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Abstract— Environmental monitoring with mobile robots re-
quires solving the informative path planning problem. A key
challenge is how to compute a continuous path over space and
time that will allow a robot to best sample the environment
for an initially unknown phenomenon. To address this problem
we devise a layered Bayesian Optimisation approach that uses
two Gaussian Processes, one to model the phenomenon and
the other to model the quality of selected paths. By using
different acquisition functions over both models we tackle the
exploration-exploitation trade off in a principled manner. Our
method optimises sampling over continuous paths and allows
us to find trajectories that maximise the reward over the
path. We test our method on a large scale experiment for
modelling ozone concentration in the US, and on a mobile
robot modelling the changes in luminosity. Comparisons are
presented against information based criteria and point-based
strategies demonstrating the benefits of our method.

I. INTRODUCTION

One of the most significant impacts of mobile robotics
is in environmental monitoring. Climate change; air, water,
land and acoustic pollution; solar power intensity; tidal wave
behaviour among many others, are highly complex processes
that have a noticeable impact on human well-being. Scientists
have shown a great deal of interest in understanding these
phenomena, specially in areas such as heath, mining, energy
generation, agriculture, forestry and many more. However,
deterministic differential equations representing these pro-
cesses are difficult to devise, and building mathematical
models requires gathering large quantities of data distributed
over space and time. The procedure can be tedious and
extensive. Deploying an autonomous robot for this process
is both cost-effective and convenient as,

1) Robots can build statistical models of the environment
and choose sampling locations intelligently;

2) Robots can move to more informative sensing locations
adding flexibility over static sensor networks;

3) Robots can automate the sampling procedure reducing
human supervision;

4) Robots can access areas that are dangerous for humans.

The use of autonomous robots for environment monitoring
has expanded massively over the past decade. Hardware
capabilities have increased noticeably, giving robots the
power of traversing over a wide range of environments and
monitoring several phenomena. Information gathering tech-
niques have also seen interesting developments. However, the
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problem of where and when to gather the most informative
samples in an efficient manner is still an open question.

This paper addresses the problem by finding informative
paths in a continuous domain, solving not only the question
of where and when to sample, but how to get there. We
developed a decision making algorithm to identify areas of
interest of an initially unknown environmental phenomenon.
The decisions are based on an incremental spatial–temporal
model of the phenomenon using a Gaussian Process (GP)
that take into account the uncertainty and predicted values in
time. The method is based on Bayesian Optimisation (BO)
[1] techniques that can naturally deal with the exploration-
exploitation trade off. Each decision is chosen using an
acquisition function that is maximised w.r.t. the parameters of
an unknown path. We solve this maximisation using another
layer of BO. This allows us to find the best set of parameters
that determine a continuous path where the robot travels on
while taking samples. We validate our algorithm on a large-
scale environment for monitoring ozone concentration in the
US, and on a mobile robot that monitors the dynamics of
luminosity changes.

This work builds on earlier work by the authors [2], and
presents the following contributions:

1) Generalisation of the BO algorithm to optimise along
continuous trajectories instead of discrete locations;

2) A layered BO for informative path planning in spatial–
temporal environmental monitoring.

The paper is structured as follows. In section II we review
the current state-of-the-art in modelling and decision making
for environmental monitoring under uncertainty. Section III
describes GP regression for space-time models. Section IV
presents the theory behind our decision making algorithm,
describing the BO algorithm, and the optimisation procedure
to determine sampling paths. Section V shows experimental
results and comparisons against competing approaches. Fi-
nally, section VI draws conclusion and presents ideas for
future work.

II. RELATED WORK

Over the last decade, a vast amount of research efforts have
been dedicated to field robotics. Particularly environmental
monitoring using mobile robots is gaining popularity among
a wide range of applications [3–5]. The two main areas of
interest for researchers are how to create statistical models
of environmental phenomena, and where to acquire more
measurements to improve on current models.

