
Multi-Class Classification of Vegetation in Natural Environments Using

an Unmanned Aerial System

Alistair Reid Fabio Ramos Salah Sukkarieh

Abstract— This paper presents an automated approach for
the classification of vegetation in natural environments based
on high resolution aerial imagery acquired by a low flying
Unmanned Aerial Vehicle (UAV). Standard colour and tex-
ture descriptors are extracted on a frame by frame basis to
build a representation of appearance, which is probabilistically
classified by a novel multi-class generalisation of the Gaussian
Process (GP) developed for this work. A GP approach was se-
lected for probabilistic outputs, and the ability to automatically
determine the relevance of each input dimension to each of the C
classes in the problem. When learning hyperparameters from N
training examples, the new formulation scales at O(N3), rather

than O(CN3) for the standard one-vs-all approach. The novel
classification framework is trained and validated on a set of
manual labels, and then queried to visualise a map of vegetation
type under the UAV flight path. Mapping results are presented
for a region of farmland in Northern Queensland, Australia
that is infested with two invasive introduced tree species.

I. INTRODUCTION

An approach has been developed for the automated clas-

sification of vegetation species in a natural environment,

and applied to the mapping of invasive woody weed species

over farmland in Northern Australia. Invasive plant species

cause significant damage to the productivity of agricultural

land every year, motivating investment in new detection

technologies [1]. To provide the neccessary information to

support targeted eradication or containment strategies, we are

developing an automated solution based on aerial imaging

with an unmanned aircraft, followed by automated vision-

based classification and mapping. The aim of this paper is

to present a generic classification approach based on machine

learning that is well suited to the high resolution colour

imagery acquired by the UAV.

The UAV used to collect the dataset for this work was de-

signed as a robust, low cost sensor platform to operate from

remote survey sites. The airframe is derived from a one third

scale J3 Cub model, and has been outfitted for autonomous

flight with a CloudCap Piccolo flight controller, a suite of

navigation sensors including an inertial measurement unit, a

GPS unit, and a downward pointing monocular video camera.

The aircraft and payload are shown in Figure 1.
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Fig. 1. The autonomous UAV, based on a J3 Cub 1/3 scale model. Sensor
payload includes IMU, GPS receiver, downward pointing monocular camera
and a PC104 stack.

For the results presented in this paper, four classes of tree

have been defined: Prickly Acacia (invasive), Parkinsonia

(invasive), Eucalypt (the only native trees surviving in the

area) and null features that were not of interest. In identifying

these features, the colour imagery acquired by the UAV offers

less spectral discrimination power than typical hyperspectral

satellite imagery, but because the UAV is able to fly at low

altitudes (100m above ground) it can provide a very high

spatial resolution of 4cm/pixel that resolves unmixed colour

information, and enables the use of image texture to describe

shading and pattern. A supervised machine learning approach

based on Gaussian Processes (GPs) has been used to map

generic appearance descriptors into class probabilities.

GP classification is a state-of-the-art method for handling

difficult classification problems [2]. The Bayesian formu-

lation infers probabilistic outputs, and provides a closed

form marginal likelihood that can be optimised to select an

optimal model[3]. GP learning with this criterion is resilient

to overfitting, and can automatically determine the relevance

of the feature dimensions to the classification problem [4].

In a C class problem with N training labels, a pre-trained

GP model is relatively fast to query at O(NC) and therefore

well suited to processing the large image datasets in this

work. However, model selection can be slow, as the cost of

training a GP is dominated by the inversion of a (potentially)

large covariance matrix, and the learning criterion may need

be evaluated many times when optimising within a high

dimensional hyperparameter space. The usual approach to a

multi class problem is to define C one-vs-all binary models,

leading to a cost of O(CN3) to process the examples or

evaluate the learning criterion. In this work, an alternative

generalisation is proposed that places a common covariance

model over the N training labels that can be solved at an

improved O(N3). This new framework is cross validated

on training data to obtain performance statistics, and then
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applied open-loop to the UAV imagery to construct a tree

species map over a region of interest. The reader is directed

to [5] for details of the navigation data fusion.

The remainder of this paper is organised as follows.

Section II reviews similar and related work. In Section III,

the classification framework and essential GP background

theory is described. Finaly, the experimental setup, and the

results including maps of the region of interest are presented

in Section IV.

