estimates.

The motion estimates’ uncertainty, computed from range
sensors, arrives from two main sources: (1) uncertainty in the
point associations; (2) uncertainty in the range and bearing
measurements from the sensor. For the case of laser range
finders, range and bearing estimates are very accurate and their
uncertainty is almost insignificant compared to the uncertainty
from the point association. The computation of uncertainty from
wrong point associations is much more challenging as it involves
the evaluation of an enormous set of possible associations. For
example, in a conventional data association problem, with a pair
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of laser scans with 361 laser points each, the association space is
O(361361). The probability of a particular scan association is then
computed by evaluating the likelihood of the association divided
by the sum of the likelihoods of all possible associations. This
computation quickly becomes unfeasible, even for laser scans with
a relatively small number of points.

Uncertainty quantification of scan matching is a significant
problem formobile robotics using laser range finders. The problem
has receivedmuch attention since Lu [1] first addressed it.Most so-
lutions focus on ICP like algorithms and can be categorised accord-
ing to the uncertainty sources they address; measurement noise,
lack of pairwise constrains, local minima, and improper laser point
associations. Related work for each of the four categories will be
discussed next.

Intuitively, measurement noise from imperfect sensors adds
uncertainty. The general approach to dealing with such isotropic
or non-isotropic sensor noise is by means of the likelihood func-
tion. In [3, Section VI.A], the uncertainty is modelled as a likeli-
hood constructed from a multi-Gaussian distribution accounting
for both inliers and outliers. The individual Gaussians are param-
eterised by the covariance of range measurements with proper
linearisation. Analogously, [4] attempts to reveal the relationship
between measurement noise and the uncertainty estimate from
which a weighted matching algorithm is proposed. Wang [5, Sec-
tion 3.3] again employs the likelihood function but for a grid-based
approach. Other approaches, such as [6,7], [1, Section 6.2], take ad-
vantage of Laplace’s method to approximate the sensor noise dis-
tribution by a Gaussian.

Non-Gaussian likelihood functions are approximated only by
their first two moments; the mean and the variance. This is
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feasible, and reasonable, only when sufficient associated laser
point pairs are obtained from consecutive poses. Then the true
uncertainty is highly peaked and the approximation from non-
Gaussian to Gaussian is accurate [3]. Conversely, it is possible there
are very few correspondences due to little overlap between scans
or a lack of orthogonal constraints. In such cases the likelihood is ill-
represented by a Gaussian [3]. Furthermore, in case when only 1 or
2 associations are found, minimising the error function for ICP (or
its variations) is a high risk venture [7]. Typical under-constrained
situations are the corridor and circular environments.

ICP optimises a non-convex error function and usually finds a
local minima. As shown in [3, Section VI.C], one way to avoid local
minima is to adequately search the relevant space of the likelihood
function by drawing a set of samples from the prior distribution
of the relative transformation. Each sample is used to initialise
a separate run of ICP, each converging to a (perhaps) different
local minima. The covariance estimate is then computed from the
combination of these solutions. One such application is explored
in [5].

As mentioned above, it is generally accepted that for high ac-
curacy sensors, such as scanning lasers, improper associations
are much more critical compared to the above three uncertainty
sources. Unfortunately, most solutions are based on the assump-
tion that a perfect association is available, and association uncer-
taintymodelling is seldom treated thoroughly. The Laplacemethod
naturally does not account for association uncertainty [3]. The
weighted method relies on the correct estimation of parameters
[4]. While the sampling-based offline approach proposed in [6] is
somewhat ad hoc.

The recently proposed CRF-Matching algorithm [8] tackles
the problem of laser scan association by formulating it as a
probabilistic inference procedure in a graphical model. This allows
the incorporation of general features that take into account shape
descriptors to match the scans. With such a formulation, the
laser point association problem can be addressed in a integrated
fashion, reasoning over the space of all associations. This paper
extends the former by providing a procedure to compute relative
motion estimates from probable scan associations. In particular,
the main contribution presented here is the development of a
novel inference algorithm for probabilistic networks, Sampling-
Product inference, that efficiently seeks probable configurations in
the space of laser point associations.

The paper is organised as follows. The following section defines
the uncertainty quantification problem that we aim to solve.
Section 3 discusses the implementation details of laser scan
matching with CRF. Section 4 presents the Sampling-Product
inference algorithm. Section 5 examines the performance of the
algorithm in regards to simulated and real data. Discussions and
conclusions are given in Sections 6 and 7 respectively.

2. Problem definition

This section defines the problem addressed in the paper.
Generally a laser scan is acquired from a rotating laser beam
emanating from a sensor mounted on a mobile robot. It measures
the range from the sensor to objects in the environment and
produces a 2D slice of the environment. The range sequences can
bemapped to Cartesian coordinates by defining a coordinate frame
in which the pose of the laser scanner is employed as the origin.
As shown in Fig. 1, suppose that the robot measures the reference
laser scan Lref at pose Pref and acquires a new scan Lnew aftermoving
to pose Pnew. Here we assume that the sensor-centric coordinate
frame coincides with the robot-fixed frame. The consecutive scans
can be formulated as sequences of laser points specified in a
Cartesian system:
Fig. 1. The laser scan acquisition scenario. The triangles denote robot’s consecutive
poses Pref and Pnew at which the two laser scans Lref and Lnew are acquired.

Fig. 2. Graphical illustration of motion uncertainty introduced by improper laser
point associations. Here both the reference and new laser scans are assumed to
consist of four points. Only ten possible association configurations are visualised
in the example, while the full association space is O(54).

