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Abstract—This paper presents a fusion method to combine
aerial images from a low flying Unmanned Aerial Vehicle (UAV)
with images of other spectral bands from sources such as
satellites or commercial hyperspectral imagers. The proposed
method propagates information from high-resolution images into
other low-resolution modalities while allowing the images to have
different spectral channels. This means the relationship between
the high-resolution and low-resolution channels is expected to
be non-deterministic, non-linear and non-stationary. A novel
Gaussian Process (GP) framework was developed to define a
stochastic prior over the estimated images. Its covariance function
is computed to replicate the local structure of the high-resolution
image, and allows the model to infer a high-resolution estimate
from a low-resolution channel. Results are presented for natural
images acquired by a UAV in a farmland mapping application.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are useful for geospatial
exploration in applications such as ecological surveillance,
agricultural management or mapping [6, 3l]. UAVs are well
suited to geospatial problems because they can obtain timely,
high-resolution data. However, it is important to consider these
advantages in the context of ubiquitous data modalities such
as satellite imagery before investing in the development and
deployment of a specialised UAV system. An effective image
fusion algorithm allows the use of heterogeneous remote sens-
ing strategies, combining UAVs with other sensor platforms,
and would also benefit autonomous systems where the data
acquisition strategy is planned [9} [11].

This paper presents an approach to fuse images from
different modalities by combining information from a high-
resolution image of one modality with a complementary low-
resolution image with different spectral channels. We apply
this technique to combine high-resolution images obtained
from a UAV (using a generic colour camera) with multi-band
reference imagery to predict new high-resolution modalities.

Image super-resolution (the estimation or fusion of images
to increase their resolution) has received much attention in
the computer vision community recently. However, impos-
ing that the images measure different spectral information
(for example, one image may be infrared, while another is
RGB colour) leads to a very different multi-task learning
problem where the degree of dependence between images
is then induced by the latent spatial content of the scene.
The observations of this dependence are mixed and indirect
because of the change in resolution between modalities. This
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problem has been previously studied by the photogrammetry
and geostatistics communities for fusing satellite data [2].

This paper presents a new Gaussian process (GP) fusion
model that employs a novel covariance function as its struc-
tural prior. Our key contribution is the construction of a
positive definite covariance function that provides three non-
standard features. Firstly, it uses both spatial position and
image intensity in its input space, allowing the model to
derive contextual non-stationarity from the high-resolution
reference image. Secondly, the new covariance function is
defined over pixels of different sizes, as compared to a standard
covariance function that is defined over point inputs only. This
behaviour is achieved by convolving the underlying model
over the spatial region of each observation, and allows the
covariance function to unmix low-resolution pixels. Finally,
the covariance model is sparse by design. This is critical for
the model to scale to real images, as the high dimensionality of
image data leads to an enormous number of potential depen-
dencies that must be solved through matrix inversion. A high-
resolution reconstruction of the low-resolution observations
can be obtained by applying GP regression using the proposed
covariance function.

Results are presented for both controlled simulation and
practical application to the problem of combining high-
resolution RGB images from our low flying Unmanned Aerial
Vehicle (UAV) with co-registered infra-red reference images.

II. RELATED WORK

Traditional image fusion approaches combine multiple im-
ages of a common scene using a sensor sensitivity model.
This enables super-resolution images to be reconstructed that
resolve detail beyond the Nyquist frequency of any of the
observed images [8]. Super-resolution is an ill-posed inver-
sion problem, so constraints on the solution space such as
smoothness priors are introduced, allowing effective increases
in resolution as supported by the data [14]]. Unlike the work
in this paper, typical super-resolution algorithms assume that
the images have a common set of spectral channels.

