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Abstract

Understanding and predicting how influenza propagates
is vital to reduce its impact. In this paper we develop a
nonparametric model based on Gaussian process (GP)
regression to capture the complex spatial and tempo-
ral dependencies present in the data. A stochastic vari-
ational inference approach was adopted to address scal-
ability. Rather than modeling the problem as a time-
series as in many studies, we capture the space-time
dependencies by combining different kernels. A kernel
averaging technique which converts spatially-diffused
point processes to an area process is proposed to model
geographical distribution. Additionally, to accurately
model the variable behavior of the time-series, the GP
kernel is further modified to account for non-stationarity
and seasonality. Experimental results on two datasets of
state-wide US weekly flu-counts consisting of 19,698
and 89,474 data points, ranging over several years, il-
lustrate the robustness of the model as a tool for further
epidemiological investigations.

Introduction
Influenza is an infectious disease caused by a virus whose
activity is typically peaked during winter. Influenza is re-
sponsible for more than 2% of all deaths in the US which
is the highest mortality due to any infectious disease (CDC
). Moreover, deaths can be in the order of millions during
a pandemic: 0.4 million deaths during 2009 swine flu, 1
million during 1968 Hong Kong flu, 2 million during 1959
Asian flu and 40–50 million during 1918 Spanish flu (WHO
2005).

Annihilating all sources of virus (types A, B and C) are
impossible. Although vaccines can be designed to abate the
overrun of influenza virus, they cannot be used over con-
secutive years as influenza virus change its biological form
frequently due to its high mutation rate. Additionally, modi-
fication and manufacturing of vaccines on a large scale takes
time. A plausible solution to reduce the annual death rate
and to prevent transforming a seasonal epidemic to a pan-
demic is to subside transmission. Consequently, envisaging
how the virus spreads across geographical areas with time,
i.e. spatio-temporal dynamics, is vital.
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Influenza Prediction
In most studies, modeling influenza or influenza-like ill-
nesses (ILI) has been considered as a time series prob-
lem. Therefore, autoregressive models have been the popular
choice of many researchers (Dugas et al. 2013) (Viboud et
al. 2003). While many studies model seasonal effects, Wang
et al. (2015) have focused on improving the short-term pre-
diction accuracy. Similarly, variations of particle filters and
ensemble filters have been used to predict influenza activ-
ity. Yang et al. (2014) compared six state-of-the-art filters
and concluded that their results are comparable. Addition-
ally, ensemble of other simple regressions such as matrix
factorized based regression, nearest neighbor based regres-
sion, etc. (Chakraborty et al. 2014) have been tested . Al-
though these autoregressive, filter-based and ensemble mod-
els are convenient to use, they ignore the disease’s strong
geographical dependencies. Crucially, they do not provide
an uncertainty measure about the prediction which prohibits
any risk-based decision-making process.

Although attempts to map retrospective spatio-temporal
effects of influenza and other diseases are not rare, corre-
lating space and time is not widely studied. A hierarchical
Bayesian parametric model has been proposed for model-
ing the spatio-temporal interaction of generic disease map-
ping (Waller et al. 1997) however it lacks the ability to fore-
cast future outbreaks. Unlike influenza whose case count in
a given place can suddenly increase or decrease, lung can-
cer data that they have used in experiments are smooth in
both space and time. Moreover, Markov chain Monte Carlo
(McMC) calculations in their solution ultimately limits the
maximum size of the dataset that can be considered.

Bayesian Nonparametric Models
For any dataset, it is less desirable to utilize a parametric
model unless all of its dependencies are known. Although
few studies show the correlation between influenza and ex-
ternal factors (Charland et al. 2009) (Viboud et al. 2006),
all major factors that affect influenza activity remain elu-
sive. This is mainly due to the complexity of the problem,
amount of data and the number of plausible factors. As a
result, this eventually becomes a big data analytics prob-
lem (Chakraborty et al. 2014) (Davidson, Haim, and Radin
2015) with unknown dependencies and hence many afore-
mentioned parametric methods are less useful.



