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Abstract

Mapping the occupancy level of an environment is impor-
tant for a robot to navigate in unknown and unstructured
environments. To this end, continuous occupancy mapping
techniques which express the probability of a location as
a function are used. In this work, we provide a theoretical
analysis to compare and contrast the two major branches
of Bayesian continuous occupancy mapping techniques—
Gaussian process occupancy maps and Bayesian Hilbert
maps—considering the fact that both utilize kernel functions
to operate in a rich high-dimensional implicit feature space
and use variational inference to learn parameters. Then, we
extend the recent Bayesian Hilbert maps framework which
is so far only used for stationary robots, to map large en-
vironments with moving robots. Finally, we propose convo-
lution of kernels as a powerful tool to improve different as-
pects of continuous occupancy mapping. Our claims are also
experimentally validated with both simulated and real-world
datasets.

Introduction
Spatial awareness is of fundamental importance for artifi-
cial intelligent systems to operate safely and robustly in real
world applications. The recent development of autonomous
cars, which is revolutionizing transportation and urban de-
sign practices, brings unprecedented need for accurate, ro-
bust, fast, and, adaptive spatial representations that can be
directly utilized in decision making systems. One type of
such spatial representation that has been very popular in
robotics is occupancy mapping, in which points in 2D or 3D
space receive a label on whether or not it is occupied by an
object. The seminal work by Elfes (Elfes 1989) introduced
the occupancy grid map which discretizes the environment
into cells and computes a probability distribution on the oc-
cupancy level. Due to its simplicity, occupancy grid maps
have been the standard spatial representation particularly for
indoor environments where the dimensions of the space to
be mapped are known in advance. However, strong indepen-
dent assumptions between the occupancy level of each cell
and the need to define the level of discretization or resolution
of the map at the beginning of the mapping process consti-
tute major limitations for the technique.
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In a different approach, occupancy mapping has been
treated as a supervised learning problem in Gaussian pro-
cess occupancy maps (GPOMs) (O’Callaghan and Ramos
2014) and Hilbert maps (HMs) (Ramos and Ott 2015).
Both of these representations are continuous and exploit the
spatial proximity of occupied and non-occupied observa-
tions, usually from a laser range finder, to predict the oc-
cupancy property of unseen regions. Because the represen-
tations are continuous they can be applied to indoor and
outdoor environments. Common to both methods is the use
of kernels (Smola and Schlkopf 2003; Kivinen, Smola, and
Williamson 2014) to capture spatial closeness between ob-
servations. Another important advantage of continuous oc-
cupancy maps is the fact that they provide a functional rep-
resentation of space where derivatives with respect to model
parameters and occupancy levels are directly available. This
is important for simultaneous localization and mapping
problems (Stachniss, Leonard, and Thrun 2016) where the
robot needs to localize within a map being constructed,
and path planning (Norouzii, Miro, and Dissanayake 2016)
where the robot attempts to find a trajectory that minimizes
the chance of collisions (Marinho et al. 2016) (Mukadam et
al. 2017).

Within the context of these recent developments, the pa-
per brings the following contributions:

1. An analysis of Bayesian Hilbert maps (BHMs) and Gaus-
sian process occupancy maps considering the fact that
both use kernels and variational inference;

2. The use of convolution of kernels in robotic mapping;
3. Proposing the BHMs framework to map the occupancy of

large environments using moving robots.
The paper is organized as follows. Firstly, we provide

an overview of continuous occupancy mapping techniques.
Then, in the next section, the BHMs framework is intro-
duced for moving robots to map large areas. We discuss
the similarities and differences between BHMs and GPOMs
highlighting that both are Bayesian models with a similar
likelihood that uses kernels to automatically capture com-
plex spatial patterns using a few sparse data points. Next, we
propose a variety of techniques to use convolution within the
BHMs framework. Finally, we report experimental results
based on simulated environments and real-world benchmark
datasets.



Figure 1: Bayesian Hilbert mapping (BHMs) with a mov-
ing robot (a) the obstacles of the environment are shown in
yellow, the robot as a black triangle with blue rays to indi-
cate lidar beams, and the path the robot traverses in black
dotted lines (b) the occupancy map learned using the BHM
model. The occupancy levels are indicated within the range
[unoccupied = −1, occupied = 1]. Observe that the areas
the robot has not seen at all and cannot either be accurately
inferred from neighborhood information take an intermedi-
ate occupancy level (i.e. unknown).