A very popular Bayesian technique for modelling spatial-
temporal phenomena are GPs [6]. In robotics, GPs have been



used for gas concentration modelling [2, 4], terrain modelling
[7], wireless strength signal modelling [8] and occupancy
maps [9] among many others. Specific covariance functions
have been found to favour learning spatial and temporal
correlations in data [5] and several approximation techniques
have been developed to handle large amount of data points
[7, 10, 11].

Decision making under uncertainty has seen significant
developments as well. Information gain strategies for placing
static sensors were studied in [12]. Mobile sensing agents
can use active learning to choose where to sample from the
environment. For this purpose, Markov Decision Processes
and Reinforcement Learning approaches have been used by
[13] and [14]. [13] uses belief-state MDPs for selecting
observations that minimise uncertainty and [14] uses GPs
for modelling the state-action value function. The main
limitation of these approaches is the limited action space
and tractability to deal with real scenarios. Uncertainty-
driven planning was also explored by [15] using the travel
salesman problem and RRTs [16] to find paths. RRTs are
also explored by [17], where a record the minimum cost
cycle is considered to find cyclic trajectories. [18] combines
Rapidly Exploring Random Graphs (RRGs) and Branch and
Bound optimisation techniques to find informative paths. An
optimisation approach has been explored by [19], that uses
simulated annealing and swarm optimisation for planning
energy-optimal paths for an AUV under strong currents.
The main drawback of this work is that uncertainty is not
estimated by the model used to derive decisions. Another
cost aware path planner was presented in [20]. It assumes
an already known cost map and is not useful for exploration
purposes.

Recent decision making algorithms make use of sub-
modularity properties for planning non-myopic, long-term
way points for uncertainty reduction [12, 21–23]. These
methods provide convergence guarantees and error bounds
based on an exploration-only behaviour. While minimising
the overall uncertainty of the model is important in some
applications, for most of pollution monitoring tasks this is not
sufficient. In such cases, it is desirable to be more accurate
in areas of high pollution than in areas of low pollution. This
introduces extra terms in the objective function (such as the
mean of the predicted pollution concentration) making the
sub-modularity assumption invalid.

The proposed method has the following advantages over
the previous techniques: i) It is not a way-point greedy
solution to acquiring new observations as it takes into ac-
count measurements obtained along a path with predictions
propagated over time; ii) It considers a continuous action
space; iii) It uses both the mean and the variance to define
paths and addresses the exploration-exploitation trade off in
principled Bayesian framework.

III. GPS FOR SPATIAL–TEMPORAL MODELLING

Gaussian Processes have been a popular tool for regression
problems, particularly for space and time correlated data
[24]. In this paper, GPs are used to model a spatial–temporal

phenomenon from observations collected by a mobile robot,
to predict the value of a unknown noisy function in space and
time. In this section we briefly describe the theory behind
GPs for regression and inference in space-time modelling.

A GP is a nonparametric Bayesian technique that places a
prior distribution over the space of functions mapping inputs
to outputs. A latent noisy function f (s; t) representing the
realisation of a spatial–temporal environmental phenomenon
is modelled as y = f (s; t) + ε, where s ∈ RD are the
coordinates in a spatial D-dimentional space, t > 0 ∈ R
represents time and ε ∼ N

(
0, σ2

n

)
is the noise associated to

each independent observation.
A GP is fully determined by a spatial-temporal mean

function m (s; t) and a positive semi-definite covariance
function k

(
(s; t) , (s; t)

′), i.e.,

f(x) ∼ GP
(
m (s; t) , k

(
(s; t) , (s; t)

′) )
. (1)

In this paper we assume that the mean function is constant,
m (s; t) = η, and learnt from data. Treatment for non-
constant mean functions can be found in [6].