Considering the disadvantages of exploiting parametric
models in influenza or ILI prediction and the increasing pop-
ularity of non-parametric models for problems with com-
plex interactions, we use a Gaussian process (GP) — a non-
parametric Bayesian method — for prediction. Importantly,
such methods always provide the uncertainty of prediction
(typically as standard deviation) which is essential for any
meaningful forecast. GP regression is best known for its su-
perior performance in multi-dimensional spatial models. In
contrast to the conventional use of GP regression as an in-
terpolation model for smooth and small-scale datasets, we
demonstrate Big Data GP (Hensman, Fusi, and Lawrence
2013) for prediction purposes with highly variable influenza
data. Moreover, rather than considering time as merely an-
other dimension of the GP model, we carefully combine ker-
nels to model non-stationary and periodic behavior of the
time series.

Although Carrat and Valleron (1992) have attempted to
use GP for modeling influenza, their results were inaccurate
mostly due to the infancy of GP methods a couple of decades
ago. The model could neither capture spatio-temporal de-
pendencies nor could it make forecasts. In our study, we cap-
ture the space-time interaction by combining kernels with
addition and multiplication. More recently, Saavedra et al.
(2015) used a mixture of GP-priors with thin plate splines
for modeling influenza cases in Western Australia. Since
splines are typically used for interpolation in the space do-
main, it is not clear how the model can be extended for pre-
dicting into the future.

This paper presents a novel spatio–temporal model for in-
fluenza prediction trained from a large amount of data and
able to capture long and short-term patterns. The model is
a powerful platform for epidemiologists to identify factors
that affect influenza transmission. Further, our contribution
extends to the Gaussian process community by demonstrat-
ing that i) GPs are a valid choice for prediction of spatial-
temporal processes and; ii) stochastic variational inference
can be used to handle large amount of data which would
otherwise be impossible with conventional GP learning tech-
niques (Hensman, Fusi, and Lawrence 2013).

Large Scale Gaussian Process Regression
Gaussian Process Regression
The objective is to predict the output distribution
p(y∗|x∗,D; θ) = N (µ∗, σ

2
∗) for an arbitrary D-dimensional

input x∗, given training data D = {xi, yi}Ni=1. Consider
the model yi = f(xi) + εi with εi ∼ N (0, σ2

ε ). The joint
Gaussian distribution for the latent process f(x) having a
zero mean and covaraince function k(xi,xj) is given by
the Gaussian process f(x) ∼ GP

(
0, k(xi,xj)

)
. The popu-

lar choice for k(xi,xj) is σ2 exp(−‖xi − xj‖22/2l2) where
hyperparameters θ = (σ2, l) are typically learned using a
gradient-based optimization technique by maximizing the
log-marginal likelihood (Rasmussen 2006).

For i, j = 1, 2, . . . , N , k(xi,xj) generates the covariance
matrix KNN where the subscripts indicate the size of the
matrix. The equations (Rasmussen 2006) of log-marginal
likelihood and inference contain the term K−1NN , meaning

that kernel inversion is essential in both training and predic-
tion phases. Since this inversion has a computational com-
plexity ofO(N3), the number of data points is typically lim-
ited to around 2000 to perform learning and inference in a
feasible time using a standard PC.

Nyström Approximation for GP
Although it is possible to “greedily” use a subset of data
(SoD) points, M < N to make approximations through
subsampling, previous methods attempted to make use of
all data yet keeping the complexity manageable. Quiñonero-
Candela and Rasmussen (2005) have adopted Nyström
method, which was originally used as a device for numer-
ical integration, to approximate the covariance matrix as,

KNN ≈ K̃NN = KNMK
−1
MMK

>
NM . (1)

KMM is generated from a set of M inducing inputs x̆ s.t.
M � N . Although it has several forms with slight mod-
ifications (Quiñonero-Candela and Rasmussen 2005), pro-
jected process (PP) approach is popular and intuitive.

All of these methods have complexity O(M2N). How-
ever, if weekly influenza cases in all states of the US are
considered, there are around 2500 data points per year. Since
it is required to have training data of past few years, even this
sparse approximation is not useful. Further, training and in-
ference becomes clearly infeasible when using a multitude
of hyperparameters to model the spatio-temporal dynamics
of the past few decades.

Stochastic Variational Inference for GP
Following a different philosophy – variational inference –
Titsias (2009) obtained the same predictive distribution as
PP. As a successor, (Hensman, Fusi, and Lawrence 2013)
proposed the Big Data GP model which has a computational
complexity of O(M3). Unlike the SoD model it considers
all data points (at least a majority) and hence more represen-
tative.