Terminology and notations: In order to agree with the
context and literature, we interchangeably use pseudo-
inputs, supports, hinged points, and inducing points to mean
the same thing. I indicates the identity matrix.

Continuous Occupancy Mapping
Conventionally, occupancy maps are built based on a fixed-
sized grid (Elfes 1989) and they are typically called oc-
cupancy grid maps. Considering the disadvantages of grid
maps (Senanayake, O’Callaghan, and Ramos 2017), Gaus-
sian process occupancy maps (GPOMs) (O’Callaghan and
Ramos 2014; Wang and Englot 2016; Jadidi, Miró, and Dis-
sanayake 2017) and Hilbert maps (HMs) (Ramos and Ott
2015; Doherty, Wang, and Englot 2016) modeled the oc-
cupancy probability as a continuous function of longitude-
latitude locations rather than individual probabilities associ-
ated with different cells of the grid. By considering neigh-
borhood information, GPOMs and HMs were able to infer
occupancy probabilities in even occluded or partially ob-
served areas (Guizilini and Ramos 2017) which would oth-
erwise be challenging with grid-based approaches. As op-
posed to grid maps, GPOMs and HMs can generate maps
with any resolution merely by evaluating the continuous
function at any location, and hence they are called contin-
uous occupancy mapping techniques. This way it is possible

to capture the continuity of the space from data itself in a
principled manner rather than interpolating a discrete map
as a post-processing step.

For both continuous occupancy mapping techniques,
training data are D = {xn, yn}Nn=1 where x ∈
R2 are longitude-latitude pairs and y ∈ {−1, 1} =:
{unoccupied, occupied} are occupancy levels. Laser hit
points are considered as occupied and points randomly
drawn from a uniform distribution of the laser beam
U(robot’s position, laser hit point) are considered as unoc-
cupied points. The objective is to learn the occupancy proba-
bility p(y∗|x∗,D) of an unknown point in the space x∗ based
on a Bernoulli likelihood (occupied and unoccupied) using
training data D.

In GPOMs, the predictive probability distribution
p(y∗|x∗,D) = N (x∗;µ∗, σ∗) is obtained by marginaliz-
ing the posterior distribution p(f |y) over latent functions
f , given all observations y. In order to capture spatial
dependencies, a prior distribution over latent functions f
is introduced. This prior is a Gaussian process p(f) =
GP(0,K)—a collection of random variables which jointly
follows a Gaussian distribution (Rasmussen and Williams
2006). Here,K is the covariance matrix whose elements can
be calculated using a kernel function k(x, x′; θ) with hyper-
parameters θ. Typically, these hyperparameters are learned
by either minimizing the negative marginal log-likelihood
or through cross validation (Rasmussen and Williams 2006).
Covariance matrix needs to be inverted when learning hy-
perparameters as well as querying the occupancy probabil-
ity at unknown locations. This inversion has a computational
complexity of O(N3) where N is the number of data points
collected by the robot. Since the size of the covariance ma-
trix grows as the robot collects more data, GPOMs are pro-
hibitive when mapping with large datasets. Although this
work has later been scaled up (Senanayake, O’Callaghan,
and Ramos 2017) using big data Gaussian process (Hens-
man, Matthews, and Ghahramani 2015), the computational
complexity still grows as new data are collected.

The key to the success of GPOMs is using kernels to
capture neighborhood information. Based on this property,
(Ramos and Ott 2015) proposed to evaluate kernels k(x, x̃)
between data x and some pseudo-inputs x̃ hinged in differ-
ent locations of the environment rather than evaluating the
kernel for all pairs of data. Although this essentially reduces
the computational complexity, this can no more be repre-
sented as a process which follows a joint probability dis-
tribution. Taking a frequentists approach, HMs minimizes
the negative log-likelihood to learn weight parameters of the
model y = σ

(
w0 +

∑M
m=1 wmk(x, x̃m)

)
where σ(.) is the

sigmoidal function and M is the number of hinged features.
Since the model can be easily over-fitted due to the enor-
mous number of features, the objective function is regular-
ized using a combination of Lasso and Tikhonov penalties
λ1‖w‖1 +λ2‖w‖22, where regularization parameters λ1 and
λ2 have to be chosen heuristically.