Recent developments in the computer vision community
have surpassed the traditional limitations of super-resolution
reconstruction by exploiting the structural redundancy of natu-
ral images. This has led to solutions for many low level image
processing problems such as de-noising and texture synthesis,
increasing the resolution of a single input image [10], or



creating plausible fill content using in-painting techniques
[L15]. Popular models of low level image structure include
sparse image patch dictionaries [19], geometric partial differ-
ential equations [21]], and probabilistic models such as Markov
random fields that specify high order dependencies over pixel
neighbourhoods [20]. GP models have also been used to model
low level image structure [10]. While these approaches create
convincing new visual detail, their purpose is image synthesis
rather than sensor fusion. The reconstructed detail is one likely
possibility from a large space of plausible images and unlike
traditional super-resolution the synthesis is not necessarily
supported by specific evidence in the observations, but rather
from similar detail in the exemplar images. In this paper, a
method is sought to infer the real scene as closely as possible
by combining evidence from multiple modalities.

The fusion of images with different spectral channels is
more frequently studied in the geostatistics community under
the name band-sharpening. Some ad-hoc approaches such as
luminance substitution or bilinear interpolation are still in
common use, while state-of-the-art approaches transfer spatial
pattern from the high-resolution image into the low-resolution
image using a mapping in a feature space such as wavelet or
curvelet coefficients [17]]. These approaches rely on the feature
representation to capture context, and the mappings themselves
are usually stationary in the feature space. This makes it
difficult, for example, for these approaches to handle objects of
different colour that have the same greyscale appearance, and
means that fusion errors in the latent features are transformed
into texture artifacts in the image space [26].

The inter-modality fusion problem is also related to domain
adaptation, where the training data is in a different modality
to the testing data [[13]. The key conceptual difference is that
domain adaptation seeks to apply the training examples in
another modality, while image fusion seeks to create a new
complementary modality. GP models have also featured in
domain adaptation problems, for example to recognise objects
in images that have a different resolution to the labelled
training data [[7]].

GP priors can also be used to directly encode inter-modality
relationships between multiple output functions. The strategy
is known in the machine learning community as multi-task GP
regression [4, 24], and also in the geostatistics community as
cokriging [2]. The method places a joint Gaussian prior over
all the output data modalities, so inter-modality dependencies
can be learnt if they can be incorporated into a cross covariance
function.

While GP models usually operate on point data, recent work
has also led to the development of strategies to accommodate
a change of support where the inputs consist of different
spatial geometries such as image pixels [2]. Our proposed
approach also employs these strategies to handle the change
of resolution. We model the low-resolution channel as a GP
rather than placing all channels into the output space. This
allows the high-resolution image channel to augment the input
dimensionality of the covariance function, so local non-linear
relationships may be inferred.

III. PRELIMINARIES

We briefly review Gaussian processes (GP) regression as
it is the main building block for our approach. A GP is a
nonparametric Bayesian framework with appealing analytical
properties that make it suitable to deal with images as a
regression problem. It places a Gaussian prior distribution
over the space of functions f(x) mapping inputs x; € R”
to outputs y; € R, where y = f(x) + ¢ is a noisy observation,
and € ~ N(0,02) is a Gaussian distribution with zero mean
and standard deviation o. For N observations represented as
{X,y}, where X = {x; € ]RD}jv:l and y = {y; € R}ﬁvzl,
and M query inputs {X*} = {x;k GRD}?;, the joint
distribution over observations and query points is given by
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where (x) is a mean function and k(x, x) is a positive semi-
definite kernel or covariance function. Conditioning the joint
distribution on the observations, the mean and variance for
query points X* is given by

YX y, X~ N(p®, ) 2
where,
o= k(XY X)Ky'y, 3)
o= k(XN XY - k(X X)KR(X,XT), @)
with Kx = k(X,X) + o2I. The hyper-parameters of the

model 6 include parameters for the mean and covariance
functions as well as the noise term o2, and can be computed by
maximising the log of the marginal likelihood (LML) defined
as:

1 1 N
log(p(y|X,0)) = —inley—E log | K x|~ log 2. (5)

LML is robust to over-fitting, as the first component seeks
data fit, and is balanced against the second component that
penalises model complexity [18].

I'V. NON-STATIONARY IMAGE FUSION

We present a new GP approach to combine a high-resolution
image with a low-resolution image of a different spectral
band, to produce a new modality that has the spectrum of the
low-resolution image but the resolution of the high-resolution
image. The approach uses GP regression to infer the pixels of
this new modality. This requires us to define a new covariance
function model to address three key problems.