Denoting the set of all inputs as X = {(s; t)i}Ni=1 and
corresponding outputs y = {yi}Ni=1, the predictive distribu-
tion for a new query input (s; t)∗ is Gaussian, f((s; t)∗) ∼
N
(
µ, σ2

)
, where the mean, µ, and variance σ2, are:

µ((s; t)∗) = K((s; t)∗, X)K−1X (y −m(X)) ,
σ2((s; t)∗) = K((s; t)∗, (s; t)∗)−

K((s; t)∗, X)K−1X K(X, (s; t)∗) .
(2)

Here, KX = K(X,X) is the covariance matrix between
all observations where each element (i, j) is calculated as
ki,j = k ((s; t)i, (s; t)j).

Covariance functions encode a degree of relationship
between inputs. A covariance function usually has a set of
hyper-parameters, θ, representing properties such as length
scales, amplitude, etc . There are several covariance func-
tions in the literature with different characteristics. Spatial–
temporal data can be handled in various ways. In the simplest
case, time can be considered as an extra dimension in the in-
put space, which is not convenient if we wish to capture time-
specific behaviour. The other option is to consider separable
or non-separable covariance functions. Separable covariance
functions are essentially the product of two independent
covariance functions, one defined over space and the other
defined over time,

ksep ((s; t), (s; t)′|θ) = k1(s, s′|θ1) k2(t, t′|θ2). (3)

This type of covariance function is convenient when time-
specific behaviour does not depend on the spatial location.
On the other hand, non-separable covariance functions can
capture more complex dependencies when space and time
are coupled [5].

In this work we use separable covariance functions by
combining the following components with sums and products
in the time and space domain:

1) Matérn 3:

km3(s, s′|σf , L) = σf
(
1 +
√

3r
)

exp (−
√

3r),
(4)



where r = (s − s′)L(s − s′)T , L is a diagonal matrix
whose components are length scales Lii = l−2i for each
dimension, and σf is the signal variance.

2) Matérn 5:

km5(s, s′|σf , L) = σf
(
1 +
√

5r + 5r
3

)
exp (−

√
5r),

(5)
where r = (s− s′)L(s− s′)T , σf is the signal variance
and L is a diagonal matrix whose components are length
scales Lii = l−2i for each dimension.

3) Periodic covariance function:

kp(t, t′|σf2 , γ, ϕ) = σf2 exp

(
−2 sin2 (2πϕ(t− t′))

)
γ

,

(6)
where ϕ is the frequency and γ is the smoothness of
the periodic component.

SectionV details the components used for each experiment
and the shows the set θ of hyper-parameters.

Finding the best set of values for the hyper-parameters θ?

can be achieved by maximising the log marginal likelihood
(LML) of the data,

θ∗ = maxθ LML(y,X,θ) , (7)

with,

LML(y,X,θ) = −1

2
yTK−1X y− 1

2
log|KX |−

n

2
log2π . (8)

In problems with large amounts of data, as those involving
robots collecting measurements for long periods of time, an
approximation is used for reducing the computational cost
of inference and learning. In this paper we used the nearest
neighbour approximation [7] where for a query point (s, t)∗,
only the m nearest neighbours in the covariance space are
used to calculate the inversion of KX . This means that KX is
no longer an N×N matrix, but an m×m matrix with m�
N , reducing the computational complexity from O(N3) to
O(m3).

IV. CONTINUOUS PATH PLANNING

After building a probabilistic model of the studied phe-
nomenon using the methodology in section III, a Bayesian
optimisation method is derived to estimate continuous paths
for sampling. In this section we describe the general BO
algorithm, to later present details on the specific algorithm
for planning over continuous paths.

A. Bayesian Optimisation

BO is used for finding the optimal (maximum or mini-
mum) of an unknown and costly to evaluate function f , i.e.
find x? = arg maxx f(x). To achieve this, it builds a statisti-
cal model of the unknown function by collecting samples and
a GP prior. An acquisition function h is evaluated over the
statistical model and guides the search for the optimum. The
procedure requires the maximisation of h at each iteration
which is usually a much simpler optimisation problem. The
generic algorithm for BO is shown in Figure 1. Line 2 is the
inner optimisation conducted within BO and can be solved
using gradient-based optimisers [1].