Bayesian Hilbert Maps for Moving Robots
By taking a Bayesian approach, Bayesian Hilbert maps
(BHM) (Senanayake and Ramos 2017) eliminate the re-
quirement of heuristically tuning regularization parameters
which could especially be difficult in dynamic environ-
ments. Assuming the robot is stationary, (?) demonstrated
mapping small areas within the vicinity of the robot e.g. 60
m radius. In this section, we further discuss the streaming
setting of BHMs which can accommodate a moving robot to
map large areas.

A feature vector is calculated for any input x using M
pseudo-inputs x̃ hinged in different locations of the environ-
ment,

Φ(x) =
(
1, k(x, x̃1), k(x, x̃2), ..., k(x, x̃M )

)
, (1)

where k(x, x̃1) is a kernel function to measures the similar-
ity between its input points. A discussion on how to hinge
these points will be discussed in detail.

The probability that a point x is unoccupied is given by
σ
(
−w>Φ(x)

)
. However, unlike in HMs where the weights

are scalars, the weights in BHMs are probability distribu-
tions w ∼ N (µ0,Σ0). In fact, because of the sigmoidal
likelihood1, the posterior distribution is intractable (Bishop
2006; Jaakkola and Jordan 1997). Therefore, the likelihood
is approximated using the Taylor expansion at local pertur-
bation points ξ and then use variational inference is used to
find an approximate posterior distribution q(w) ∼ N (µ,Σ).
Variational inference has been shown effective over Laplace
approximation for mode matching or Markov chain Monte
Carlo (McMC) techniques when the number of dimensions
is high (Blei, Kucukelbir, and McAuliffe 2017). In varia-
tional inference, the log-marginal likelihood is decomposed
as,

ln p(y|x)︸ ︷︷ ︸
marginal

likelihood

= L
(

q(w)︸ ︷︷ ︸
approx.

posterior

)
+ KL( q(w)︸ ︷︷ ︸

approx.
posterior

‖ p(w|y)︸ ︷︷ ︸
posterior

)
, (2)

where,

KL =

∫
q(w)ln

(
q(w)

p(w|y)

)
dw, (3)

is the Kullback-Leibler divergence between the approximate
posterior and the true posterior. Since this is not evaluable,
the lower bound (negative variational free energy),

L =

∫
q(w)ln

(
p(w,y)

q(w)

)
dw, (4)

is maximized w.r.t. µ, Σ, and ξ.
Since the robot is moving in a large area to collect new

data, it is not feasible to store all data and using all data to
learn parameters. In stead, we can use the posterior evalua-
tion of the previous update as the prior distribution for the

1

q(w)︸ ︷︷ ︸
approx.

posterior

≈ p(w|y,x)︸ ︷︷ ︸
posterior

∝ p(y|w,x)︸ ︷︷ ︸
likelihood

×p(w)︸ ︷︷ ︸
prior

current update,

Posterior(t) ∝ Likelihood(t)× Prior(t)
∝ Likelihood(t)× Posterior(t− 1)

(5)

This can be thought of as we implicitly carry forward all
useful information extracted from the previous lidar scans
into the present by means of probability distributions.

Denoting the current time step with t and the number of
data points in the current scan with Nt, for each scan, the
parameters can be sequentially learned in an EM-fashion,

E-step:

µt = Σt

(
Σ−1t−1µt−1 +

Nt∑
nt=1

(ynt
− 0.5)Φ(xnt

)

)
(6)

Σ−1t = Σ−1t−1 + 2

Nt∑
nt=1

λ(ξnt)Φ(xnt)Φ
>(xnt) (7)

M-step:

ξ2nt
= Φ>(xnt

)(Σt + µtµ
>
nt

)Φ(xnt
) (8)

Here, λ(ξ) = 0.5ξ−1
(
σ(ξ)−0.5

)
, with ξ as a local parame-

ter used to linearize the function using the Taylor expansion.

GPOMs versus BHMs
Kernel methods lie at the heart of both continuous mapping
techniques—GPOMS and BHMs. Kernels have been used
to capture spatial dependencies. A function k : X ×X → R
for a non-empty set X is a kernel if there exists an R-Hilbert
space with a feature map ϕ : X → H s.t. k(x, x̃) =
〈ϕx, ϕx̃〉H, ∀x, x̃ ∈ X . For N inputs, the kernel matrix
KNN ∈ RN×N containing elementsKNN [i, j] = k(xi,xj)
is positive semi-definite. This is also the covariance matrix
in a Gaussian process.