The first challenge is to define a covariance function to
conduct inference over pixels of different resolutions (the
change of support problem). This has been approached by
extending a point-observation covariance function into a multi-
task covariance function over areas using an integral kernel
derivation [16].

The second challenge is defining a prior for the image
structure. A GP will usually model smoothly varying spatial



functions, but the image data are expected to be non-smooth,
exhibiting discontinuities and spatial non-stationarity. While
the high-resolution image is not an observation of the output
we wish to model, it does contain cues as to this spatial
structure. To use this information, the input space of the
covariance function is augmented with the high-resolution
pixel observations.

The final challenge is to ensure that the covariance function
is tractable on image data (where there are many potential
dependencies between pairs of pixel observations). This has
been addressed by ensuring a high degree of sparsity in the
covariance function. The design of this covariance function is
outlined below.

A. Defining a Covariance over Areas

It is assumed that there is a continuous two-dimensional GP
output f underlying the scene depicted in the low-resolution
image. We may then model an image pixel as the result of
observing the output function f(z) over a discrete area A
rather than at a point z, as depicted in Fig.
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Fig. 1. While a standard covariance function is defined over points z, a

covariance function over areas A may also be obtained.

A simple averaging relationship is then assumed to relate
the pixel observation P(a) to f(x
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where |A| is the surface area of A. Now f(z) is modelled as
a Gaussian process over points (f(x) ~ GP(u(x), k(z,z'))).
Here k(x, z") defines the covariance between point = and point
z'. By considering the observation model in Eq. [6] if 2’ is
replaced with an area A’, this is equivalent to integrating:

1 /
) = G //QE,EA/ k(z,z")dz. 7

This is a valid construction, as it has been established in the
GP literature that covariance functions can be summed or
convolved into more complex forms [18, [1]. Repeating the
process yields a covariance between two areas:

k(A A" =

= k(z, 2 )dzdz'.  (8)
i L e

For the image fusion problem, let Ay denote the geometry of
the small high-resolution pixels, and Ay, denote the geometry
of the large low-resolution pixels. Discretisation of the two
dimensional input space is used to simplify the computation
of k across different areas as follows. Firstly, the covariance
between two high-resolution pixels is given by:

) = ;2 // // k(z,z")dzdz'. (9)
|Au ™ J ey J Joreay,

k(z, A

k(Am, Ay

Rather than defining k(z,2’) and integrating, the proposed
approach is to directly define a base covariance k(Ag, A)

A
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Fig. 2. The low-resolution pixels of area Ay, are discretely integrated by
assuming they correspond to a set of Ay, areas.

between high-resolution pixels. Here k(x, ') still exists, but is
latent and unused. The design of k(Ag, A%;) is very important,
as it basically defines a prior over high-resolution images, from
which the output is predicted. This will be further explained in
the next section. The large pixels Ay, are then approximated by
a set of high-resolution pixels A, discretising the problem, as
depicted in Fig. 2] Consequently, an integration over A;, with
respect to x is equivalent to a sum of piecewise integrations
over its constituent Ay (the integral has been avoided by
defining the covariance k(A i, Aly) directly),

— > k(Ag, Ay)
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k(Ag, A}) (10)
where Np is the number of high-resolution Ay areas that
compose Ay, . The corresponding covariance between two low-
resolution pixels is then given by:

> k(Am, Ay)

D
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B. Defining the Image Prior k(Am, Aly)

In this section, the design of k(Ap,A};) is described.
While most GP covariance functions force the output to be
smooth, the proposed function is well suited to images that
contain discontinuities. Contextual non-stationarity is achieved
by augmenting the input space, adding the intensity values of
the supporting high-resolution image Py (Ap) and Py (A%)
that occur inside of Ay and A’y respectively. The augmented
covariance function is constructed as the separable product of a
positive definite spatial covariance function Kg and a positive
definite pixel-intensity covariance function Kp:

k(Am, Ay) = 0tks(An, A)kp(Pr(Aw), Pa(Al)).