Inputs: f , h
Outputs: x?, f(x?)

1: for j = 1, 2, 3, . . . {Max iterations} do
2: Find xj = arg maxx h(x)
3: yj ← f(xj) {Gather sample from f}
4: Augment training set with (xj , yj).
5: Update GP
6: if yj > µ(x?) then
7: x? ← xj {Update location of optimum}
8: end if
9: end for

Fig. 1. General Bayesian Optimisation algorithm.

The most common acquisition functions are:
• Probability of Improvement [25]

PI(x) = P (f(x) ≤ f(x+) + ξ) (9)

= Φ

(
µ(x)− g(x+)− ξ

σ(x)

)
; (10)

• Expected Improvement [25]

EI(x) = σ(x) [ZΦ(Z) + φ(Z)] , (11)

where
Z =

µ(x)− g(x+)− ξ
σ(x)

;

• Upper Confidence Bound [26]

UCB(x) = µ(x) + κσ(x) , (12)

where x+ is the location of the best sample gathered so far;
ξ, κ are exploration-exploitation tunning parameters; and φ,
Φ are the normal probability density function and normal
cumulative distribution function respectively.

For space-time problems, inputs x = (s; t) transform an
ordinary acquisition function into a space-time acquisition
function that considers time. Equation 2 is then used to
calculate the mean and variance of the GP model.

B. Path Parametrisation
We use BO to find the path that provides the most useful

information for an autonomous robot monitoring the envi-
ronment. A path is here defined as a curve C; a continuous
function mapping R to RD, where D is the dimension of
the spatial component. C(u|β) is dependent on a set of
parameters β, with u ∈ [0, 1]. In this paper we use cubic
splines restricted to a two dimensional plane, D = 2. C can
be defined as

C1(u) = axu
3 + bxu

2 + cxu+ dx (13)

C2(u) = ayu
3 + byu

2 + cyu+ dy (14)

and β = {ax, bx, cx, dx, ay, by, cy, dy}. When estimating a
path to follow, the current state of the robot x = (px, py, α)
is assumed known. This defines the boundary condition for
the curve: C(u = 0) = xi = (pxi , pyi , αi). Therefore:

C1(u = 0) = pxi = dx, (15)
C2(u = 0) = pyi = dy, (16)

∂C2/∂u
∂C1/∂u

∣∣∣∣
u=0

=
cy
cx

= tanαi. (17)
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Fig. 2. Paths generated with xi = (0, 0, 15◦). C1(u = 1) = pxf = 10,
C2(u = 1) = pyf = 10, 50 < ax < 110 (red), 0 < ay < 50 (blue) and
10 < cx < 40 (black)

This reduces the action space to five free parameters, β =
{ax, ay, bx, by, cx} only. Different values of these parameters
produce curves with different lengths and shapes. Figure 2
shows a small set of the possible curves drawn for different
values of ax, ay, cx and settings C1(u = 1) = pxf = 10 and
C2(u = 1) = pyf = 10.

To take into account the temporal dimension over the
curve we assume that the robot travels at a constant speed
v. Note that our method accepts modifications to the curve
parametrisation and is not strongly linked to this particular
spline model.

C. BO for Continuous Path Planning

In environmental monitoring problems one is typically
interested in providing accurate predictions in areas of high
concentration or anomalies [2]. For example, gas concentra-
tion, smoke for fire-detection, temperature, pollution, among
others. We assume that a robot will travel along paths that
follow the parametrisation described in Section IV-B. To
evaluate the score, r, of a path C(u,β), we integrate the
acquisition function h over the path,

r(C(u,β)|h) =

∫
C(u,β)

h(v)dv. (18)

Considering h = UCB,

r(C(u,β)|h) =

∫
C(u,β)

h(v)dv (19)

=

∫ 1

0

UCB(C(u,β))‖C′(u,β)‖du (20)

=

∫ 1

0

[µ(C(u,β)) + κσ(C(u,β))] ‖C′(u,β)‖du.