For mapping techniques, a kernel represents how close
two points in the space are. Due to attractive theoretical
properties, simplicity, and success in practice (Guizilini and
Ramos 2016), we consider the squared-exponential kernel,

k(x, x̃) = exp
(
− (x− x̃)G−1(x− x̃)>

)
, (9)

throughout the paper. Here, G ∈ R2×2 controls the strength
of similarity for longitude and latitude separately.

Consider the Bayesian linear regression model y(x) =
w>Φ(x) with prior w ∼ N (0,Σ0). When the fea-
ture vector of (1) is infinite, i.e. M → ∞, and
the Σ0 = diag(λ1, λ2, · · · ), the covariance between
two evaluations can be calculated as Cov[y(x), y(x̃)] =
Φ(x)>Σ0Φ(x̃). With relevance to the Mercer’s theorem
(Hofmann, Schlkopf, and Smola 2008), observe that this
is also the Eigendecomposition of a real symmetric Gaus-
sian process covariance matrix with kernel k(x, x̃) =∑∞
i=1 λiΦi(x)Φi(x̃). Therefore, a BHM with finitely many

pseudo-points have inherent similarities to a GPOM.
The variational approximation to GPOMs (VSDGPOMs)

proposed by (Senanayake, O’Callaghan, and Ramos 2017)
uses Nyström approximation to make GPOMs computa-
tionally feasible. The covariance matrix is factorized as



Table 1: A comparison of the two Bayesian continuous mapping techniques: VSDGPOM vs. BHM

VSDGPOM BHM
Prior p(f̃) = GP(f̃ ;0,KMM ) w ∼ N (w;µt−1,Σt−1)
Approx. posterior p(f |y) w ∼ N (w;µt,Σt)
Kernel matrices M ×M matrix with elements {k(x̃m′ , x̃m)}Mm′,m=1 1×M matrix with elements {k(x, x̃m)}Mm=1

N ×M matrix with elements {{k(xn, x̃m)}Nn=1}Mm=1 The matrix does not grow with N
Runtime O(M2N); M << N O(M3)

KNN ≈ KNMK̃
−1
MMK

>
NM with KNN ∈ RN×N and

K̃MM ∈ RM×M for N inputs and M(<< N) pseudo-
inputs (inducing inputs). These pseudo-inputs should be
able to represent the dataset, and hence they can be cho-
sen as a subset of input points or by a clustering technique
such as a density based clustering technique such as DB-
SCAN. In a similar fashion, some pseudo-inputs to the ker-
nel, named hinged features, should be chosen in both HMs
(Guizilini and Ramos 2017) and BHMs (Senanayake and
Ramos 2017). Therefore, the accuracy of both models de-
pends on the choice of these pseudo-inputs. However, for
an input x, the kernels of VSDGPOMs are computed us-
ing {k(x, x̃m), k(x̃m′ , x̃m)}Mm′,m=1 where as the kernels
of BHMs are computed using {k(x, x̃m)}Mm=1. Note that
since the kernel is evaluated for all possible combinations
of pseudo-input pairs (x̃m′ , x̃m) in VSDGPOMs, it is a ma-
trix, where as it is a feature vector in BHMs.

The Nyström approximation used in VSDGPOMs is,

Φ̃(x) = D̃−1/2Ṽ >
(
k(x, x̃1), k(x, x̃2), · · · , k(x, x̃M )

)>
,

(10)
where D̃ = diag(λ̃1, λ̃2, · · · , λ̃M ) and Ṽ =
(ṽ1, ṽ2, · · · , ṽM ) are Eigenvalues and Eigenvectors,
respectively. Observe that the kernel vector of (10) has the
same form as that of BHMs given in (1). It can be easily
shown that the (n, n′) element of KNN is Φ̃>(xn)Φ̃(xn′).