12)
The role of kg is to provide a smooth, sparse and local
covariance envelope, while the role of kp is to couple and
decouple pixels within this envelope based on the contextual
information present in the high-resolution image. o is simply
an amplitude hyperparameter. In this design, kg is defined as a
function of the midpoint coordinates mid(Ag) and mid(A%,)
using a sparse piecewise polynomial kernel that decreases to
zero for displacements larger than the hyper-parameter Ag

k(Ap,A}) =

11
NHN}I {an

[18]):
7 = Imid(AH)/\Smid(:’H)l " ) .
Py 1-2)°BZ2+1) Z<1
kS(AH,AH)—{ 0 751 (-



Within this spatial envelope, the non-stationarity inducing
Kp couples Ay to A% based on similarity in the high-
resolution function, so that any smoothness or discontinuity
can be transferred to the output image. Kp is defined as
a squared exponential kernel with a hyperparameter Ap to
control sensitivity:

b Pa (). P () = exp { - P20
Tad
The hyperparameters of this model can be tuned by max-

imising the marginal likelihood Eq. [5] While the initial dis-

cussion has assumed that all images have a single channel (a

single output function), this definition of kp already supports

a multi-dimensional Pg.

C. Image Reconstruction

The GP prior in Eq. |l| has been modified to suit the image
fusion covariance function. Instead of X and y, the training
data comes from the low-resolution image and consists of
spatial areas A;, and the corresponding Py, (Ay) pixels that
were observed. Instead of point queries *, we query the model
over the Ay of the high-resolution reference image (where Py
is defined). The image is obtained by querying the predictive
mean of the GP model and performing a normalisation step
as described below. A constant mean of 1 = 0.5 is assumed
over the image (pixel outputs are continuous from 0 to 1). The
predictive mean equivalent to Eq. [3]is now given by:

P.(Ag) =
o+ k(Ap, Ap) k(A AL) +021) 7 (PL(AL) - u(1.5)
In our results, an additional step has been taken to improve
the image quality. It has been observed that the estimate of P,
has varying uncertainty due to the non-stationary covariance
function: in non-smooth regions each pixel has less covariance
with its neighbours than in the smooth parts. This causes
the GP prediction to reduce its amplitude and return to its
mean. While this is a reasonable behaviour in most regression
problems, in an image context it has a negative impact on
image contrast and quality. This effect can be removed by
normalising the GP weights W to obtain corrected query pixels
P¢:
W = ]43(14]1(7 AL) [k(AL, AL) + O'ZI] -t
(16)
W (PL(AL)—0.5)

Pe(Ap) =5+ e e

Finally, P¢ should lie in the range (0,1), and inspection
of the fused output images over a range of test cases has
shown that pixel intensities do (rarely) exceed this range.
In a classification problem, this would be handled using
a sigmoidal likelihood function [12]]. However, there is no
principled reason for an image function to lie between O or 1.
It is the observations from a camera that have limited dynamic
range. Consequently, the outputs are clipped, and allowed to
occasionally saturate as seen in digital photographs.

(Pu(Am) — Pu(A%))? } .

D. Computational Aspects

It is important to consider whether the proposed method can
scale to image data that contains a potentially large number
of high-resolution pixels Ny and low-resolution pixels N.
The covariance matrix over the low-resolution observations
must be inverted at a nominal cost of O(N3). However, our
covariance matrix is sparse because each row has at most Ng
non-zero entries where Ny is the number of low-resolution
pixels contained in the sparse envelope of kg. Additionally,
because of the grided structure of pixels in images, the
resulting covariance matrix has its non-zero elements close
to the diagonal, making it well suited to strategies such as
incomplete Cholesky decomposition. For example, inference
with a 102400x 102400 covariance matrix with 27-connections
per row has been solved in approximately 5 seconds on a core
i7-3520M. In practice, the cost of computing the covariance
function using Eq. [TT] is often equal or larger to the cost of
inversion. This requires %N x Np elements to be computed,
each involving O(NZ ;) operations where N is the number
of dependencies between high-resolution pixels. Thus the cost
of populating the covariance matrix is linear with respect to
the number of image pixels, and cubic with respect to the
chosen degree of sparse dependencies.