(21)

The integral in equation 18 does not always have an analyt-
ical solution, depending on the definition of the acquisition
and covariance functions. In this case we use a rectangle
rule quadrature-based approximation [27], which generally
results in accurate approximations for the one dimensional
case (since the integral is over a 1-D variable, u).

To use BO for finding continuous paths a modification
to the general algorithm shown in Figure 1 is required.
Instead of finding a discrete location for taking the next
sample from f (Line 2 of Figure 1), we find the parameters

Inputs: f , h, q
1: for j = 1, 2, 3, . . . do
2: β? ← BO(r(h), q) {Algorithm in Figure 1}
3: {x, y} ← Sample along C(u,β?)
4: Augment training set with {x, y}.
5: Update GP.
6: end for

Fig. 3. BO for continuous path planning.

β? that define a continuous path over space and time that
cumulatively delivers the best return by integrating over the
acquisition function (Line 2 of Figure 3). To find the best
set of parameters β? that defines the curve that maximises
the integral over h, the following optimisation problem is
solved,

β? = arg max
β

r(C(u,β)|h). (22)

In section IV-A, the optimisation required to find the highest
value of the acquisition was performed using gradient-based
optimisers. Alternatively, equation 22 can be solved using
another layer of BO. Since the action space β is five
dimensional and the function r is highly non-convex and
expensive to evaluate, BO provides a natural solution. This is
performed by placing a GP prior over r and using a second
acquisition function q to decide which path parameters to
evaluate over r. This second layer of BO (Line 2 in Figure 3)
follows the classic algorithm described in Figure 1. Note this
step is fast to evaluate because it does not require the robot
to move and gather training samples as it uses the existing
GP model of the phenomenon. The complete algorithm for
finding the most informative path using two layered BO is
shown in Figure 3. Line 3 consists of the data acquisition
process, where the robot moves and gathers samples along
the path found in the previous step.

V. EXPERIMENTS

In this section the proposed method is tested in two
scenarios: a large-scale experiment for ozone monitoring
in the US, and real-time monitoring of illumination with a
mobile robot.

A. Large-scale pollution monitoring

The first experiment simulates an Unmanned Air Vehicle
(UAV) monitoring ozone concentration; considered a pollu-
tant at ground level. To simulate the environment we use real
data provided by the US Environment Protection Agency1. A
large number of ozone concentration measurements, dating
back to 1987, are available with one hour period for static
sensing locations across the US. The UAV is forced to stay
within the region specified in Figure 5.

The discrete data S from the database is used to create a
simulated environment using GP regression, called Ground
Truth GP (GTGP). A robot samples from the mean µgt of
this continuous process in space and time. The GTGP uses
a separable covariance function with an isotropic Matérn3
component for space (Equation 4), and the sum of a Matérn5

1http://java.epa.gov/castnet/reportPage.do
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Fig. 4. Ground-truth for ozone concentration across the US. Axis are measured in 106m and corresponding to UTM coordinates for section 16F.

Fig. 5. Area for the experiment (16F in UTM coordinates)

and a Periodic component for time (Equation 5 and 6 respec-
tively). The set of optimal hyper-parameters was found by
maximising equation 7 using a gradient decent method. The
optimal values found by the optimiser are: σfm3 = 1.862,
lm3 = 1.195, σfm5 = 0.201, lm5 = 5.84, σfper = 0.94
and γ = 5.75. In order to deal with limited computational
resources, the approximation parameter m, described in Sec-
tion III, is set to 300 for all experiments. The concentration of
ozone changes periodically with a period of one day (known
a priori), and the time is measured in days. Figure 4 shows
a GTGP regression over space for five timestamps within
one day. It can be noted that two peaks appear around mid-
day with values that can reach up to 100ppb. The pattern is
repeated every-day with slight variations in amplitude due to
unknown environmental factors.