Lref ≡


Lirefx , L
i
refy

N
i=1

(1)

Lnew ≡


Linewx
, Linewy

M
i=1

, (2)

where N and M are the number of laser points in the reference
and new scan respectively. Assuming the pose difference is not
very significant, the association between the overlapping parts of
Lref and Lnew results in an estimate of the robot’s rotation and
translation, i.e., RT = [R, Tx, Ty]. The estimate has the following
spatial relationship,

Pnew = Pref ⊕ RT, (3)

where⊕ denotes the compounding operation [9].
The laser point association problem can be defined as follows;

laser points in the reference scan are to be associated to their most
likely counterpart in the new scan. Ideally a reference point and its
associated new point correspond to the same physical point in the
real world, such as L3ref and L2new in Fig. 1. If a point in the reference
scan is not able to be associated, then it will be considered an
outlier, like L1ref in Fig. 1. Utilising the most likely laser point
associations to estimate the relative rotation and translation
between consecutive poses is referred to as scan matching or
scan alignment [1,2]. The classic scanmatching algorithm, Iterative
Closest Point (ICP), is widely used in the field of robot navigation.

As addressed in Section 1, the primary cause for the uncertainty
of the rotation and translation solution are improper laser point as-
sociations. Fig. 2 explains the transformation from possible associ-
ation configurations to the uncertainty of motion estimates. The
relative motion solutions RT, calculated from the configurations,
are approximated by a Gaussian distribution. The uncertainty, pa-
rameterised by the covariance matrix, can then be inferred. The
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challenge of uncertainty quantification lies in the huge association
space which requires O((M + 1)N) evaluations.

3. Laser scan matching with CRF

3.1. Conditional random fields

A Conditional Random Field (CRF) [10] is a probabilistic discrimi-
native frameworkwhich is usually represented using an undirected
graphical model. Graphical models represent probability distribu-
tions; the vertices of the graph index the distribution’s random
variables, while the edges of the graph capture relationships be-
tween variables. The formal definition of a CRF is given in [10,11].

Definition 1. Let G = (V, E) be a graph such that x is indexed by
the vertices V of G. Then (x, z) is said to be a conditional random
field, if, when conditioned on z, the random variables xi obey
the Markov property with respect to the graph: P(xi|z, xV−i) =
P(xi|z, xNi), whereE refers to the edges inG, xV−i is the set of all the
nodes in the graph except the node xi, Ni is the set of neighbours
of the node xi in G, and xΩ represents the set of labels at the nodes
in set Ω .

According to the definition, the hidden variables x = ⟨x1, x2,
. . . , xN⟩ are globally conditioned on the observations z. This allows
us to integrate the overlapping observations (Lref and Lnew) into the
model. The definition also specifies requirements on the types of
distributions that can be used with a CRF. The distribution must
obey theMarkov propertywith respect to the graph.Meaning each
hidden variable xi must be independent of the rest of the graph,
given its neighbours in the graph and the observations.

Furthermore, the distribution of a CRF must factorise according
to the cliques of the graph; cliques are fully connected (or complete
[12]) sub-graphs, i.e., there exists an edge between all pairs of
nodes in the sub-graphs. Let C be the set of all cliques of the
graph. The distribution must then factorise as a product of clique
potentials φc(xc, z) as follows:

p(x | z) =
1

Z(z)

∏
c∈C

φc(xc, z), (4)

where xc are the hidden variables of the clique and Z(z) =
∑

x∏
c∈C φc(xc, z) is the partition function; it normalises the exponen-

tial making it into a proper distribution.
Clique potentials map variable configurations to non-negative

numbers and capture the compatibility among the variables in the
clique. They are commonly expressed by a log-linear combination
of feature functions, φc(xc, z) = exp


wT

c · fc(xc, z)

, resulting in

the following probabilistic definition of a CRF:

p(x | z) =
1

Z(z)
exp

−
c∈C

wT
c · fc(xc, z)


; (5)

where Z(z) =
∑

x exp(
∑

c∈C wT
c ·fc(xc, z)) is the partition function

expressed using the log-linear form. C is again the set of all cliques
in the graph. The feature functions fc extract feature vectors given
the value of the clique variables xc and observations z. wc are
parameters (or weights) which express the relative importance
of the feature functions fc and will be estimated by performing
learning.

The conditional distribution p(x|z), usually the distribution
of interest, is directly modelled by a CRF. This is in contrast to
generative models such as naive Bayesian models, Hidden Markov
Models and Markov Random Fields. Generative models rely on
modelling the intractable p(Z) and application of Bayes’ rule to
infer hidden states. The intuition is that a CRF can be used tomodel
variables which are spatially or temporally correlated according
to the structure of the underlying graph. As a result, CRFs have
become a popular modelling and classification technique (see
[13–15]) since they were first developed for the purpose of
labelling sequence data [10].
Fig. 3. A chain graph CRF is employed to model the laser scan matching problem.
{Liref}

N
i=1 denotes the N points in the reference scan which are mapped to the N

CRF latent variables. {Linew}
M
i=1 , the M points of the new scan, are viewed as the

observation set z. φl(xi) denotes the local potential, while φp(xi, xj) represents the
pairwise potential.

3.2. From laser scans to conditional random fields

In this work we consider a particular type of CRF referred to as
a pairwise CRF, it only contains two types of potential functions:
local potentials and pairwise potentials. The laser scan matching
problem ismodelled by a chain CRF graph. Themotivation for using
a chain stems from theway scan data is obtained. The laser scanner
measures range data in a single plane; the plane inwhich the beam
scans. As such, laser points are acquired one after the other; a chain
represents this acquisition. Correlations in the data are not lost in
the graph as there is a path from any one node in the chain to any
other node. Fig. 3 interprets how a chain CRF models the reference
and new laser scans.

The laser point association problem is expressed by the condi-
tional distribution p(x|z). The hidden variables x represent the as-
sociations given an observation set z. The observation set consists
of the laser sensor measurements Lref and Lnew.

As shown in Fig. 3, the hidden variables x are represented by N
nodes. Each of these nodes is discrete with M + 1 states. Here N
and M are as they have been defined in Section 2. The states of a
node, say node xi, have the following interpretation. The first state
indicates the likelihood that laser point Liref in the reference scan
associates to the first laser point L1new in the new scan. The second
state is the likelihood of association to the second point in the new
scan, etc. In this way, node xi can range over all points in the new
laser scan. Finally, the (M + 1)th state represents the likelihood
that Liref is an outlier.