V. EXPERIMENTS
A. Example Problem

This example fuses a single-channel high-resolution image
with a multi-channel colour image at %th the linear resolution.
The multiple output channels are independently queried using
a common covariance function parameterisation on different
observations, so each channel can be queried at little addi-
tional cost. We have modelled the C, and Cj channels (of a
Y CbC'r decomposition of the image) that have a complicated
relationship to the shading channel. The fused full-resolution
colour image is depicted in Fig. 3] and because the presence
of luminance information can bias human perception, the
estimated colour bands are also visualised for independent
assessment.

The chrominance channels in Fig. |3|reveal that much of the
detail has been successfully reconstructed, even if there is no
simple mapping between shading and color. Object boundaries
visible in the luminance channel have been unmixed in the
chrominance image, although clearly this will only work where
there is contrast between adjacent object surfaces.

B. Benchmarking

This section describes a controlled experiment constructed
using aerial data to benchmark the proposed fusion algorithm
against the state of the art. A set of 40 non-overlapping image
tile pairs was draw from a mosaicked image database, across
three different survey sites. These image pairs provide a visible
band (of which the green channel was extracted) and a co-
registered near-infrared (NIR) band. The relationship between
the green and NIR spectral channels is difficult to model, as
it exhibits local contrast inversions where an object that is
dark in the visible spectrum reflects strongly in the infrared



Fused Output Image

Low Resolution Observations

Augmented Input Space

Observed Cr Estimated Cr

Fig. 3. Fusion of a coarse colour image with a fine greyscale image. The
resulting reconstruction closely resembles the true output, but because human
perception is easily misled by the presence of shading, the observed, true and
reconstructed components of red and blue chrominance are shown separately.

spectrum. The NIR images were artificially downsampled by
a range of magnification factors to construct a controlled
testing scenario. The following key strategies were selected
for comparison: Bilinear Interpolation has been included here
as a lower bound on image quality; Wavelet Fusion is a fast
popular technique from the geoscience literature where images
are wavelet transformed and coefficients of the high-resolution
image are merged with those from the low-resolution image
using an inter-modality model [17]. Downscaling Cokriging,
is a probabilistic data fusion framework that uses a multi-task,
multi-resolution prior [2]; The proposed GP algorithm is also a
probabilistic framework but we have designed a more flexible
non stationary image prior.

Two metrics were used to compare the algorithm outputs to
the true reference: Mean Squared Error (MSE) and Universal
Image Quality (UIQ) [25]. MSE provides an overall quality in-
dicator with a score closer to zero indicating higher algorithm
performance. UIQ on the other hand is a statistical measure
designed to penalise loss of correlation, luminance distortion,
and contrast distortion, and an algorithm with a score closer to
1.0 has performed better. Statistics of the image quality scores
as a function of magnification factor are presented in Fig. [
and Fig. 5]

As expected, output image quality degrades for all the
algorithms as a function of magnification because the problem
becomes increasingly under-constrained. The UIQ scores in
Fig. [] show that our proposed method is out-performing
the other approaches. We attribute this to the ability of the
proposed GP framework to locally infer a non-stationarity
relationship between the modalities. Other fusion approaches,
including the wavelet benchmark, form an explicit relationship
(in pixel or feature space) between the image modalities, and

Universal Image Quality
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Fig. 4. The mean and error bounds of evaluating the Universal Image Quality
(UIQ) index [23] of the reconstructed output compared to the true reference
image over 40 test images as a function of algorithm and magnification factor.
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Fig. 5. The mean and error bounds of evaluating the mean squared error
(MSE) index of the reconstructed output compared to the true reference
image over 40 test images as a function of algorithm and magnification factor.

will therefore struggle with objects that have the same appear-
ance in the visible channel but different infrared responses.
Downscaling-cokriging handles this problem in a more prin-
cipled way by treating the channels as dependent random
processes, although the dependencies are usually stationary
and linear.

