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a b s t r a c t

This paper presents a robust place recognition algorithm for mobile robots that can be used for planning
and navigation tasks. The proposed framework combines nonlinear dimensionality reduction, nonlinear
regression under noise, and Bayesian learning to create consistent probabilistic representations of places
from images. These generative models are incrementally learnt from very small training sets and used for
multi-class place recognition. Recognition can be performed in near real-time and accounts for complexity
such as changes in illumination, occlusions, blurring andmoving objects. The algorithmwas tested with a
mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images, respectively.
This framework has several potential applications such as map building, autonomous navigation, search-
rescue tasks and context recognition.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Localisation in complex environments is one of the main
challenges for autonomous navigation and planning. This task
can be performed by solving the simultaneous localisation and
map building problem (SLAM) for which there exists a large
literature (see [1] for an overview and further references). In
SLAM the robot’s position is estimated based on its relative
position with respect to landmarks. At the same time, a map
of the environment is built with the estimated position of
those landmarks. Identification of landmarks in an unstructured
environment is an area of intensive research. Landmarks need to
be selected to facilitate further detection and association while
improving the quality of the map [2]. Humans, however, rather
than navigating using relative coordinates, have an abstract notion
of distancewhile still being able to estimate their position in space.
This ability is provided mainly from visual information associated
with an internal (map) representation that localises the person
based on the appearance of a scene rather than on precise distance
measurements to landmarks [3,4].

The idea of building an appearance-based model is explored
in the current paper for the purpose of robot localisation in
indoor and outdoor environments. The proposed framework can
be applied, for example, to planning tasks where the goal is to

∗ Corresponding author. Tel.: +61 293517156; fax: +61 293517474.
E-mail addresses: f.ramos@acfr.usyd.edu.au (F. Ramos),

ben.upcroft@qut.edu.au (B. Upcroft), suresh@acfr.usyd.edu.au (S. Kumar),
hugh@acfr.usyd.edu.au (H. Durrant-Whyte).

0921-8890/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2011.11.002
navigate to a particular place without necessarily specifying map
coordinates. In this sense the interaction between the operator and
the mobile robot is facilitated since it is easier to send commands
such as leave the car park and go to the library rather than go to
position (x, y).

In the proposed approach, places are learnt and recognised
from images obtained with a camera mounted on a mobile robot.
These images are subject to changes in illumination, blurrings,
occlusions, moving objects, etc. The goal is thus to incrementally
built a multi-class classifier from very few images so as to label
new images as the robot navigates. No other extra information
such as a topological map is provided. The difficulty of the problem
can be seen in Fig. 1 where some images of the testing dataset are
depicted.

Place recognition and localisation from images forms an
approach to SLAM [5]. Some previous approaches use image
histograms and topological maps for classification [6,7]. Others
use invariant features such as [8,9]. In another approach, image
features were used to estimate the position of the robot for map
building problems [10–12]. Cummins et al. demonstrated loop
closure over a 1.6 km path length based solely on the appearance
of the image [13]. However, the offline learning procedure takes
three hours and cannot be subsequently updated. Milford and
Wyeth demonstrate multiple loop closures over a large scale
topologicalmap using a biologically inspired visual system [14] but
require extensive parameter tuning. The novelty of thiswork lies in
robust recognition fromvery few training images (usually 3–10 per
place), without the need of a map, in a theoretical sound Bayesian
framework. Furthermore, the recognition system was tested in
both indoor and outdoor environments proving to be robust for
practical applications.
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Fig. 1. Images used for place recognition. As can be observed, blurring, occlusions, changes in illumination andmoving objects such as people and cars are some of the issues
the place recognition algorithm has to cope with.
In the solution proposed, the world is interpreted as a set of
places. Each place has a probabilistic representation learnt from
images. Localisation is performed in near real-time by evaluating
the responses of each model given a new image. The place
recognition task is treated as a Bayesian learning problem in a
space of essential features. Initially, training images are divided
into small patches that constitute a high dimensional set. The
dimensionality of this set is then reduced with nonlinear and
neighbourhood preserving techniques to create a low dimensional
set. These two sets are used to learn a mixture of linear models
for nonlinear regression, from points in the high to the low
dimensional space. Points in this low dimensional space constitute
the set of essential features and are used in the next step where
the variational approximation for Bayesian learning is computed
to create a probabilistic density for each place. Recognition is
performed by computing the log-likelihood of an entire image
over each place model. This approach was tested with sequences
of images obtained by the mobile robot in Fig. 2. The platform
operated under differing conditions including moving objects,
changes in illumination, different viewpoints, occlusions, outdoor
and indoor environments, demonstrating robust localisation.

This paper is organised as follows. In Section 2, the approach
for place recognition and how dimensionality reduction, nonlinear
regression and variational Bayesian learning can be combined
for a multi-class classification problem are explained. Section 3
shows somedetails of the implementationwhile Section 4presents
experimental results. Finally, conclusions are given in Section 5.