For notational simplicity, let the latent function of inputs
be f := f(x) and latent function of inducing inputs be
f̆ := f(x̆). Therefore, p(f̆) = N (f̆ ; 0,KMM ). The novelty
of Hensman’s work is that they introduced an explicit vari-
ational distribution p̂(f̆) = N (f̆ ; m,S) as an approximating
distribution and derived a decomposable lower bound,

L =

N∑
i=1

(
logN (yi|K>MN,:iK

−1
MMm, σ2)

− 1

2σ2
K̃NN,ii −

1

2
tr(SΛi)

)
−KL

(
p̂(f̆)‖p(f̆)

)
, (2)

where Λi = σ2K−1MMKMN,:iK
>
MN,:iK

−1
MM , : represents all

elements, and KL is the Kullback–Leibler divergence.
Optimization under this framework is taken place using

natural gradients of ∂L
∂m and ∂L

∂S to approximate p̂(f̆). In
each natural gradient descent (NGD) step, hyperparameters
θ are optimized using stochastic gradient descent (SGD)
with a learning rate α: θ ← θ + α∂L∂θ . The requirements
for SGD are satisfied as L is represented as a summation.



Furthermore, it is possible to consider mini-batches of size
R ∈ {1, 2, · · · , N} in each gradient descent step. In our ex-
periments, mini-batches were chosen s.t. R ≤ M to main-
tain O(M3).

Having approximated p̂(f̆) and θ in the training phase,
the predictive distribution y∗ ∼ N (µ∗,Σ∗) for x∗ can be
inferred from (3) and (4),

µ∗ = K∗MK
−1
MMm, (3)

Σ∗ = K∗∗ −K∗M (K−1MM ,−K
−1
MMSK−1MM )K>∗M (4)

σ∗ = diag(Σ∗). (5)

Constructing the Spatio-Temporal Kernel
The kernel employed in our model consists of three sepa-
rate components (time, space, and cross-covariance) whose
weights are learned during an optimization phase. This di-
chotomy allows us to explicitly incorporate domain knowl-
edge about the behavior of the disease in each dimension.

Let the independent variables in the training dataset be
{t, X} having N samples where t = {t}Ni=1 ∈ RN×1 is the
time component and X = {xi}Ni=1 ∈ RN×2 is the space
component (longitude and latitude).

Time Component
Periodicity: Given the fact that flu activity is high dur-
ing winter and low during summer, a periodic kernel (Ras-
mussen 2006) (Guizilini and Ramos 2015) was used. The
(ti, tj) element of the covariance matrix is given by,

ksin(ti, tj ; θ) = σ2
sin exp

(
− 2 sin2(πf∆t)

l2sin

)
, (6)

where ∆t = |ti − tj | is the distance metric and, θsin =
(σ2
sin, lsin, f) are scaler hyperparameters. The frequency f

is expected to be around 1 year.

Non-stationarity: Typically, GPs assume a constant
length-scale l across the entire input space and hence the
covariance only depends on the distance ∆ between two
input locations ti and tj . Intuitively, length-scale repre-
sents the realm of correlation. For instance, if the output
variable decreases sharply, farther points should not be af-
fected requiring a short length-scale only in the local re-
gion. To account for this non-stationarity, an input dependent
length-scale was used, following the method of Paciorek
and Schervish (2004). Paciorek’s kernel was used success-
fully for 3-D digital terrain modeling (Lang, Plagemann,
and Burgard 2007) and environmental monitoring (Garg,
Singh, and Ramos 2012). Other popular treatments to deal
with non-stationarity such as mixture of GPs (Tresp 2000)
are less suitable for predictive analytics as regions of mix-
tures should be pre-defined. For multidimensional input z,
Paciorek’s squared-exponential kernel is defined as,

kpac(zi, zj) = σ2
pac|Σi|

1
4 |Σj |

1
4

∣∣∣∣Σi + Σj
2

∣∣∣∣− 1
2

exp

(
− (zi − zj)

>
(

Σi + Σj
2

)−1
(zi − zj)

)
, (7)

where Σ• := Σpac(z•) is the local squared-exponential ker-
nel at input location z•. Although the derivation of (7) is
based on convolutional kernel

∫
R2 kzi(u)kzj (u)du which is

positive semi-definite, intuitively it can be thought as the av-
erage between two.