Ideally, the robot should accurately capture changes in
the areas where pollution is more densely concentrated. We
compare six different techniques for planning the motion of
the UAV while monitoring the environment:

a) Random Discrete Sampling (RD): Randomly pick dis-
crete goal locations within the environment.

b) Entropy Discrete Sampling (ED): Pick discrete locations
for sampling using the maximum variance (entropy) cri-
terium [12].

c) UCB Discrete Sampling (UCBD): Pick discrete locations
using UCB [2].

d) Random Continuous Sampling (RC): Select random paths
using an uniform distribution over β.

e) Entropy Continuous Sampling (EC): Find paths that max-
imise entropy reduction.

f) UCB Continuous Sampling (UCBC): Choose paths that
maximise UCB acquisition function.

The method presented in the paper is indicated in f). UCBC
and UCBD use the upper confidence bound acquisition
function, with parameter κ = 0.1 manually tuned to balance
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Fig. 6. Paths for different methods. Axis are measured in 106m.

the exploration-exploitation trade off. Although UCB was
chosen due to its particular exploring behaviour [1], other
acquisition functions can be used. Future work can compare
different acquisition functions and learn the parameters of
the acquisition function within the optimisation procedure.
To include realistic sampling from the GTGP, random noise
with σn = 5 is added to every sample independently. The
experiment takes place for 30 days and assumes the vehicle
moves at an average speed of 60km/h. A sample of ozone
concentration is collected every minute for all strategies,
assuring that each method collects the same number of
samples for predicting the values of the phenomenon. Given
that all methods will acquire the same number of samples,
the differences in error will only depend on the locations
where the samples were acquired. The inner optimisation for
maximising among paths (Line 2 of Figure 2) uses q = UCB
as acquisition function for strategies EC and UCBC. The GP
model of the inner optimisation uses a Matérn3 (Equation 4)
covariance function whose hyper-parameters are optimised
on each iteration using gradient decent.

Figure 6 shows the paths travelled by the robot for each
case. A quick visual inspection shows that all methods were
able to cover the region of interest and explore the entire



environment. Random sampling strategies (RD and RC) do
not present any interesting patterns and move chaotically
across the studied area. Entropy based techniques (ED and
EC) cover the region uniformly, reducing the uncertainty of
the whole area. Finally, UCBD and UCBC concentrate their
samples towards the areas of higher pollution.

A very important difference is the shape of paths for
discrete and continuous sampling strategies. Even though κ
has the same value for the acquisition function of UCBC
and UCBD, the trajectories are much more concentrated over
the high pollution areas for the continuous optimisation case
(UCBC). The main reason is that this method takes into
account the value of the acquisition function over the entire
path that is being traversed. One way of seeing this is that
if a method only takes into account a discrete goal location
it will not necessarily collect useful information on its way
to the target location. However, if the method does take into
account the information gathered while reaching the target
location, then the informativeness of gathered samples will
increase noticeably.

We use four different error measures at M locations to
evaluate the performance quantitatively:

i) Root Mean Squared Error (RMSE): Error without taking
into account the value of the predicted variance.

ii) Weighted Root Mean Squared Error (WRMSE): Places
weights depending on the magnitude of the ground
truth output, giving more importance to errors in higher
pollution areas [2].

iii) Mean Log Loss (MLL): Evaluates the negative log
probability of the ground truth data point under the
model. Takes into account not only the prediction error
but also the associated uncertainty.