II. RELATED WORK

A. Aerial Classification

Vision and perception in aerial data has been studied in a

broad range of applications, both in the robotics community

and outside. In the robotics community there has been recent

interest in aerial classification of terrain types such as roads,

trees, grass and buildings for assisting a ground vehicle

using sensors such as colour cameras and/or LIDAR (Light

Detection And Ranging), although these approaches have not

been concerned with vegetation type [6], [7].

Mapping of vegetation type over large natural environ-

ments is neccessary for problems such as geostatistical

studies of land cover, or the detection and monitoring of in-

vasive species[1]. Large scale ecological mapping is usually

approached using multi-spectral imagery from high flying

aircraft [8], commercial satellites [9], or multi-temporal

public datasets such as from the Landsat Thematic Mapper

satellite [1]. Unlike our vision perception based approach,

these studies have relied primarily on pixel spectra: peaks

in the visible and near infrared bands are associated with

cellular chemical and biological properties of the vegetation

[8]. Examples of vegetation type classification using colour

imagery have previously been restricted to controlled agri-

cultural environments such as crop fields, orchards or plan-

tations [10], where visual properties such as co-occurence

matrix statistics [8], or Gabor Filter banks [11], have been

used to compensate for a loss of spectral resolution. The

gap between automated robotics and the study of natural

environments is being bridged, as we are now starting to

see autonomous UAVs like ours appear in agriculture and

ecological mapping applications [12], [13]. The primary role

of these UAV platforms is to provide current imagery over

large regions of interest, and to obtain a sufficiently high

spatial resolution for visual identification.

B. Gaussian Process Classifiers

Most GP classifiers are formulated using a single (latent)

output representing a binary classification problem. When

faced with multiple classes, it is standard practice to extend

the framework using a one-vs-all approach by defining binary

models for each class [4], [14], [15], [16]. This effectively

leads to C models of the N labels at the cost of O(CN3) to

invert the covariances.

In problems with large N, additional algorithms are needed

to select a smaller training set [2], or to make solving the

covariance matrix tractable through sparsity [17].

In problems with large C, it has also been recognised that a

one-vs-all approach is costly. The redundancy is most clearly

illustrated when a standard multi class classifier is applied to

a binary problem. In this case the classifier uses two binary

models instead of generalising to the normal single-model

case. Related work has addressed this problem by modeling

C− 1 outputs to imply the missing output [16], [18]. This

paper proposes a more compact multi-class generalisation

that captures the problem in a single model over the training

inputs, rather than repeatedly changing the model for each set

of class outputs. This reduces the computational scalability

of the approach from O(CN3) to O(N3).

III. APPROACH

This section outlines the implementation of the au-

tonomous vegetation classification framework, including im-

age segmentation, the definition of an appearance descriptor

vector, and the new extension of the GP classifier to multi-

class problems. The following processing steps are currently

implemented offline, with the UAV logging imagery and

navigation data to a hard drive for post-flight processing.

A. Feature Space

1) Colour Balance: A simple white balance algorithm

was devised to improve the robustness of the approach to

changes in illumination over the course of a flight. Each RGB

image is used to produce an indexed colourmap by minimum

variance quantization. The light source is then approximated

by fitting a linear relationship between the channels in the

quantized colour palette to ensure that large objects of a

particular colour will not dominate the result.

2) Colour: The use of RGB values is an inappropriate

choice for our vision approach due to the poor seperation

of colour and lighting intensity. Instead, RGB pixel values

were transformed to the LUV colourspace, which attempts

uniformity over human colour perception.

3) Texture: Generic texture filter banks were applied to

the luminance channel of the imagery using specral con-

volution. Because the trees themselves are non-oriented,

rotationally isotropic filters were applied. These consisted of

the Schmid (S) rotationally invariant filter bank [19], which

contains 13 isotropic, Gabor-like filters, and the Maximum

Response Root Filter Set (RFS) filters [20]. The RFS set

consists of 38 filters (36 oriented) of which the maximum

response of each orientation is recorded. Code to extract

these 8 features was provided with the publication [20].

4) Pre-segmentation: Because colour and texture re-

sponses are noisy from pixel to pixel, the images were pre-

segmented into super-pixels containing at least 100 pixels.

This was achieved using the fast, unsupervised mean-shift

clustering [21], with edge detection provided by [22]. An

example of image pre-segmentation is shown in Figure 2.