Another trend is shown in the mean squared error (Fig. [3).
Because our proposed method weights observations of the
output band, it will remain faithful to the low-resolution
image as the problem becomes ill-posed. This is also true
of the bilinear filtering (which only uses the low-resolution
image), and approximately true for the wavelet approach
because it is only merging high frequency coefficients. The
cokriging approach, on the other hand, increasingly relies on
the high-resolution image for its predictions and may have low
frequency errors that MSE is sensitive to.

C. UAV Experiments

This section applies the proposed fusion method to combine
aerial images from different sensor platforms acquired as part
of a project to survey remote farmland environments. High
spatial resolution images were acquired by an Unmanned
Aerial Vehicle (UAV) to resolve features such as individual



trees, fences and waterways. Over the same region, low-
resolution multispectral imagery was acquired from a manned
aircraft, providing cues to vegetation and soil properties.

To acquire the high-resolution modality, a UAV was devel-
oped to carry a payload consisting of an inertial measurement
unit (IMU), global positioning system (GPS) unit, and a colour
(RGB) camera. The aircraft and its payload box are depicted in
Fig. [6] It was also necessary to implement fully autonomous
flight capabilities on this platform, as the UAV flight paths
were along narrow swaths, often taking the UAV beyond
the visual range of its operators. The platform is ruggedised
for operating from dirt roads rather than runways, and a
ground station consisting of a differential GPS base station and
telemetry computers were set up in the field for its operation.

N P
gCamera
= . \

Fig. 6.  Left: The UAV platform used to acquire geo-referenced aerial
data. Right: The platform payload including a camera, GPS unit, Inertial
Measurement Unit (IMU) and PC104 stack.

The UAV was operated 500m above ground to obtain a
resolution of up to 20cm/pixel over the farmland environment.
These images have been mosaicked to a ground resolution
of 1m/pixel, a resolution in which key scene features can be
identified, while georeferencing errors and motion blurring
that might interfere with the fusion are minimal.The low-
resolution image dataset covers the same region of interest, and
was acquired from a manned aircraft carrying a multi-spectral
imager. This data provides a wider choice of informative
infrared spectral bands than the UAV data, but only at a
relatively coarse resolution of 6 meters per pixel. For this
experiment, three infrared spectral bands have been inferred,
corresponding to 800, 1200 and 1700nm wavelengths. Visuali-
sations of these bands are valuable for investigating vegetation
stress and vegetation type.

While the UAV and multispectral datasets cover the same
spatial region, they were collected from different platforms
and have different geo-referencing errors. The spatial registra-
tion/alignment of the modalities is currently approached using
normalised cross correlation [5] on the Iuminance outputs
(because both platforms have sampled the visible spectrum)
- as shown in Figure [7] This approach has provided an
acceptable registration accuracy to conduct the experiment, but
is simply a starting point for further development. In addition
to registration error, the fusion algorithm faces distortion
induced by a time difference between the commercial image
acquisition and the UAV deployment. This delay could lead to
occulation in the data - where objects or shadows have entered

Fig. 7. Normalised cross correlation of luminance is used to register a UAV
image tile (sharp foreground) to the lower resolution multispectral dataset
(background).

or left the scene [22]]. As this is real data, the UAV mosaic
also has gaps in coverage that were not predicted over.

The proposed fusion framework has been applied to this
registered data, using the three UAV bands as supporting
channels inside kp (because Py is three dimensional), and
predicting three output infrared bands independently. This has
resulted in infrared scene images with a 6 fold magnification
factor. The full region is shown in Fig. [8] and high-detail
zooms are given in Figures [9)to[T1] The results presented here
are open loop - this is a real investigation for which no ground
truth exists. Inspecting the fused images in each scenario, we
observe that the GP has noticeably sharpened the resolution of
the estimated infrared channels, performing especially well in
unmixing the tree crowns from the background soil due to their
contrast in the supporting visible bands. Particularly noticeable
in Fig. [T1] different types of trees in the image data exhibit
different crown colours in the false colour reconstruction due
to the local spectral relationship model. Therefore the six fold
improvement in resolution has made a critical difference to the
scientific value of this data, as it is possible to distinguish tree
crowns and other features in the data that were not resolved
in the observed infrared bands.