Since the spatial distribution of influenza activity is ob-
served to be smooth and only the time series is jagged, Pa-
ciorek’s kernel is used only for the time component. Since
the time component is one-dimensional, Σ• reduces to l• :=
lpac(t•) and hence the modified Paciorek’s kernel is defined
as,

kpac(ti, tj) = σ2
pac

(
2lilj

(l2i + l2j )

) 1
2

exp

(
− 2∆2

t

(l2i + l2j )

)
.

(8)
Length-scale hyperparameter l• has to be evaluated for

every t•. The original framework used a separate GP to
model the length scale in a hierarchical formulation and
used Markov chain Monte Carlo (McMC) sampling to learn
the model. Obviously, this framework is not computationally
efficient, as noted by authors, due to i) hierarchical nature
and ii) use of McMC. As shown in Figure 1, we propose to
place length-scales lpac for summer and winter each year.
We call the length-scale bases t̄, following the notation of
Plagemann, Kersting, and Burgard (2008), and define an-
other internal GP for length-scale lpac ∼ GP t̄(σ

2
t̄
, l̄t). In the

learning process, as an approximation, hyperparameters of
the length-scale GP which is based on a squared-exponential
kernel, are optimized using SGD together with all other
hyperparameters θpac = (σ2

pac, lpac, σ
2
t̄
, l̄t) thus break-

ing the hierarchy and eliminating the requirement of McMC.

Figure 1: Schematic diagram of the non-stationary model.
All hyperparameters of Paciorek’s non-stationary kernel are
learned together.



Short-term and long-term trends: Although Paciorek’s
kernel is used to capture in-season variations, long-term
variations will not be captured as length-scales are rela-
tively small. Therefore, another squared-exponential kernel
(9) having a long length-scale lexp1 is superimposed for this
purpose. This is done by initializing the length-scale to a
proportionately large value which is further optimized using
SGD,

kexp1(ti, tj) = σ2
exp1 exp

(
− ∆2

t

l2exp1

)
. (9)

Combining the three kernels yields the final kernel for
time,

ktime = ksin(ti, tj)︸ ︷︷ ︸
periodic - (6)

+ kpac(ti, tj)︸ ︷︷ ︸
short-term - (8)

+ kexp1(ti, tj)︸ ︷︷ ︸
long-term - (9)

. (10)

Space Component
A squared-exponential kernel can be used to model the spa-
tial variation x• which has two sub-components, latitude and
longitude as indicated below,

kexp2(xi,xj) = σ2
exp2 exp

(
− ∆2

x

l2exp2

)
, (11)

where ∆x = ‖xi − xj‖2.

Averaging kernel: Influenza case count is given for a ge-
ographical region (e.g. a state in the US), not the count of
a specific position. When using (11) to represent regions,
the question where to place x• naturally arises as the equa-
tion is valid only for point processes. Centroid is a good
choice if regions are symmetric or small in area. Otherwise,
the morphology of the region should be taken into account
for accurate representation. Inspired by the integral kernel
k(xi,xj) =

∫ ∫
Axi

∫ ∫
Axj

k
(
xi(u),xj(v)

)
dudv for areas

Axi and Axj which requires expensive quadrature calcula-
tions (O’Callaghan and Ramos 2011), (Reid 2011), we pro-
pose an averaging kernel (12) illustrated in Figure. 2. It is
straightforward to prove that the kernel is positive semi-
definite,

kspace(Sxi, Sxj) =
1

|Sxi||Sxj |
∑

u∈Sxi

∑
v∈Sxj

kexp2(u,v),

(12)
where |S•| is the cardinality of set S• which consists of a
finite number of points in the area of interest as illustrated
in Figure 2. For instance, a region can be better represented
using multiple pairs of equi-spaced longitude–latitude coor-
dinates rather than a pair of longitude–latitude coordinates.

For a query point x∗, output can be calculated based on
kspace(Sx∗ , Sxj) as in (12) to obtain coarse boundaries and
kspace(x∗, Sxj) as in (13) to obtain smooth boundaries,

kspace∗(x∗, Sxj) =
1

|Sxj |
∑

v∈Sxj

kexp2(x∗,v). (13)

The averaging kernel may be unnecessary if the area of
S• is small compared to the entire distribution.

Figure 2: Illustration representing the averaging kernel idea.