5) Linear Dimensionality Reduction: The GP classifier

learns a length scale hyperparameter between every feature

attribute and every class. Having 4 classes already, the 3

colour features and 21 texture features lead to an extremely

large 96 degrees of freedom that is problematic for numerical
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Fig. 2. Each image frame is pre-segmented using an unsupervised mean-
clustering implementation from the literature [21]. This procedure splits
each tree crown into many super-pixel segments for further processing.

optimisation in terms of convergence (avoiding local min-

ima) and the selection of initial conditions. A multi-class

Linear Discriminant Analysis [23] was used to compress

the feature attributes into 4 dimensions and was found to

improve learning stability and subsequent performance of

all the GP classifiers. Compressing the input dimensions

does provide some assistance to the classifier by ensuring

that all dimensions are relevant, but we argue that firstly

all the models compared have had the same degree of

assistance, and secondly, the GPs are still faced with a

complex relevance determination problem with 16 degrees

of freedom. Colour and texture features were seperately

reduced to two dimensions each to provide a total of four

feature attributes rather than the maximum 3 that can be

provided by LDA in a 4 class problem, and to ensure that any

relationships involving both colour and texture are handled

by the nonlinear GP method rather than the LDA.

B. GP Learning and Classification

1) Preliminaries: This section introduces the basic nota-

tion and equations involved in GP inference, prior to their ex-

tension and modification in Section III-B.3. A GP output f is

inferred over a D dimensional input space at M query points

{x∗} = {x∗i }
M
i=1 ∈ R

D by conditioning a Gaussian prior on

N training input/output pairs {X ,y}=
{

xi ∈ R
D
,yi ∈ R

}N

i=1
.

By assuming a zero mean, the positive definite covariance

function K(xa,xb) is used to generate the multi-variate prior

covariance over f and f ∗ jointly:

y = f (x)+ ε, ε ∼ N
(

0,σ2
n

)

(1)

[

y

f ∗

]

∼ N

(

0,

[

K(X ,X)+σ2
n I K(X ,x∗)

K(x∗,X) K(x∗,x∗)

])

(2)

Eq. 2 is analytically conditioned on the observed training

outputs y to obtain an unbiased, probabilistic estimate of f ∗:

f ∗ ∼ N(µ∗
,Σ∗) (3)

Σ =
[

K(X ,X)+σ2
n I
]

(4)

µ∗ = K(x∗,X)Σ−1y (5)

Σ∗ = K(x∗,x∗)−K(x∗,X)Σ−1K(X ,x∗) (6)

This Bayesian formulation also provides a closed form

marginal likelihood. By parametrising Σ by hyperparameters

θ , GP learning may be conducted by optimising Eq. 7 with

respect to θ . This procedure is naturally resilient to over-

fitting because it is penalised by both data fit and model

complexity.

log(p(y|X ,θ)) =−
1

2
yT Σ−1y−

1

2
log |Σ|−

N

2
log2π (7)

2) GP Classification: A GP is normally used for regres-

sion problems, so a GP classifier takes additional steps to

deal with categorical data. In a classification problem with

C classes, the N examples {Xi,yi|i = 1 . . .N} are assigned

categorical outputs yi ∈ [1 . . .C]. At this point, GP latent

outputs f c
n are defined to indirectly model the probabilities of

class c occuring at xn. For a multi class problem, f contains

outputs for each of the C classes, over each of the N training

points, becoming a vector of length CN:

f = ( f 1
1 , . . . , f 1

N , f 2
1 , . . . , f 2

N , . . . , f C
1 , . . . , f C

N )
⊤ (8)

The class probabilities are obtained by convolving the latent

outputs f ∗ through a sigmoid that squashes them into valid

probabilities that are both exclusive (adding to one), and lie

between zero and one. We have used the standard softmax

(multinomial logistic) function:

p(yi = c|x, f 1
, . . . , f C) =

exp( f c
i )

∑
N
j=1 exp( f

j
i )

(9)

The sigmoidal transformation of f ∗ into predictive prob-

abilities implies a non Gaussian relationship between y

and f , which is not analytically tractable within the GP

framework. To condition the prior on f , a variety of so-

phisticated approximations may be used, including Monte

Carlo sampling[14], the Laplace approximation[24], and

Expectation propagation[25]. Of these methods, Expectation

Propagation is considered state of the art, approximating the

GP posterior with a product of local Gaussian likelihoods

for each training case [25].