MLL =
∑M
i=1 (− log p(µgt(x

?
i )|S,x

?
i ))

M∑M
i=1

(
1
2
log (2πσ2(x?i ))+

(µgt(x
?
i )−µ(x

?
i ))

2

2σ2(x?
i
)

)
M

.
(23)

iv) Weighted Mean Log Loss (WMLL): Similar to WRMSE,
but weighted over the mean log loss. Gives more impor-
tance to error in high pollution areas, taking into account
the variance of the predictive model.

MLL =

∑M
i=1

(− log p(µgt(x
?
i )|S,x

?
i ))(µgt(x∗)−minµgt(x))

maxµgt(x)−minµgt(x)

M
(24)

with x = (s; t) for the space-time case.
Table I shows the error for each method evaluated w.r.t.

the ground truth on a grid over space and time for the
entire duration of the experiment. It can be seen that the
proposed method (UCBC) delivers the best performance
for all indicators. UCBC favours areas of high pollutant
concentration, achieving more accuracy over the areas that
account for the most relevant component of error. The
difference in performance between strategies is remarkable
for the weighted errors WRMSE and WMLL. The main

TABLE I
RESULTS FOR US OZONE MONITORING

Method RMSE WRMSE LogLoss WLogLoss

RD 7.3574 2.2324 3.4149 0.0956

ED 7.5225 2.2570 3.4332 0.0957

UCBD 7.1579 1.9764 3.3999 0.0937

RC 7.2238 2.0698 3.3951 0.0935

EC 7.1103 2.2958 3.3907 0.0956

UCBC 6.7971 1.4981 3.3537 0.0863

(a) Sensing Board.
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Fig. 7. Sensing board, map of the area and location of ground truth
measurements. Axis in metres.

reason for this is the extra importance to model areas with
hight pollution (exploitative behaviour). For this experiment,
UCBC also presents lower error for non weighted metrics,
expected when the areas of interest account for the most
important component of error. Therefore, when UCBC fo-
cuses on sampling from areas of higher concentration it will
achieve lower error overall, compared to EC or RC that
will model better areas that do not reduce the overall error
importantly (because the output variable has lower values for
non relevant areas).

It is also noticeable the difference between continuous and
discrete sampling strategies. An improvement is revealed for
all strategies as we are optimising over continuous paths
rather than choosing discrete locations.

B. Luminosity monitoring

A small, wheeled mobile robot was used to monitor
dynamic illumination changes in an indoor environment. The
goal of this experiment is to compare different techniques for
path planning and their impact on the abilities of the robot
to learn the space-time patterns of a dynamic phenomenon.
The idea is to create a real-world phenomenon under a
controlled environment where the dynamics can be adjusted
accordingly. Two light sources with variable intensity are
dimmed electronically to expose patters with a periodic
component and amplitude changes through time.

The robot is equipped with an on-board CPU running
ROS2, an environmental sensing electronic board, shown in
Figure 7a, and a laser scanner for localisation in an previ-
ously built map. Samples from the phenomenon are gathered

2Robot Operating System http://www.ros.org
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Fig. 9. Light intensity oscillation at location (x, y) = (1.12, 2.39).
Horizontal axis represents time in seconds and vertical axis represents
intensity with no SI units. The mean of prediction for UCBC and EC is
shown according to the legend.

TABLE II
HYPER-PARAMETERS FOR LUMINOSITY MONITORING

σn η σf1 l1 σf2 l2 σf3 γ σf4 l4

12.0 85.0 0.59 29 11.9 8.2 11.2 298 7.6 2

every one second. Ground truth is obtained by placing static
sensor boards in five static locations, shown in Figure 7c.
Figure 8 shows an interpolation of the measurements in
these locations over space for five time stamps within a
period. Figure 9 shows the interpolation over time for one
source of light located at (x, y) = (1.12, 2.39). Variations
in amplitude are noticeable over time and similar to many
natural phenomena. Even though the light sources are easily
distinguishable for a human observer, the problem is much
more complex for a robot that gathers noisy samples from the
unknown time-changing phenomenon. The problem becomes
even more interesting when the robot needs to decide where
to take next samples based on past experience and future
reward.