Although pseudo-inputs in VSDGPOM being a subset
of input is not required, they should represent the en-
tire dataset (Hensman, Matthews, and Ghahramani 2015;
Bauer, van der Wilk, and Rasmussen 2016), possibly as the
cluster centers of a clustering algorithm. This is because the
kernel is evaluated for all possible combinations of pseudo-
input pairs (x̃m′ , x̃m), and they are directly used to define
the prior as p(f̃) := p

(
f(x̃1), f(x̃2), · · · , f(x̃M )

)
. Hence,

pseudo-inputs that do not represent the dataset, i,e. an erro-
neous prior, would result in a fallacious posterior distribu-
tion. In contrast, pseudo-inputs to the BHMs can consist of
points that represent the dataset as well as any other point
in the space. Moreover, unlike in VSDGPOM, as shown in
Table 1, BHMs neither require calculating the kernel (cor-
relation) between pseudo-inputs nor they are used to com-
pute the prior. Instead, as described previously, the prior is a
distribution over weights of the kernel. As we will show in
experiments, this property of being able to capture the spa-
tial correlation between an input point and any other point
in the space is useful for making inference in areas of the
environment where few or no data point are available.

One other important factor to use continuous occupancy
mapping techniques in real world is the run time of algo-
rithms. ForN inputs (the total number of points over all lidar
scans) and M(<< N) pseudo-inputs, GPOM has a runtime
computational complexity of O(N3) and VSDGPOM has a
computational complexity of O(NM2), while the stream-
ing setting of the BHMs has a computational complexity of
O(M3). Therefore, BHMs are efficient for M < N which
indeed is the case. On the other hand, since the computa-
tional complexity of streaming BHMs is not dominated by
N , as opposed to Gaussian process based techniques, learn-
ing time does not increase as more data are captured. Here,
we assume that the number of data points in each scan is
considerably smaller than the entire dataset, i.e. Nt << N .
Data gathered in each scan can be simply discarded after up-
dating the model. A comparison of the two models is given
in Table 1.

Convolution for Occupancy Mapping

Convolution of functions is ubiquitous in signal processing
and control theory for applications from signal smoothing to
systems identification. Convolution has also been success-
fully used for image recognition using convolutional neural
networks (CNNs). In this section, we present a variety of
techniques to use convolution of kernels as a powerful tool
to improve the streaming setting of BHMs and map large
areas with moving robots.

Sampling laser beams

As discussed in the Continuous Occupancy Mapping Sec-
tion, laser hit points are considered as occupied (y = +1)
and an arbitrary number of points drawn randomly from
a uniform distribution between the robot and the laser hit
point are considered as unoccupied points (y = −1). How-
ever, this could result in having fewer points away from the
sensor more points close to the sensor. Although it is pos-
sible to sample finitely many data points along the laser
beam, it would then require evaluating finitely many kernels
and increasing model update time. As illustrated in figure 2,
we propose to use line segments between the sample points
rather than points itself.

Consider a line segment is given by a vector ~x := ~xa +
ζ~xb parameterized by ζ ∈ [0, 1]. In the two dimensional
case, it is (x1, x2) = (x1,a, x2,a) + ζ(x1,b, x2,b). We com-
pute the convolution between between a vector ~x and a



Figure 2: (a) points are used in typical continuous occupancy
mapping (b) using a collection of line segments instead of
points

pseudo-input x̃ as,

k(~xζ , x̃) =

∮ 1

0

exp
(
− (~xζ − x̃)G−1(~xζ − x̃)>

)
dζ

=

∫ xb

xa

exp
(
− (x− x̃)G−1(x− x̃)>

)
dx

(11)

Note that this results in averaging effects. Though there
is no closed form solution, this can be easily evalu-
ated using approximations to error functions erf(x) :=

π−
1
2

∫ x
−x exp (−t2)dt which are readily available in many

scientific computing libraries. Another method approximate
is to consider Riemann sum or considering a drawing Nab
samples from a uniform distribution xab ∼ U(xa,xb),

k(~xζ , x̃) ≈ 1

Nab

Nab∑
i=1

exp
(
− (xab − x̃)G−1(xab − x̃)>

)
(12)

This can be understood as having sub-line segments. Con-
sider the σ-algebra formed by S having all intervals [a′, b′)
in [a, b). Then [a′, b′) is also a Borel set. For the Lebesgue
measure P of pairwise disjoint sets Ai = [ai, bi), from σ-
additivity, P

(
∪∞i=1 Ai

)
=
∑∞
i=1 P(Ai).