However, it has been argued that a very accurate ap-

proximation of the training likelihoods is not critical for

the generation of correct predictions [4]. The Probabilistic

Least Squares Classification (PLSC) approach used in this

work also approximates the training cases as local Gaussian

distributions, but uses fixed positive and negative targets

(Eqn. 10). This approach is computationally faster and

conceptually more straightforward to implement than the

alternatives mentioned above, while in practice the predictive

performance is normally unharmed [3], [4], [26]. When

using this approximation, one additional step must be taken:

because the sigmoid is decoupled from the GP learning

criterion, it must also be parametrised and learnt to ensure

the outputs are well calibrated probabilities.

f c
i =

{

+1, yi = c

−1, yi 6= c

}

(10)

3) New Multi-Class Formulation: In multi-class problems

with C classes, it is a standard practice to convert the class

labels into C binary one-vs-all problems, and model each

problem seperately with its own covariance function[15],

[14], [16], [4]. Training and the initial solving of the classifier
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under this formulation scales as O(CN3). However, we point

out that the C binary problems are in fact very similar

because the inputs X remain unchanged in each case, while

the binary targets f are derived from the same labels y. In

fact, the only reason for using C different models is to allow

each class to have its own set of hyperparameters.

In this section, we propose a new generalisation of the GP

classifier that compacts the C different class models into a

single covariance over the N categorical inputs (instead of

the NC repeated binary inputs), leading to a model that scales

at O(N3). This generalisation is based on a subtle difference

in interpretation of the problem.

In the standard formulation, the covariance function Ka

(describing class a) is applied over all the inputs of latent

function a regardless of their training label. To predict a

different latent output we need to generate a new model that

uses a different covariance function. In our new formulation,

Ka is applied between training labels of class a, regardless

of which latent function we are modeling. In addition, co-

variances between labels of different classes are specified by

a suitable cross-covariance function Kab. This construction

leads to a repeated covariance model for each latent output

- only f c changes.

To formalise this idea, without loss of generality suppose

that the training labels (X ,y) were sorted by class, so that

y is a monotonically increasing vector. This will allow the

representation of K(X ,X) as a C×C blockwise matrix with

block (i, j) corresponding to interactions between labels of

class y = i and labels of class y = j:

K(X ,X) =







K11 . . . K1C

...
. . .

...

KC1 . . . KCC






(11)

y =
[

1 1 . . . 2 . . . . . . C
]⊤

(12)

The K matrix (N×N) describes the covariance over inputs

X , regardless of which latent output we are modeling. Each

Kii is generated using the covariance function for class i, and

uses hyperparameters θi. Covariance terms between labels of

different classes are provided by a cross covariance function

Ki j, i 6= j that is derived from Kii and K j j, and consequently

depend on hyperparameters θi and θ j. It is neccessary to

include these Ki j terms to handle the negative values in f c.

Suitable cross covariance functions already exist in the GP

literature, because multi-task GPs place a joint covariance

function of the same form as Eq. 11 over multiple outputs

to learn their dependencies[27]. In this work, we define an

exponential covariance function in terms of the diagonal

squared length scale hyperparameter matrix λ :

Kii(xa,xb|λi) = exp
[

−(xa − xb)
T λ−1

i (xa − xb)
]

1
2 (13)

Ki j(xa,xb|λi, j) = exp
[

−(xa − xb)
T (λi +λ j)

−1(xa − xb)
]

1
2 (14)

A signal amplitude is also applied to K to specify how

tightly the model fits the data. This is introduced into the

framework as gain hyperparameters σ
f

c such that the result-

ing model for latent output c is given by Σ f = σ
f

c K(X ,X).

While this technically leads to a different Σ for each output,

we can take a numerical shortcut by specifying the inverse

of Σ f in terms of K(X ,X) and its inverse:

Σ f −1
= (σ f

c K(X ,X))−1 =
K(X ,X)−1

σ
f

c

(15)

The marginal likelihood of y given K can be evaluated

by multiplying the marginal likelihoods of each f c (derived

from y). In log-form, this becomes a summation over the C

binary cases. In addition, by applying the relationship in Eq.

15, the full marginal likelihood can be expressed in terms of

K(X ,X)−1:

log p(y|X ,K,σ f ) = ∑
C
c=1

(

−1

2σ
f

c

f c⊤K(X ,X)−1 f c − N
2

logσ
f

c

)

. . .− C
2

log |K(X ,X)|− NC
2

log2π
(16)

The cost of the Bayesian GP learning is now dominated by

the inversion of K(X ,X), with a scalability of O(N3). The

learning optimisation is conducted using a standard gradient

descent routine on the negative log marginal likelihood.

We have also found that in practice, introducing a small

penalty for when the length scales of each class become

very different helps the optimisation avoid sub-optimal local

minima.

After inverting K(X ,X), we can use K(X ,X)−1 to predict

the C latent outputs for a query point at trivial additional

cost. However, because we are using a multi-task covariance

function, K(x∗,X) depends on the class of the query point x∗.