For the scanmatching problem the general formulation of a CRF,
Eq. (4), can be re-written into:

p(x | z) =
1

Z(z)

∏
i∈V

φl(xi, z)
∏

(i,j)∈E

φp(xi, xj, z), (6)

here, the term Z(z) refers again to the partition function. The
local clique potential φl(xi, z) represents what a node thinks its
state is, given the observations. In our case, they are vectors
with (M + 1) elements when evaluating the potential for all xi
values. The jth entry of φl(xi, z) expresses the likelihood that Liref
associates to Ljnew. The pairwise potential φp(xi, xj, z) guarantees
consistency between the individual nodes’ associations. Each
pairwise potential relates nodes xi and xj on either end of an
edge. They transform the state of node xj into something node
xi understands and vice versa. They are represented by an (M +
1)× (M + 1) matrix when evaluating all possible values of xi and
xj. Using the log-linear form, the two types of potentials can be
formulated as follows [16]:
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φl(xi, z) = exp

wT

l · fl(xi, z)

, (7)

φp(xi, xj, z) = exp

wT

p · fp(xi, xj, z)


(8)

where fl and fp denote the local and pairwise feature functions
respectively, which are calculated from the range measurements.
Section 3.3will address the feature functions inmore detail.wl and
wp are their correspondingweights, these are estimated during the
learning phase which is discussed in Section 3.4.

3.3. Feature modelling

As shown above, the feature functions are the means by which
the mapping from raw consecutive scans to the probabilistic
framework of a CRF graph is achieved. They are discussed next.

3.3.1. Association local features
The local features for association can be categorised into two

classes. The first class of local features are boosting features
including Data Boosting and Outlier Boosting. We construct these
two features in the following manner. First, some basic geometric
features are calculated from the underlying geometric properties
of the raw measurements. The features identify patterns (shapes)
around a single point in the reference scan. These same patterns
are computed around each point in the new scan. The resulting
difference between a pattern in the reference scan and all patterns
in the new scan is an error metric. Points in the new scan that have
a similar pattern (a small value for the errormetric) aremore likely
candidates for association to the point in the reference scan. Next,
these basic geometric features are used as inputs to boosting [17].
The outputs of boosting (the experiments employ AdaBoost [18]
whose parameters are learned from pre-training) are used as local
feature values. Using boosting allows the local features to better
deal with non-linearities in the data; resulting in better estimates
for the local potentials. Fig. 4 describes the construction of boosting
feature values.

Four types of basic geometric features are employed in this
work, they are formulated as follows:
• Distance:

fkdis(i, j) =
‖Liref − Li+kref ‖ − ‖L

j
new − Lj+knew‖

 . (9)

• Angular:

fkang(i, j) =
̸ (Li−kref L

i
ref, L

i
refL

i+k
ref )− ̸ (Lj−knewL

j
new, LjnewL

j+k
new)

 . (10)

• Geodesic:

fkgeo(i, j)

=

i+k−1−
h=i

‖Lhref − Lh+1ref ‖ −

j+k−1−
h=j

‖Lhnew − Lh+1new‖

 . (11)

• Radius:

frad(i, j) =
‖Oref − Liref‖ − ‖Onew − Ljnew‖

 . (12)

Here, the ‖ ‖ denotes the Euclidean distance. k ∈ {−5,−3,−1,
1, 3, 5} are the laser point index offsets. Thus distance and geodesic
features will be computed six times while the angular feature is
computed 3 times to account for various k value. Therefore, a total
of 16 basic geometric features are extracted and used as input
to AdaBoost. Note that using different offsets allows the CRF to
deal with different scan point densities. For example, an object
measured froma far away distancewill consist of only a fewpoints.
That same object measured nearby will consist of many more
points. Using different offsets allows the shape of the object to be
matched regardless of the distance to the sensor. In Eq. (12), Oref
and Onew denote the original of the sensor-centric frames at the
reference and new robot poses respectively.
Fig. 4. The construction of boosting feature values. Four types of basic geometric
features are used as the inputs to AdaBoost. The outcome are boosting features
consisting of data boosting and outlier boosting. For all the feature vectors, darker
shades imply larger magnitude. In this example, we assume the new scan consists
of three points.

Computation of the above four basic geometric features, for
each i, results in a M-element vector in which each element
implies the likelihoods of associations between a given reference
point and all points of new scan with respect to the geometric
property. These vectors are directly pushed into AdaBoost. The
resulting outcome, which has the same size as the input vectors,
are considered the Data Boosting feature values. This procedure
is visualised by the blue arrow in Fig. 4. The minimums of these
basic geometric features represent themost likelihood association.
Classification of them by AdaBoost results in the Outlier Boosting
features, which is scalar. The green arrows in Fig. 4 show the
construction of Outlier Boosting feature values.

The second class of local features utilises the structure of
the data. This class of features has only one member; the ICP
association feature. It is advantageous to integrate ICP-based laser
scanmatching, provided the relativemotion is not very significant.
Furthermore, it facilitates inclusion of dead reckoning data if
odometry is available. The framework of the ICP association feature
is shown in Algorithm 1.

The inputs to the algorithm, Lref and Lnew, are the two consec-
utive laser scans. RTodo is the initial rotation and translation from
the odometry. It can be arbitrarily initialised if odometry data is un-
available. nite is the iteration number. δ denotes themotion thresh-
old which can terminate the iterative nearest neighbour search. In
essence, the ICP algorithm is performedover the reference andnew
laser scans. First, the best association configuration for all the ref-
erence points is computed, see Lines 2 – 10. The function Trans-
formFrameperforms frame compounding, and Lnew→ref denotes the
new scan viewed from the reference frame. The function Nearest-
Neighbours estimates the associations from the nearest Euclidean
distance metric. The function ComputeRT is the implementation of
[2, Appendix C]. Second, a mapping is required from the single-
valued ICP association results for each reference laser point Liref
(i.e., the node xi of the chain CRF graph) to the multi-valued repre-
sentation of the node’s state. This is performedon Lines 11–15. The
mapping is achieved by assigning 1 to the associated state Cnn[i] of
node xi, and zero to all its other states; where Cnn[i] is determined
by the ICP association for node xi (or the reference point Liref). As a
result, the ICP association feature fxiICP for node xi is obtained.
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Algorithm 1 ICP association feature calculation
1: Input: Lref, Lnew, RTodo, nite, δ
2: R̂T← RTodo
3: while nite > 0 and 1RT > δ do
4: Lnew→ref ← TransformFrame(Lnew, R̂T)
5: Cnn ← NearestNeighbours(Lnew→ref, Lref)
6: ŘT← ComputeRT(Cnn, Lref, Lnew)