Spatio-Temporal Covariance
To capture relationships between space and time, the time
kernel (10) is multiplied by another squared-exponential ker-
nel kexp3(xi,xj) which has a similar form of (11) with dif-
ferent hyperparameters θspace-time = (σ2

exp3, lexp3),

kspace-time = kexp3(xi,xj)× ktime. (14)

By combining (10), (12) and (14), the final kernel is ob-
tained,

k = ktime + kspace + kspace-time. (15)

Experiments
To demonstrate the predictive power of the method for the
propagation of influenza, two datasets were used:

1) Google flu trend (GFT): Recent studies show an
increasing interest in using web query data to predict
flu (Chakraborty et al. 2014). The US state-wide GFT
(Ginsberg et al. 2009) data (flu count/population) of 402
weeks from 02/Dec/2007 to 09/Aug/2015 were used in
the experiments. Alaska and Hawaii were excluded from
the analysis as they are not geographically connected to
the mainland, resulting in 49 states including District of
Columbia (19,698 data points).

2) 1972-2006 dataset (CDC): In order to analyze long-term
trends, exact ILI counts (CDC ) of 1826 weeks from 1972
to 2006 (Viboud et al. 2006) were used. The same states
as in the GFT dataset were used resulting in 89,474 data
points. Compared to this dataset, GFT contains more recent
data, however the two datasets were not merged due to the
different sources and sampling methods.

Experiment 1: Effect of each time component. In or-
der to verify the effect of each component in ktime (Eq.
10), total US flu count in the CDC dataset was used with
M = N/10 to run the regression model separately with ker-
nel combinations (ksin + noise), (ksin + kexp1 + noise)
and (ksin + kexp1 + kpac + noise). As illustrated in Fig-
ure 3 (a) and (b), although periodic kernel alone has con-
stant peaks, as expected, adding a squared–exponential ker-
nel clearly captures the long-term variation, decreasing the



MSE to 0.0433 from 0.0552. Superimposing the short-term
Paciorek kernel with the aforementioned combination, as il-
lustrated in Figure 3 (c), further decreases MSE to 0.0167,
with 70% overall decrease in MSE.

Figure 3: Experiment 1. (a) Periodic kernel with noise. (b)
Adding long-term kernel to a. (c) Adding short-term non-
stationary kernel to b.

Experiment 2: The averaging kernel. Flu-counts in both
datasets are state-wide composites and hence it is difficult
to select an approximate center-point to each state. Since all
states are not the same shape and size, each state was rep-
resented by a set of points with 1◦ latitude and longitude
accuracy. Then (Eq. 12) was used to calculate the covari-
ance. Figure 4 (a) shows state-wise flu-count at approximate
center-points at a given time (week of 02/Dec/2007) while
(b) shows the mean estimations calculated based on smooth
querying (Eq. 13).

Figure 4: Experiment 2. (a) Ground truth state-wise flu-
count marked at center points of states. (b) Estimated pre-
dictive mean.

Experiment 3: Space-time modeling. In order to further
investigate the effects of the averaging kernel, the US was
divided into 4 regions as in other major flu propagation re-
lated studies (Viboud et al. 2006): East includes the follow-
ing states CT, DE, ME, MA, NH, NJ, NY, PA, RI and VT;
West includes AZ, CA, CO, ID, MT, NV, NM, OR, UT, WA
and WY; South includes AL, AR, DC, FL, GA, KY, LA,
MD, MS, NC, OK, SC, TN, TX, VA and WV; and Midwest
includes IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, SD
and WI. Figure 5 shows mean estimations and standard de-
viations given by (3) and (5) for East region using the CDC
dataset.

Figure 5: Experiment 3. Prediction and associated standard
deviation for the East region.

Experiment 4: Scalability. The space-time model was
run on both datasets demonstrating the use of stochastic vari-
ational inference in GPs for predictions with thousands of
datapoints. Choosing only M = N/4 of data as inducing
points average of MSE was found to be 0.0014 for GFT. 1

Experiment 5: Prediction. One, two and fifty-two weeks
ahead predictions were made for years 2013, 2014 and 2015
based on GFT data with M = N/10. Figure 6 shows one-
week ahead prediction results for six states. It was observed
that the model sometimes attempts to overestimate in the
non-flu season due to the arrangement of inducing points.
Nevertheless, more accurate results can be obtained by in-
creasing the number of inducing points with a higher com-
putational cost or using a distributed Gaussian process.