An effective approach here is to query each latent output with

an x∗ belonging to the same class, which we have written as

x∗c . This leads to the following prediction equations for latent

output f ∗c ∼ N(µ∗
,Σ∗) corresponding to output function c at

input location x∗:

µ∗
c = K(x∗c ,X)K(X ,X)−1 f c (17)

Σ∗
c =

K(x∗c ,x
∗
c)−K(x∗c ,X)K(X ,X)−1K(X ,x∗c)

σ
f

c

(18)

IV. RESULTS

A. Experimental data

1) Data acquisition: The capabilities of the terrain clas-

sification algorithm were investigated in relation to the

identification of two invasive woody weed (tree) species

over a farmland site in Northern Queensland, Australia. The

UAV was deployed in the field to acquire high resolution

colour imagery using a pre-programmed flight path targeting

the high vegetation concentration found along a known

(seasonally dry) riverbed. The autonomus flight processed

in this paper was approximately one hour long and covered

100km of swath-track along a 3.5× 0.6 kilometre region.

During this flight, the payload computer logged navigation

sensor data and recorded time-stamped 1024× 768 images

at 3.75 frames per second, a rate designed to give consistent

frame overlap for full coverage along swaths.

A region of interest consisting of 1158 images, and cover-

ing an area approximately 1500×400 metres, was selected

from the available dataset.

2956



Fig. 3. A visualisation of some of the manual labels provided to the
classifier, with colour overlays indicating segments that have been labeled
for each class. A total of 160 such sparse samples (40 of each class) were
drawn over 32 manually selected frames to build a training set.

LDA Projection2D Texture LDA Projection2D Colour

 

 

Prickly Acacia

Parkinsonia

Eucalypt

NULL

Fig. 4. Multi-class LDA is used to compress the input attributes space to 4
dimensions, allowing the classifier to learn 16 length scale hyperparameters
(4 dimensions over for 4 classes).

2) Identification of Training Examples: Within the region

of interest, 32 frames were selected as being characteristic

of the dataset. These frames were selected over the whole

dataset, but were not overlapping each other to avoid contam-

ination of the validation data. A human was provided with an

interface to identify types of vegetation in the imagery, cross

referenced with a ground based-survey of a small portion of

the operating area using a handheld GPS receiver. A balanced

training set was formed by using 40 examples of each class,

leading to 160 training labels overall. Examples were drawn

from different segments of the same tree crown in some

cases, but this is neccessary so that the classifier can learn

different shading and patterns as they vary over a typical tree

crown. An example of a manually labelled frame is depicted

in Fig. 3. A visualisation of the LDA compressed training

data is shown in Fig. 4.

B. Classifier Training and Performance

Given the (X ,y) specified by the manual labeling, the GP

classifier model was trained by numerically optimising the

log marginal likelihood criterion in Eq. 16. Following learn-

ing, 10 fold cross validation was conducted over the training

data to evaluate the classifier’s predictive performance. A

confusion matrix was built by taking the highest predicted

output as the decision (although this does ignore uncertainty),

yielding a performance accuracy of 0.88±0.06. This confu-

sion matrix, and the related one-vs-all precision and recall

statistics for each class (true positives / all positives, and true

positives / all occurences respectively) are shown in Table

II. The confusion matrix shows good performance for the

validation (particularly considering this is a 4 class problem).

We have shown theoretically that our classification ap-

proach scales better than the standard GP classifiers. It is also

TABLE I

CONFUSION MATRIX, PRECISION AND RECALL

Predicted Class

A
ct

u
al

C
la

ss PA PK EUC NULL
PA 36 2 0 2
PK 6 34 0 0

EUC 0 0 39 1
NULL 4 1 3 32

TABLE II

PRECISION AND RECALL

New multi-class approach:
88% ± 6% Accuracy

Precision Recall
PA 0.78 0.90
PK 0.92 0.85

EUC 0.93 0.98
NULL 0.91 0.80

based on the computationally inexpensive probabilistic least

squares classifier, which is already significantly faster than

the EPGP classifier that is considered the state of the art in

terms of predictive performance. However, the performance

concessions made to achieve this are not significant. We

have also trained a standard PLSC classifier, and an EPGP

classifier to investigate the relative performance. The results

are summarised in Table III.