7: 1RT← ‖ŘT− R̂T‖
8: R̂T← ŘT
9: nite ← nite − 1

10: end while
11: for i = 1 to N do
12: f xiICP ← 01×(M+1)
13: j← Cnn[i]
14: fxiICP[j] ← 1
15: end for
16: Return fx1ICP, f

x2
ICP, . . . f

xN
ICP

The ICP association featurewill ensure that a significant amount
of probability mass is located on likely associations. The shape
based boosting features ensure sufficient probability mass is
spread over the remaining states to allow the inference algorithm
to solve for a solution that is consistent over the graph.

The data boosting, outlier boosting and ICP association features
are multiplied by their individual weights, before being combined
to construct the (M + 1)-element local potential.

3.3.2. Association pairwise features
These features also fall into two categories. Those that use the

structure of the scan acquisition to relate the state of nodes, and
those that use the observations.

The first category of features use the scan acquisition structure.
In an ideal world, without noisy measurement and outliers, it
would be straight forward to relate the association of node xi with
that of node xi+1. If node xi associates to point Ljnew then node xi+1
can reasonably be expected to associate to point Lj+1new.
• Sequence: Expresses the above sequential nature of association

by an identity matrix with the diagonal shifted up. Because
of outliers, there will occasionally be jumps in the sequence.
This can be accommodated by a sequence feature where the
diagonal is shifted upwards by an offset greater than one. In the
experiments we add features with offsets of 1 – 7.
• Pairwise outlier: Expresses how outliers impact on association

transitions — from inlier to outlier and vice versa.
The second category of pairwise features operate similarly to

the basic geometric features. These use a measure between two
points corresponding to an edge in the reference scan and compare
this measure with all possible combinations of this measure in the
new scan. The comparison produces ametric of how pairs of points
are related between the two scans — i.e. a transition. Here only one
such feature is used.
• Pairwise distance: Uses the distance between points on either

end of an edge.

3.4. Maximum pseudo-likelihood learning

Learning the values of the weightswc is achieved throughmax-
imisation of the conditional likelihood (Eq. (5) or (6)) given labelled
training data. In our case this is computationally intractable; the
partition function Z(z) sums over the (very large) space of all hid-
den variables. We therefore employ maximum pseudo-likelihood
learning [19].

Maximum pseudo-likelihood (MPL) learning approximates the
joint distribution by considering, for each hidden variable, only its
immediate neighbours in the graph, i.e., the nodes contained in
its Markov blanket. As a result, computing the partition function
is simplified significantly by only requiring summation over the
states of a single hidden variable at a time. Specifically, MPL
learning maximises the following pseudo-likelihood:

pl(x | z,w) ,

N∏
i=1

p(xi | MB(xi),w)

=

N∏
i=1

exp

wT

c · f(xi,MB(xi), z)


Z(MB(xi),w)
, (13)

where N is the number of nodes in the graph, MB(xi) is theMarkov
blanket of the hidden variable xi, p(xi | MB(xi),w) is the local like-
lihood of xi, f(xi,MB(xi), z) denotes the local feature value involv-
ing variable xi and Z(MB(xi),w) =

∑
x′i
exp


wT

c · f(x
′

i,MB(x′i), z)


represents the local normalising function. In this way, computing
the expensive global partition function is avoided. Even though
MPL learning is an approximation, it has been shown to give good
results in various domains; see [20,21,8].

For practical reasons optimising the pseudo-likelihood is per-
formed on the negative of its log, resulting in the following cost
function:

PL(w) = −

N−
i=1

log p(xi | MB(xi),w)+
(w− w)T (w− w)

2σ 2
. (14)

The second term on the right is a regulariser, or shrinkage prior.
It prevents solutions for w in the extreme while at the same time
allowing a Gaussian prior over the weights. In the experiments a
uniform zero mean prior is used. Thus Eq. (14) becomes

PL(w) =

N−
i=1


− exp


wT

c · f(xi,MB(xi), z)


+ log Z(MB(xi),w)

+

wTw
2σ 2

. (15)

We then apply gradient-based algorithms to find an optimal w by
minimising PL(w).

3.5. Max-sum belief propagation inference

A CRF (Eq. (5) or (6)) defines a distribution over all hidden
variables. Typically one is more interested in the distribution
over a single hidden variable (the marginal), or the configuration
for which that variable achieves its maximum a-posteriori (MAP)
value. Inference is the process by which these quantities can
be obtained. The Belief Propagation [22] algorithm is able to
perform inference efficiently. Two variants of belief propagation
are widely used, Sum-Product and Max-Product [23]. In the
laser scan matching case, the former can estimate the marginal
distributions for association of every laser point in the reference
scan to each point in the new scan (and the outlier state). The
latter allows us to find themost likely configuration, the associated
laser point pairs between the two scans, and to find its MAP value.
In practice, we wish to find the set of laser point associations
that jointly have the largest likelihood. Therefore, the Max-Sum
inference procedure (Max-Product in the log domain) is adopted
in this paper.