Table 1: Experiment 5. Mean squared error (MSE) averaged
over states for spatio-temporal prediction of 150 weeks.

Method 1 week 2 weeks 1 year
Our approach 0.0043 0.0128 0.2900
GP - subset of data (SoD) 0.0156 0.0157 0.8642
k-NN regression 0.0068 0.0105 0.3586
LS polynomial regression 0.0169 0.0211 1.6557

1Supplementary materials - https://goo.gl/VCuVW3



Figure 6: Experiment 5. One-week-ahead prediction results
for 6 states.

Our method was compared to other conventional meth-
ods for ILI prediction - the results of which are shown in
Table 1. The MSE over all states of our method gener-
ally outperforms other methods, although k-NN regression
(Chakraborty et al. 2014) is comparable. For instance, n-
step-ahead predictions of k-NN method (a non-probabilistic
method) approximately follows the last training data point.
Hence its predictions are less accurate in peaks. MSE of k-
NN is relatively high because peak periods are smaller com-
pared to off season. In contrast, our method has an explicit
sinusoidal kernel combined with several squared exponen-
tial kernels to adjust for locality. Future comparisons will
include recent methods such as (Davidson, Haim, and Radin
2015) and alternative filtering techniques. Predictive perfor-
mance during a flu outbreak was further analyzed as this is
the most vital period. Figure 7 illustrates the first peak of
Figure 6 (year 2013) for two states.

Figure 7: Experiment 5. Influenza prediction in the vital pe-
riod.

In autoregressive moving average (ARMA) model and its
variations such as STARMA and VARMA, a considerable
amount of preprocessing has to be performed before model

fitting. For instance, any trends and seasonality should be re-
moved from data as AR models are valid only for stationary
data. Flu count is clearly non-stationary and removing the
seasonality is difficult as the dates of outbreaks vary from
year to year, though typically occurring in winter. The most
popular preprocessing technique is differencing (differentia-
tion in discrete domain) which severally deforms the dataset.
In our approach, rather than removing valuable features such
as seasonality from data, different kernels were used with as-
sociated hyper-parameters. Non-linear transformations have
not been applied to data to preserve the original shape.

Practical Considerations. When learning variational dis-
tribution and hyperparameters, the learning rate of natural
gradient descent (NGD) should be higher than that of SGD.
For instance, in our experiments empirical rates of 10−2 and
10−5 were used as the learning rates of NGD and SGD re-
spectively. Though rates of natural gradients are less stud-
ied, it is possible to use time-varying rate or averaged SGD
(ASGD) for the best and smooth convergence (Bottou 2012).
Regarding natural gradients, it was observed that S con-
verges several iterations after m.
Deciding the number of inducing points and placing them
appropriately is crucial for convergence time and accuracy.
Naı̈ve approaches to choose inducing points includes greed-
ily, equidistantly and clustering such as k-means. Neverthe-
less, it is not essential to satisfy x̆ ∈ x as inducing points
can be placed anywhere in the space. Hence, alternatively
with a greater cost, it is also possible to learn the position of
inducing points along with all other hyperparameters as part
of SGD. Intuitively, placing some inducing points around
regions with the highest rate of change, i.e. argmaxx

∂y
∂x , in-

creases accuracy, especially when the surface is not smooth.

Conclusions

We presented a variational Gaussian process regression tech-
nique to model and predict spatial and temporal variation of
influenza cases. Stochastic variational inference allowed the
use of Gaussian process for tens of thousands of data points.
Since the approach is non-parametric, explicit knowledge of
the underlying function’s complexity is not required, making
it suitable for this application. To address seasonality, non-
stationarity, short and long-term variations, different kernels
were combined. Future work will consider more compli-
cated dependencies, for example of weather and influenza
activity. We intend to determine whether there is improve-
ment in prediction accuracy when using meteorological vari-
ables such as point-wise humidity and temperature, by ex-
tending variational Gaussian process regression to its multi-
output form. Furthermore, a Poisson likelihood can better
reflect the nature of the output variable (non-negative, inte-
ger counts). Several recent works have suggested methods
for incorporating a GP framework with a non-Gaussian like-
lihoods (Nguyen and Bonilla 2014), (Steinberg and Bonilla
2014) and these will form the basis for the algorithm’s next
iteration.
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