The method proposed in (O’Callaghan and Ramos 2011)
related to GPOMs integrates out the entire laser beam—
from the robot to the laser hit point—result in merely one
feature which could not be representative enough for com-
plex and dynamic environments in Hilbert mapping.

Regionalized supports
So far the supports we considered are points in the space
(Figure 3(a)). Ideally, there should be infinite number of
such supports. The farther the points are to each other, the
poorer the representation is. However, the computational
complexity of BHMs cubically increases with the number of
supports—O(M3). Therefore, we propose to convolve data
points with areas rather than points to cover the entire realm.
The following techniques can be used in order to perform
convolution in a tractable and computationally efficient way.

Mixture of Gaussians As shown in Figure 3(b), points
can be replaced with Gaussian distributionsN (m, S). Now,
the effective kernel becomes a convolution over probability
measures P. Using 9, the kernel between the input x andmth

measurable support x̃m,

k
(
x,P(x̃m)

)
=

∫
k(x, x̃m)dP(x̃m)

=

∫
k(x, x̃m;G)N (x̃m;mm, Sm)dx̃m

= |G−1S + 2I|− 1
2

exp
(
− (x− x̃m)(G+ S)−1(x− x̃m)>

)
(13)

The derivation is straightforward.
Rather than assuming isotropy as in Figure 3(b), it is

possible to use the full covariance matrix S as in Fig-
ure 3(c). To this end, a Gaussian mixture model f(x) =∑M
m=1N (x;mm, Sm) can be used (Bishop 2006). How-

ever, as a straightforward modification to the standard al-
gorithm, means should be kept stationary in a regular grid
while learning the covariances. Using k-means to cluster in-
put data, (Guizilini and Ramos 2016) have shown that hav-
ing different variances along different directions is useful
for obtaining smoother edges in 3D surface modeling. How-
ever, unlike GMMs, k-means does not provide covariances
and hence a k-means based method cannot be readily incor-
porated into (13).

Tessellation Another straightforward method to cover the
entire mapping area is tessellation. Note that this is com-
pletely different to occupancy grid maps (Elfes 1987) as the
objective of tessellation here is to build supports which are
then used to compute kernels. Denoting an area with s(·),
the kernel is,

k
(
x, s(x̃m)

)
=

∫ bm2

am1

∫ bm2

am1

k
(
x, (x̃m1, x̃m2)

)
dx̃m1dx̃m2

≈ 1

|X̃m|

∑
x̃′
m∈X̃m

k(x, x̃′m)

(14)

where X̃m are samples drawn from a bivariate uniform
distribution on the longitude-latitude plane (am1, bm1] ×
(am2, bm2]. For simplicity, we restrict the tessellation to
be rectangles as in Figure 3(d). Rather than drawing sam-
ples from a uniform distribution, as in (Reid, Ramos, and
Sukkarieh 2009), it is also possible to use error functions to
make the kernel computationally evaluable.

Experiments and Discussions
The program was developed using the Python program-
ming language and an Intel corei7 laptop (no GPUs) with
8 GB RAM was used to conduct experiments. Three dif-
ferent datasets were used to carry out experiments to show
different aspects of the proposed techniques,



Figure 3: Regionalized supports (a) points (b) Gaussians (c) Gaussians with relevance detection (d) rectangular supports

Figure 4: (a) Dataset 2 (b) a mixture of Gaussians (c) rectangular tessellation. Observe that the Gaussians are aligned with
borders, indicating high correlation while Gaussians are almost isotropic when data are identically distributed. Inside objects
where there are no data, Gaussians have a negligible covariance, making them equivalent to having points.

Figure 5: The effect of regionalization

1. Dataset 1: A publicly available simulated environ-
ment with moving obstacles used in (Senanayake,
O’Callaghan, and Ramos 2017). The robot is stationary
and LiDAR sensor can see 1800 within a 80m radius (fig-
ures in supplementary materials).

2. Dataset 2: A large (600×300m2) simulated environment
to represent outdoor. A robot with a 60 m LiDAR moves
in the environment (Figure 1).

3. Dataset 3: A real world dataset to represent an in-

Table 2: Average AUC and NLL (µ ± 2σ) calculated using
the test datasets. Large AUC values and small NLL values
indicate accurate models.