Belief Propagation (BP) is a class of inference algorithms in
which each node sends messages to each of its neighbours
in the graph. The messages, which are essentially distributions
(not necessarily normalised), convey what a node believes its
neighbours’ state should be given its own state. With respect to
Max-Product Belief Propagation, the received messages together
with a node’s own belief are then used to compute the MAP
configuration for which the joint achieves its maximum. The
messages are defined as follows:
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mmax
ij (xj) = max

xi


φl(xi)φp(xi, xj)

∏
k∈N (i)\j

mmax
ki (xi)


. (16)

Here mmax
ij (xj) is the message node xi sends to node xj; i.e. what

node xi thinks node xj’s state should be. φl(xi) and φp(xi, xj)
represent the local and pairwise potential values respectively (see
Section 3.2). N (i) \ j denotes node xi’s neighbours other than node
xj. The constructions of the messages make use of the distributive
law of the max operator. So max and products are interchanged
for the sake of efficiency. In case of a CRF with a tree structure,
the messages are passed from leave nodes towards an arbitrarily-
defined root node. The MAP solution can be obtained by invoking
the following equation at the root node xr ,

pmax(x | z) ∝ max
xr


φl(xr)

∏
j∈N (r)

mmax
jr (xr)


. (17)

However, a practical problem is that the product of small prob-
abilities tends to numerically underflow. This can be handled by
working with the logarithm of the joint distribution. The message
construction indicated in Eq. (16) then becomes
mmax

ij (xj)

= max
xi


lnφl(xi)+ lnφp(xi, xj)+

−
k∈N (i)\j

mmax
ki (xi)


. (18)

It is of interest to note that, since a chain CRF is employed in this
paper, each node possesses no more than two neighbours. That is,
Eq. (18) can be simplified to

mmax
ij (xj) = max

xi


lnφl(xi)+ lnφp(xi, xj)+mmax

ki (xi)

, (19)

where node xk is the other neighbour of node xi besides node xj.
Analogously, the MAP solution becomes

pmax(x | z) ∝ max
xr


φl(xr)+mmax

jr (xr)

. (20)

The key point of CRF-Matching is to find the state of each node
which contributes to the MAP solution. These can be viewed as
the laser point correspondences between the new laser scan and
the reference scan. This can be achieved by computing the MAP
configuration as discussed next. On the message pass from leaves
to root, with each messagemij sent from node xi to its parent node
xj, the node also records themaximising states of xi responsible for
mij. The states are recorded in a state table as follows,

Sij(xj) ∈ argmax
xi


lnφl(xj)+ lnφp(xi, xj)+mmax

ki (xi)

. (21)

Once at the root xr , Eq. (19) becomes

Sjr(xr) ∈ argmax
xj


lnφl(xr)+ lnmjr(xr)


. (22)

Furthermore, the MAP state of the root is computed as

x∗r ∈ argmax
xr


lnφl(xr)+ lnmjr(xr)


(23)

where x∗r is the maximal configuration at the root. As can be
seen, maximisation is performed on the root’s own belief (local
potential) combined with all incoming messages. Again, Eq. (23)
is for the chain CRF case. The maximal configuration for the
root node is then simply a state for which the combined belief
is maximal. Using this maximal configuration of the root, the
algorithm backtracks along the graph using Sij. For example,
suppose that as is shown in Eq. (22), node xj is the immediate
child of the root node, then node xj’s maximal configuration can
be extracted as x∗j = Sjr(x∗r ). A consistent maximal configuration
x∗ for all nodes can be found by backtracking from root to leave
nodes based on the recorded Sij. As a result, x∗ are the laser point
indexes (the outlier state is accounted for as well) in the new laser
scan which associates with the points of the reference scan.
Algorithm 2 (Sampling-based uncertainty estimation)
1: Input: K , G, Lref, Lnew
2: Initialisation:

Choose root node xr and leaf node xl
Choose inward ordering Iin and outward ordering Iout

3: for k = 1 to K do
4: for all ⟨xi, xj⟩ ∈ Iin do
5: if xi is leaf then
6: Θij ← φl(xi)φp(xi, xj)
7: else
8: Θij ← φl(xi)φp(xi, xj)

∏
k∈N (i)\j m

sam
ki (xi)

9: end if
10: for s = 1 toM + 1 do
11:


msam

ij [s], Ssam
ij [s]


= CPS


Θij[s, :]


12: end for
13: end for

At root xr :
14: θr ← φl(xr)

∏
j∈N (r) m

sam
jr (xr)

15: (Lr , cr) = CPS (θr)
16: for all ⟨xj, xi⟩ ∈ Iout do
17: ci = Ssam

ij [cj]
18: end for
19: C←


cr , . . . , ci, cj, . . . , cl


20: (R[k], Tx[k], Ty[k]) = ComputeRT(C, Lref, Lnew)
21: end for
22: 6RT = ComputeCovariance(R, Tx, Ty)
23: Return 6RT

4. Sampling inference based uncertainty estimate

The uncertainty of laser scanmatching in the context of robotics
generally refers to the relative motion estimated uncertainty.
As addressed in Section 1, the uncertainty from improper laser
point associations plays a much more crucial role than that
from sensor noise. In order to estimate the uncertainty, several
association hypotheses are required. In [8] it was shown that Max-
Sum inference generates optimal results for CRF scan matching.
Intuitively this makes sense as the MAP configuration maximises
the joint distribution rather than the marginal for each node. For
our motivation, we therefore wish to sample configurations that
map to likely relative motion estimates. This means that it is not
possible to randomly sample configurations from the association
joint distribution as presented in [24]; an average pose and not a
maximal pose is the expected result. Likewise, it is not possible to
find the K most probable configurations as shown in [25]; there is
no guarantee that this will result in relativemotion near that of the
MAP configuration.

4.1. Algorithm outline

For the remainder of this section we shall focus on establish-
ing an efficient approach to fitting the uncertainty distribution of a
robot’s relative motion estimates based on our CRF scan matching
framework. To accomplish this task we assume that the mapping
from association to pose is smooth; the uncertainty of relative mo-
tion follows from a Gaussian distribution and in the experiments a
least squares mapping is used. With these assumptions, the prob-
lem is intuitively one of sampling configurations that are similar to
theMAP configuration.We achieve thiswith the CRF inference pro-
cedure presented in Section 3.5. The configuration sampling should
take account of the different likelihoods1 withwhich each node as-
sociates to. More precisely, we need to track the underlying prob-
ability within message propagation while performing inference.