As was discussed in the previous section, our algorithm
uses the observed pixel values of the low-resolution image to
construct its high-resolution reconstruction. In most situations
this is a strong advantage of the model, because it means the
output is not sensitive to distortions or contrast inversions in
the high-resolution reference image. However, this also means
that the method does not fabricate texture without evidence
in the low-resolution observations. The large magnification
ratio, combined with small registration errors and lighting
differences between the two modalities ensure that although
the model has performed excellently at recovering the infrared-
colour of objects in the scene, it has had little opportunity
to recover the original shading. Fortunately, it is very easy
to combine a correctly coloured image from our GP fusion
with a hallucinated shading model from the UAV images
using an IHS decomposition (intensity-hue-saturation)[23]]. We
therefore present a second set of results that transforms the
GP prediction into (Y;Cb,Cr) space and replaces the Y
channel with the corresponding Y channel from the RGB
image. This hallucination of plausible texture was found to



improve the scene understanding for human perception and
produce visually appealing images.

Observed RGB

Fig. 8. Enhanced reconstruction of infrared bands. Top left: Supporting
RGB. Top right: observed coarse infrared bands. Bottom left: Fusion output,
Bottom right: fusion output with shading heuristic. The GP fusion provides a
faithful estimate of the enhanced NIR image. Because of noise, time elapsed,
and registration error, the model cannot extract colour. A shading model can
improve the perceived realism by directly transferring luminance (if known).

VI. CONCLUSION

A new approach has been presented for fusing images
that have different resolutions and different sets of spectral
channels. The novelty of this approach lies in the construction
of a new positive definite covariance function that can model
large, non-stationary image data. Firstly, it uses spatial input
dimensions augmented with image-intensity values to transfer
contextual non-stationarity from the high-resolution reference
image. Secondly, the new covariance function is defined over
pixels of different areas, as compared to a standard covariance
function that is defined over point inputs only. Finally, the
covariance model is sparse by design, ensuring tractability on
real images. The covariance function is used in a GP regression
framework to estimate a high-resolution image of the low-
resolution observations.

The proposed framework has been validated through con-
trolled image degradation and restoration, exhibiting marked
increases in image quality. In comparison with a selection of
alternative techniques, the new framework was able to out-
perform the benchmarks in terms of quantitative image quality
metrics. The GP fusion model has also been applied open loop
to a multi-platform dataset: a low flying UAV was used to
acquire high-resolution colour imagery, while a high altitude
manned aircraft provided a comparatively coarse resolution
multi-band dataset. While no quantitative ground truth exists
for this scenario, the new algorithm has produced highly

Observed NIR

Fused NIR Estimate

Injected Luminance

Fig. 9. High-detail zoom of the predicted infrared bands, using the layout
of Fig. [8] In this case the bright blue pixels in the false colour image have
been reconstructed into blue tree crowns corresponding to the corresponding
tree crowns in the RGB image.

Observed NIR

Fig. 10. High-detail zoom of the predicted infrared bands, using the layout
of Fig. 8} This region presents a difficult problem as the many small tree
crowns lead to very mixed pixels. The fusion estimate forces a consistent
colour for tree crowns and for background, preventing colour bleeding in the
fusion estimate.

detailed false colour infrared images at 6 fold magnification, in
this case adding significant scientific value to the channels by
allowing tree crowns to be distinguished in the infrared spec-
trum. We have identified that future development of the model
should focus on increasing the amount of texture inferred
from the high-resolution image in the predictive output as the
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Fig. 11. High-detail zoom of the predicted infrared bands showing tree crown
detail that is clearly not visible in the observed infrared bands. Layout is the
same as Fig. El Interestingly there are two tree types present that look the
same in the RGB imagery but have different appearances in the NIR bands.

magnification factor becomes large. The promising value of
our results suggests that this fusion strategy has great potential
in other multi-platform surveys.
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