The same path-planning strategies in section V-A are
compared in experimental trials that last for ten minutes. The
robot used the following covariance function for building the
GP model of the phenomenon:

ksep ((s; t), (s; t)′|θ) = k1mat3(s, s′|θ1)·
[(k2mat3(t, t′|θ2)) · k3p(t, t′|θ3)) + k4mat3(t, t′|θ4)] ,

(25)
where the estimated hyper-parameters θ are shown in Table
II.

Figure 10 shows the paths travelled by the robot using
each technique. Results are similar to the experiment in the
previous section. While random sampling strategies, RD and
RC, derive paths mostly concentrated at the centre of the
studied region, paths for entropy based strategies, ED and
EC, are distributed more homogeneously over space. In con-
strast, UCB paths focus on areas with high luminosity while
at the same time exploring the environment for unknown
sources of light.

Table III shows numerical results for the evaluation of the
performance indicators described in section V-A. Random
policies perform close to entropy techniques for this obstacle-
free environment. In a case of extremely low cpu availability
it can be considered as a viable alternative; however, in
real complex environments it is not a promising candidate.
UCBC delivers the lowest error and weighted error for all the
indicators. It is also shown that sampling over continuous do-
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Fig. 10. Resulting paths for six different path planning techniques, axis in
metres.

TABLE III
RESULTS FOR LUMINOSITY MONITORING

Method RMSE WRMSE LogLoss WLogLoss

RD 39.598 28.061 8.949 2.327

ED 38.389 25.106 10.013 2.779

UCBD 38.210 23.715 9.685 2.672

RC 43.390 27.045 10.197 2.754

EC 48.873 38.433 11.980 3.443

UCBC 30.121 21.422 8.098 2.145

mains results in smaller error for the case of UCB acquisition
function. UCB strategies have the smallest error, demonstrat-
ing a central advantage in monitoring dynamic phenomena:
monitoring areas of higher pollution more intensively results
on lower overall error.

The developed method runs close to real-time in a standard
cpu (i5 processor). Each iteration for finding the next optimal
path takes 4.8s and can be computed before the execution
of the current path is finished, avoiding unwanted pause
between consecutive paths.

VI. CONCLUSIONS

This paper proposed a new technique for informative path
planning over continuous paths for environmental monitor-
ing. The main contribution is the derivation of a continuous
action space strategy by integrating over an acquisition
function in a principled Bayesian optimisation framework.
We model space-time phenomena using Gaussian processes
which enables a robot to learn periodic patterns while
preserving spatial correlations between observations. A first
layer of BO is used to predict regions of high concentration.
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Fig. 8. Spatially distributed light intensity variations. Axis in metres.

Then, a second layer of BO is used to estimate the curve
parameters defining the best path to collect new observations.

The proposed method was evaluated in two experimental
settings: on a large-scale autonomous monitoring problem for
ozone concentration in the US, and for real-time monitoring
of changes in luminosity indoors. In both cases, the mobile
robot was able to learn a space-time model of the dynamic
phenomena. Comparisons were performed between existing
techniques for informative path planning indicating that the
proposed algorithm captures more accurately the dynamics of
areas where the monitored quantity has higher concentration.
This ultimately results in an overall more accurate model
with lower weighted error. Additionally, our technique can
even reduce the total RMSE if the areas of interest account
for a significant proportion of the error, as is the case for the
two studied situations.

We believe that optimising over curves for path planning
can produce more informative decisions achieving longer
term rewards. The method explained in this paper can signif-
icantly improve the decision making process for efficiently
monitoring a wide variety of environmental phenomena.
As future work we expect to address long-term or infinite
horizon planning with continuous POMDPs and derive a
joint procedure possessing the advantages of both Bayesian
optimisation and POMDPs.
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