1 It could be viewed as probability, after being normalised.
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Algorithm 3 Cumulative Probability Sampling (CPS)
1: Input: a vector a with n elements
2: b← a/

∑r
i=1 a[i]

3: for i = 1 to n do
4: d[i] =

∑i
j=1 b[j]

5: end for
6: r ← GenerateRandomNumber([0, 1])
7: t ← argmink (d[k] ≥ r)
8: v← a[t]
9: Return v, t

As an implementation of the idea, a sampling-based uncertainty
estimate algorithm is proposed in this paper. Its outline is shown
in Algorithm 2.

The inputs to the proposed algorithm are as follows:

• The coordinates of the laser points in the reference scan Lref and
new scan Lnew, which we have already defined in Section 2.
• The CRF graphG thatwe established in Section 3.2. Although the

chain CRF is employed in this paper, the proposed algorithm can
work with a tree graph as well.
• The number K of the association hypothesis that we wish to

generate. Each association hypothesis corresponds to a relative
motion solution


R, Tx, Ty


, i.e., the rotation, the translation on

x and y.

The covariances of rotation and translation, denoted as 6RT, are
returned from Algorithm 2.

4.2. Sampling-Product message construction

Analogous to the applications in [24,25], our approach is based
on sampling techniques. However, as shown in Algorithm 2, we
perform the sampling along with message construction. That
is, we seek a new way to construct messages during inference
which can generate a set of probable association configurations.
Recall the message construction addressed in Section 3.5, we
explicitly eliminate unwanted variables via the max operator
when processing the probabilistic information from the pairwise
potential, the local potential and incomingmessages.We therefore
start the Sampling-Product through modification of Max-Product
message construction. The pseudocode formessage construction is
presented from Line 4 to Line 13 of Algorithm 2.

We refer to an inward ordering Iin in which messages are
propagated from the leave nodes towards the root node, and
reversely an outward ordering Iout in which messages flow from
the root towards the leaves. ⟨xi, xj⟩ ∈ Iin represents two
adjacent nodes among which a message is sent from xi to xj.
Θij is the product of local potential, pairwise potential and all
received messages. Note that at the leaf nodes, the message can
be considered as 1 (see Line 6). Θij is a likelihood table indicating
the joint likelihood of the association configurations of xi and
xj. Fig. 5 offers a graphical illustration of the Sample-Product
message construction procedure. That is, instead of selecting the
state with maximal likelihood volume along each row of Θij,
which Max-Product does, we view each row as a Sum of Gaussian
(SoG) [26] and pick up a state by Cumulative Probability Sampling
(CPS) shown as Algorithm 3. These selected states constitute the
message.

The CPS is similar to the general resampling technique widely
used in Monte Carlo filtering [27]. It guarantees that the randomly
selected state reflects its original likelihood and maintains the
feasibility as well. Assuming a vector a has n elements, each
corresponding to the likelihood of one potential state,we can select
a state probabilistically by performing CPS. Firstly, a is normalised
as Line 2 of Algorithm 3 does. Then the cumulative probability is
root leaf

Fig. 5. A graphical explanation of Sample-Product message construction. (top)
Node xi is propagating Θij to node xj along Iin of a chain CRF graph (see Algorithm
2). (bottom) On the left is the visualisation ofΘij . Darker shades in thematrix imply
larger magnitude, here we assume the new scan has three points, then Θij is a
4×4matrix. Subsequently, we consider each row of Θij as a Sum of Gaussian (SoG)
distribution and perform sampling to select a state. The procedure is shown on the
right.

Fig. 6. An example of Cumulative Probability Sampling (CPS) (shown in Algorithm
3). (left) A vector with four states [0.1, 0.2, 0.4, 0.3]. (middle) The visualisation of
the probability volume for each state. (right) Cumulative probability function is
computed, a random number r = 0.55 is generated, and then the third state with
the probability of 0.4 is selected.

computed for each element a[i], meanwhile a random number r
is generated over [0, 1]. Finally, the state and its likelihood are
selected according to the equation listed on Lines 7 and 8. CPS
guarantees that the state with highest probability is most likely
selected. As illustrated in a CPS example shown in Fig. 6, the state
with the probability of 0.4 is most probably sampled, because it
contributes most to the cumulative probability function.

4.3. Potential configuration backtracking

Backtracking in the proposed algorithm parallels that of Max-
Product (or Max-Sum) inference (see Section 3.5). As shown on
Line 11 of Algorithm 2, both the selected state’s likelihood and its
index are returned by CPS. The latter is recorded in the sampled
state table Ssam

ij for each node when propagating the sampled
messages in the inward order Iin. When the messages arrive at
the root node xr , a special version of Θ , denoted as θr (see Line 14
of Algorithm 2), is constructed from the local potential φ(xr) and
all incoming messages. Again, we consider it as a SoG distribution
and perform CPS over the column vector (see Lines 14 and 15 of
Algorithm 2). The selected state at the root node is used for the
configuration backtracking. This is encoded from Line 16 to 18 of
Algorithm 2 and graphically represented by Fig. 7. The outward
backtracking generates a configuration based on Ssam.
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Fig. 7. A graphical illustration of backtracking in Sampling-Product inference (top).
Root node xr and its adjacent nodes xj and xi along Iin in a chain CRF graph (see
Algorithm 2) (bottom). Backtracking from xr to xi . First, θr is the product of xr ’s
local potential and the message from xj , where we again assume that the new laser
scan consists of three points. Next, CPS is carried out over θr , and assume state 1
is selected. Note that state 0 corresponds to the outlier state. Lastly, we find state
3 of xj , which contributed to state 1 of xr by checking the first entry of Ssam

jr . This
process is repeated for each node, the third entry of Ssam

ij indicates the potential
configuration of node xi .

After finding the sampled state c for all the nodes in the CRF
graph a potential configuration C , which represents the laser point
association hypothesis between the reference and new scan, is
obtained.