TABLE III

PERFORMANCE OF BENCHMARK CLASSIFIERS

Probabilistic Least Squares: Expectation Propagation:
87% ± 9% Accuracy 89% ± 6% Accuracy

Precision Recall
PA 0.79 0.85
PK 0.86 0.90

EUC 0.92 0.93
NULL 0.91 0.80

Precision Recall
PA 0.79 0.85
PK 0.88 0.90

EUC 0.95 0.95
NULL 0.94 0.85

Comparing the classifier performances, it is clear that

while the state-of-the-art EPGP has achieved the highest

prediction accuracy, the margins between this approach and

both our modified least squares classifier and the standard

PLSC classifier, are very small. If we were to introduce

additional classes and additional training labels in the future,

it would be hard to justify training an EPGP classifier when

we are able to achieve essentially equal performance from

our fast, computationally inexpensive approach.

C. Prediction and Mapping

The GP model with optimised hyperparameters was

queried over all the segments of all the images in the region

of interest. Following this, the predicted class probabilities

for the three tree classes were rendered back onto the image

segments to create a classification image with red indicating

Prickly Acacia (PA), green indicating Parkinsonia (PK),

and blue indicating Eucalypt (EUC). Spatial continuity is

exploited to de-noise the classifications with a median filter.

Figure 5 shows an example of a successful classification for

an image frame with all classes present.
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Fig. 5. Probabilistic classification over an entire image frame. The Null
background class is rendered white, while PA, PK and EUC are rendered
in the red, green, and blue channels respectively such that a stronger colour
indicates a higher predictive probability.

Close inspection of the classified image frames reveals

why there is some confusion between the null class and

the trees. It is likely that these errors stem from the mis-

identification of shadows (that were defined as part of the

null class). Interestingly, the woody weeds and their shadows

posess a very similar appearance in this data. They both

have relatively dark shading, and the shadow inherits size

and texture from the tree. This suggests an additional input

attribute such as height would clarify much of this confusion.

An example of this occurence is depicted in Figure 6.

Fig. 6. An example depicting the most common type of incorrect
classification, where the shadow immediately adjacent to a tree (in this
case, Parkinsonia) has been incorrectly labeled as prickly acacia.

The classified frames were integrated with the navigation

solution of the UAV to render a map of the region of interest.

A detailed treatment of the navigation process is described

in [5]. Figure 7 shows the white balanced colour input

imagery over the region of interest, together with the cor-

responding classification visualisation. As we already knew

(from ground surveying), the invasive Prickly acacia (red)

has extensively infested this region of farmland. The map

also reveals scattered individuals of surviving native Eucalypt

(blue), competing with the less successful Parkinsonia weed

(green), but primarily in densely populated regions close to

the center of the watercourse.

V. CONCLUSIONS AND FUTURE WORK

A framework has been presented to classify high resolu-

tion colour aerial imagery acquired by our low flying UAV.

Generic colour and texture descriptors were derived from the

imagery, and these features were averaged over super-pixels

obtained by fast unsupervised clustering, and dimensionality

reduced using a linear method.

A machine learning classifier was trained to transform

the prepared input features into predictive probabilities of

each class. For this purpose, we present a new multi-class

generalisation of the Gaussian Process classifier. The new

generalisation removes the redundancy of the standard one-

vs-all approach by packing the underlying models of each

class into a single covariance function over the training

labels, rather than using multiple binary models. This leads

to a more compact covariance representation that allows

faster learning, without sacrificing the model flexibility that

GP learning provides because length scale hyperparameters

are still included to model the relevance of each input

dimension to each class type. The new formulation has been

beneficial in learning the classifier model (prior to querying

the classifier on the image data), and will be well suited to

the addition of further classes in new datasets.

We have tested the approach by deploying the UAV

over a survey site in Northern Queensland, Australia, to

collect imagery along a woody weed infested river system.

Having manually labeled just a fraction of the total amount

of imagery (40 segment labels per class), the new GP

formulation was trained, and its performance was measured

quantatatively (by cross validation) and qualatatively by

producing a class probability map. Cross validation on the

training data has indicated accuracies of up to 88%, a good

result considering the difficulty of the 4 class problem. The

classifier has been able to learn a complex model that would

be difficult to tune manually (without prior knowledge),

owing to the elegant marginal likelihood based learning that

a GP framework provides.

We note that the primary sources of confusion in our

results are between the two similar invasive trees, and

also between the trees and their shadows on light coloured

ground. This second problem may be solved in future work

by replacing the unsupervised segmentation with a shadow

or height based segmentation. Stemming from such an ap-

proach, classification reliability may be further improved if

we are able to incorporate features such as shape and tree

crown size into the description vector.
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