AUC NLL
Method Dataset 2 Dataset 3 Dataset 2 Dataset 3
BHM 0.83 ± 0.12 0.92 ± 0.17 0.47 ± 0.14 0.36 ± 0.19
VSDGPOM 0.80 ± 0.20 0.79 ± 0.16 0.37 ± 0.16 0.53 ± 0.12

door environment at Intel Labs (publicly available:
http://radish.sourceforge.net/). The robot moves in a pas-
sage multiple loops (Figure 7).

In all experiments, we assumed the position of the robot is
known from an external sensor and hence we only focused
on mapping. w ∼ N (0, 104I) was used as the diffused prior
and G matrix of the kernel were 16I , 13I , and 0.15I for
datasets 1,2, and 3, respectively. Note that these values con-
trol the smoothness and can be set using grid search or by
maximizing the objective function.

The area under ROC curve (AUC) and negative log-loss
(NLL) are used to evaluate the accuracy of the models as in
(Bishop 2006; Senanayake, O’Callaghan, and Ramos 2017).
10% of randomly chosen data that were never used for train-
ing were used to compute these metrics i.e. testing dataset.

Convolution of kernels
Figure 4 (b) and (c) were obtained usig dataset 2 to validate
the method illustrated in Figure 3 (c) and (d), respectively. In
this experiment, we consider the effect of considering areas
over points. Dataset 1 was used to see the temporal effect as
it is a dynamic environment with moving vehicles. As shown
in Figure 5 (a), we draw different number of samples and



Figure 6: AUC and NLL (a) Dataset 2 (b) Dataset 3

Figure 7: Dataset 3 (a) VSDGPOM (b) BHM

computed the convolution as in (14), keeping the center-to-
center distance of areas (granularity) at 15. The sample size
of 1 is equivalent to having point supports rather than region
supports as in Figure 3 (a). As the number of samples in-
creases up to a certain limit, the accuracy also increases. As
shown in Figure 5 (b), this limit depends on the granularity.
In conclusion, regionalization is important especially when
the supports are farther apart (i.e. bigger granularity values).
This occurs when we want to map large environments as we
do not want to set M to a large number.

Moving robot
(Senanayake and Ramos 2017) assumed that the robot is sta-
tionary. However, for real world applications, it is required
to move the robot and map since the distance a commercial
lidar can see does not typically exceed 100 m. In this exper-
iment, moving robots of datasets 2 and 3 were used. A RBF
was used as the kernel.

Table 2 shows the average AUC and NLL for the two
datasets while Figure 6 illustrates how the the accuracy im-
proves as the robot captures more data. The AUC of BHM
is always higher. However, for dataset 3, NLL for VSDG-

Figure 8: (a) Run time for dataset 2. BHMs have an almost
constant update time while it cubically increases in VSDG-
POM. (b) VSDGPOM map for dataset 3. In comparison with
Figure 1, observe that values inside the obstacles are erro-
neously predicted as occupied instead of unknown.

POM of dataset 2 is lower than (the lower the NLL, the bet-
ter the model is) that of BHMs. This is due to two reasons:
i) the supports of BHM were placed sparsely at 5 m, and ii)
the NLL calculation using the 10% of data used in the test
set does not take into account the unseen areas which are in
fact erroneously predicted in VSDGPOM. This is illustrated
in Figure 8 (b). Comparing Figures 7 (a) and (b), although
similar squared-exponential kernels used in both methods,
BHMs can easily capture sharp edges and boundaries with
much fine details while VSDGPOMs result in a dilated map.

On the other hand, as shown in Figure 8 (a), the runtime of
VSDGPOM grows as more data are captured. In contrast, as
discussed, the runtime of BHMs is almost constant for every
update. Practically, BHMs are efficient as the convergence of
the EM algorithm occurs in 1-2 iterations. Note that (6)-(8)
require inverting the covariance matrix of the prior distribu-
tion. For M supports, this would cost O(M3). When map-
ping even larger areas of several square miles, it is straight-
forward to partition the environment and have a collection
of maps.

Conclusions
The two main Bayesian continuous occupancy mapping
techniques were analyzed and maps were built using moving
robots using the streaming setting of the Bayesian Hilbert
maps algorithm. These maps can be improved by using con-
volution of kernels in different ways. Since only squared-
exponential kernels have been considered in Hilbert map-
ping literature, it would be worthwhile to investigate using a
combination of kernels (Thomas et al. 2002; Smits and E.M.
2002) to further improve the quality of maps.
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