4.4. Relative motion uncertainty estimate

As illustrated on Lines 3 – 21 of Algorithm 2, K association
hypotheses are generated by running the for loop K times. On Line
20, each C is transformed into a solution to the rotation R and
translation T = [Tx, Ty] according to the method used by ICP [2]. It
is formulated as

R, T ← argmin
R,T

N−
i=1

RLinew + T − Lciref
 , (24)

whereN denotes the number of laser points in the reference scan. ci
is the index of the point in the new scan, associated to the i-th point
in the reference scan. As such, association hypothesis are mapped
to points in the robot relative motion space.

K potential solutions to the relative motion are obtained,
each with a Gaussian distribution assumption. The uncertainty is
computed as shown on Line 22 of Algorithm 2. We define RT =
[R, Tx, Ty]. The covariance of RT can be calculated as follows:

6RT = E ((RT− E(RT))(RT− E(RT))) , (25)
where E denotes the expectation operator. In Section 5 we shall
show how 6RT can be integrated into the filtering framework of a
SLAM application.

4.5. Computational costs

Instead of ranging over the O((M + 1)N) possible associations
to compute the uncertainty, the proposed algorithm tracks the
underlying uncertainty by focusing on the K probable laser point
associations. The computational expense relates to the number of
particles that we draw. In terms of the implementation, an object-
oriented CRF toolbox, which includes the proposed Sampling-
Product inference procedure, has been developed at the Australian
Centre for Field Robotics (ACFR). It is based on MATLAB 2010a
and takes advantage of its object-oriented framework. The features
Fig. 8. The processing time for drawing different numbers of samples.

addressed in Section 3.3 are integrated as classes. To determine
the efficiency, we estimate the uncertainty of matching a laser
scan pair by running the ACFR-CRF toolbox on a low-cost laptop.
The resulting processing time, for different numbers of particles,
are shown in Fig. 8. Here, 100 valid laser points are included for
each of the scans. In the experiments we use 25 samples which
takes roughly 2.3 s. This set up represents a good tradeoff between
computational cost and performance.

The ACFR-CRF toolbox supports distributed computing for use
on multi-core CPU or multi-computer systems. It allows the infer-
ence procedures to be performed over multilaser scan pairs simul-
taneously thus saving on computational cost. With the distributed
computing technique, the matching and uncertainty quantifica-
tion for 4391 laser scan pairs, as used in Section 5.2, are processed
within 15 min.

5. Experiments

To verify whether the proposed algorithm is able to capture
the underlying uncertainty of scan matching, we evaluate its
performances on two data sets. The first data set consists of under-
constrained simulated data in the form of corridor and circular
environments. The second is a data set obtained at the University
of Sydney campus and is used in a Simultaneous Localisation and
Mapping (SLAM) task.

5.1. Simulated data set

As mentioned in Section 1, there are two under-constrained
environments; the corridor and circular environments. These lead
to large uncertainty in specific directions when aligning the
pairwise scans. The expected shapes of the uncertainty ellipsis
allow us to check the validity of the proposed algorithm [6,7].

5.1.1. Corridor environment
In the simulated corridor environment the robot is located in a

long corridor. The length of the corridor extends beyond the range
of the range finder, the robot is thus only able to sense the walls.

Laser scans viewed from two consecutive poses, assuming the
walls are sufficiently smooth, will appear identical to the robot.
Therefore associated points are not necessarily the same physical
points. As a result, a lack of distinguishing features for consecutive
scans will significantly impair scan matching during inference in
particular along the direction of the walls where most laser points
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Fig. 9. Laser scan alignment uncertainty estimates for the circular environment.
(a) Scenario; triangle indicates the robot. Yellow colour indicates the initial
pose and range measurements. Green colour indicates the subsequent pose and
measurements. (b) The X–Y uncertainty ellipsis and samples computed with
Sampling-Product inference. (c) X-rotation uncertainty ellipsis and samples. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

are aligned. An extreme case is shown in Fig. 9(a); the robotmoves
in parallel with the walls. The laser range measurements are cor-
rupted by Gaussian white noise with µr = 0, δr = 0.06 m.

The standard deviations of the relative motion estimates are
[102.90 mm, 5.11 mm, 0.02°]. The 3–σ ellipses shown in Fig. 9(b)
and (c) demonstrate that the relativemotion estimate on X is more
uncertain than on Y .

5.1.2. Circular environment
Analogous to the corridor case, when the robot stands in an

ideal circular environment, the walls will significantly impair
a

b

c

Fig. 10. Laser scan alignment uncertainty estimates for the circular environment.
(a) Scenario; triangle indicates the robot. Yellow colour indicates the initial
pose and range measurements. Green colour indicates the subsequent pose and
measurements. (b) The X–Y uncertainty ellipsis and samples computed with
Sampling-Product inference. (c) X-rotation uncertainty ellipsis. (d) Y -rotation
uncertainty ellipsis.

the robot’s ability to correctly determine its rotation estimate.
An extreme circular situation is pictured in Fig. 10(a). During
inference, it is difficult for the CRF to find optimal laser point
associations as there are strong similarities between all points in
the data. However, compared to the corridor case, the uncertainties
for laser point associations are expected to impact mainly on the
rotation estimates. This is visualised by the long radius of the
uncertainty ellipsis along the rotation axis as shown in Fig. 10(b)
and (c). The standard deviation of the motion estimates for the
circular environment are [94.30 mm, 70.20 mm, 2.35°]. The
ground truth of uncertainty for improper laser point associations
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Fig. 11. Theutility vehicle (UTE) robot and SICK laser sensor employed for the laser-
only SLAM implementation.

is difficult to obtain. However, it is still possible to draw an
important conclusion from the results based on the shape of the
uncertainty ellipsis. The results demonstrate that the proposed
approach correctly models the underlying uncertainty in the
under-constrained corridor and circular cases.

5.2. Large-scale SLAM

The proposed sampling inference is also integrated into a SLAM
application in a large-scale unstructured urban environment. The
configuration of the mobile platform, a utility vehicle with SICK
laser sensor, is shown in Fig. 11. The laser range finder data was
acquired around the main campus of the University of Sydney
during the day time, it therefore contains a significant number of
dynamic objects, such as cars and people. To sidestep difficulties
in feature extraction and retain computational tractability, a
view-based delayed state SLAM framework is adopted. We do
not explicitly model the environment by extracting features and
estimating their positions; instead only a selection of key historical
poses of the robot’s trajectory are maintained in filtering. The
raw laser scans are stored and registered in order to calculate
pairwise constraints, detect potential loop closures and provide
virtual observations of pose displacements [28, Chapter 4.2].
Furthermore,we utilise the extended information filter (EIF) rather
than traditional extended Kalman filter (EKF) for practical reasons.

CRF laser scan matching functions, in some sense, can be seen
as a virtual odometry. It can be used to generate estimates, based
on consecutive laser scan alignments, for the control input δ =
[xδ, yδ, θδ]

⊤. These are then incorporated into the robot motion
model,

x̄(t) = x(t − 1)⊕ δ(t)+w(t). (26)

Here x(t − 1) is the estimate of robot pose at the previous
time step, while x̄(t) corresponds to the pose prediction for the
current time step.⊕ stands for the vector compounding operation
[9, Section 3.2]. Process noise, due to the uncertainty of scan
matching, is represented byw(t); an error vectorwith a zero-mean
Gaussian distribution with covariance Q(t).

The uncertainty covariance matrix 6RT(t), computed from the
hypothesis (see Section 4.4), is incorporated into the system as
follows:

Q(t) = B(t)6RT(t)B(t)⊤ (27)

where B(t) is the Jacobian matrix of the motion model (Eq. (26))
with respect to the control input evaluated at the updated state of
previous time step;

B(t) =
∂(x⊕ δ)

∂δ


x(t−1)

. (28)

The reader is referred to [28,29] for more details.
GPS data from the mobile platform was collected for ground-
truth evaluation. For comparison, ICP-based SLAM with uncer-
tainty estimates from the offline method [6,29] are computed. The
trajectories and maps are visualised in Fig. 12 where the first loop
closure corrects both the robot states and map representation.

Fig. 12(a) shows that the proposed CRF-SLAM method more
closely follows the GPS ground truth.2 Cumulative errors mean
that, after an approximately 420 m displacement, ICP-SLAM starts
to significantly deviate from the GPS ground truth. CRF-SLAM does
not start to deviate until shortly before loop closure is detected.
The final offsets in open-loop CRF-SLAM and ICP-SLAM are 24.8 m
and 45.3 m respectively.

The corrected closed-loop trajectories of these two approaches
show that CRF-SLAM outperforms ICP-SLAM according to GPS
ground truth. The CRF trajectory is overlaid with 1–σ uncertainty
ellipsis for every 100 poses. The uncertainty is estimated by the
delayed-state filter based on the covariance inferred from the
algorithm discussed in this paper. As illustrated in Fig. 12(b), loop
closure decreases the uncertainty significantly. The open-loop and
closed-loop maps for ICP-SLAM and CRF-SLAM are also shown in
Fig. 12.

The CRF-SLAM results presented here show that our algorithm
to estimate the uncertainty of the motion can be seamlessly
integrated into a SLAM framework with good performance.

6. Discussions

Uncertainty estimation is indispensable within a filtering fra-
mework. The proposed Sampling-Product inference procedure
incorporates CRF-Matching into practical SLAM applications.
Existingwork tackling this topic, such as [1,30,6,7,3,4], are based on
Iterative Closest Point (ICP) and its variants. These are fundamen-
tally different from laser scan matching with Conditional Random
Fields (CRF). Ramos et al. [8] demonstrated that CRF-Matching out-
performs ICP-based approaches. Furthermore, in contrast to these
techniques, we focus on the uncertainty caused by improper laser
point associations rather thanmeasurement noiseswhen perform-
ing scan matching. Thus, the proposed algorithm is not an evolu-
tion of existing uncertainty estimating algorithms but is exploiting
the task in a newway, that is, capturing the laser point associations
hypothesis with a shape-oriented graphical model.

The sampling approach has been employed to track the
uncertainty distribution. The offline approach presented in [7]
also addresses this problem. It attempts to model the huge laser
point correspondence space O((M + 1)N) by random brute force
association configuration test. It randomly selects a small set of
particles and assigns an identical likelihood to each particle to
estimate the uncertainty. However, the correspondence space is
too large for a representative sample set. The offline approach
cannot guarantee to always catch the underlying distribution.
With respect to the mechanism of CRF-Matching, a single solution
to rotation and translation can be found from the message
constructions for the nodes within the CRF graph (see Section 3.5).
For a single node, the combination of incomingmessages, pairwise
potential and local potential is the joint likelihood of association
to the node. We view the likelihood as the Sum of Gaussian
(SoG) distributions and perform Cumulative Probability Sampling
(CPS) which ensures the entries with higher likelihood to be more
likely selected. Graphically, Sampling-Product inference perform
sampling inside message constructions. As a result, K probable
relative pose estimates can be determined. Therefore, better
uncertainty estimates are achieved with a sound probabilistic
explanation.

2 Note that GPS is unreliable in many places due to occlusions by trees and
buildings.
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Fig. 12. The large-scale SLAM experiments. (a) Robot trajectories of ICP-SLAM and CRF-SLAM before loop closure and uncertainty ellipsis of CRF-SLAM propagated by the
filter for every 100 poses. (b) Robot trajectories after loop closure and the uncertainty ellipsis for the relevant poses in (a). (c), (d) The open-loop and close-loop maps of
ICP-SLAM overlapped with aerial photo. (e), (f) The open-loop and close-loop maps of CRF-SLAM overlapped with aerial photo.
7. Conclusions
This paper presents an efficient sampling inference procedure

to estimate the relative pose uncertainty for laser scan registration
with CRF-Matching. In contrast to existing techniques, our
approach focuses on capturing the uncertainty from laser point
associations. A sampling mechanism is employed during message
propagation in a graphical model to produce probable association
configuration hypotheses for two consecutive laser scans collected
by amoving robot. This enables the computation of uncertainty for
both translation and rotation in a sound probabilistic manner. The
proposed algorithm is demonstrated in a simulated data set and in
a large-scale SLAM for a challenging urban environment.
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