2. Algorithm description

This paper focuses on a classification procedure to map images
to labels. Each label corresponds to a place learnt from a set of
images. The learning algorithm is supervised as every image in
the training set has an assigned label. Thus, given a training set
of n pairs (Ii, pi), where Ii is the ith image and pi is the label of
Fig. 2. Pioneer AT used in our experiments.

that particular image, the algorithm needs to generate a model
to classify new images. These images can be obtained at different
view points or have partial occlusions.

Additionally, a very desirable feature in recognition algorithms
for robotics applications is the ability to learn accurate models
from very small training sets. This minimises the tedious task of
manual labelling while reducing training time and the storage
demands for the data. Therefore, we derive an algorithm that
uses all the information available from the image, as opposed
to conventional approaches e.g. [8,9] where only image features
are used, disregarding the rest of the image. The algorithm
has two main parts, the first is an unsupervised dimensionality
reduction method where the extracted features are compressed
while preserving most of the information content in a principled
manner. The second step builds a generative model for each
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place using Bayesian learning techniques. This provides a very
attractive and fundamentally sound method to learn from few
examples by combining prior information with training data.
Bayesian quantities, such as the marginal likelihood employed
in this work, contains the Occam’s Razor principle [15] which
essentially states that the simplestmodel is always preferable. This
avoids overfitting and allows the comparison of different statistical
models. In this paper, the models to be compared are mixtures of
Gaussians with different number of components.

The algorithm starts by dividing a given image into sets of non-
overlapping patches of the same size. The disposition of these
patches follow a grid or a lattice. Thus an image Ii is represented as
a set of m patches


Ii,1, . . . , Ii,m


. As a colour camera is used, each

pixel in the patch has three values representing red, green and blue
intensities. To further quantify texture, each patch is convolved
with a sequence of Gabor wavelets at different scales and
orientations. This is similar to the result obtained with steerable
pyramids; a well known and accepted procedure to extract texture
information in computer vision [16,17]. This convolution has also
a biological interpretation as it provides a good approximation
of natural processes for spectral decomposition that occurs in
the primary visual cortex. Each patch now has a feature-vector
representation xi,j = [Ii,j, φ


Ii,j


]
T

∈ RD, where φ is an operator
to indicate the Gabor wavelet convolutions.

The dimension D is usually intractable for building efficient
representationmodels. For example, if the size of the patch is 5×5
pixels and using four Gabor wavelets, D equals 175 (5 × 5 × 3
corresponding to colour values, plus 5×5×4 corresponding to four
Gabor wavelet convolutions). To cope with this high dimensional
problem, dimensionality reduction techniques are applied to
extract the essential information of each patch and represent them
in a lower dimensional space. This procedure, however, needs to
preserve important characteristics of the data such as keeping the
neighbourhood of points unchanged. This ensures that patches
with similar appearance, for example representing trees and grass
are located nearby in the low-dimensional representation.

Points in the low-dimensional space can then be classified using
generativemodels for each place. Thesemodels are learnt using the
variational Bayesian expectation maximisation algorithm which
is described later in this section. Fig. 3 depicts a diagram of the
learning and the classification procedures.

2.1. Neighbourhood-preserving dimensionality reduction

Dimensionality reduction is one of the techniques that can
manage the amount of information robotics’ applications face. In
this work, a nonlinear technique, Isomap [18], is applied to reduce
the dimensionality of image patches into a feasible number where
further statistical learning methods can be used. As opposed to
principal components analysis (PCA) [19] and multidimensional
scaling (MDS) [20], Isomap has the desired property of preserving
the neighbourhood of points in the low dimensional manifold.

Isomap works in three steps. In the first, distances between
points in the high dimensional space are computed in order to
determine neighbours. In the second step, Isomap estimates the
geodesic distances dG between all pairs of points by computing
their shortest path distances. In the final step, classical MDS is used
to compute a graph embedding in k (low) dimensional space that
closely respects the geodesic distances. The coordinate vectors wi

are chosen to minimise the norm


i,j(τ (dG) − τ(dW ))2ij, where
dW is thematrix of output space distances and τ is an operator that
converts distances into inner products. The global minimum of the
cost function is computed by setting the output space coordinates
wi to the top l eigenvectors of τ(dG).

Isomap is applied to the training set of patches returning a
set of points in a low dimensional space d,


yi,1, . . . , yi,m


, where
Fig. 3. Learning and classification procedures and complexities for place
recognition. In this diagram, N is the number of samples; M is the number of
components; D and d are the sizes of the high and the low dimensional spaces; k is
the size of the width of patches; ns and na are the number of scales and angles for
the Gabor convolution.

yi,j ∈ Rd. Note that the dimensionality of the embedded manifold
can be directly estimated from the Isomap algorithm by observing
the residual variance of the norm above.

2.2. Fast dimensionality reduction with non-linear regression

Isomap and indeed most nonlinear dimensionality reduction
algorithms are inherently deterministic algorithms and do not pro-
vide a measure of uncertainty of underlying states of high dimen-
sional observations. In addition, Isomap does not output amodel or
function to directly compute the low dimensional coordinates of
new observations, thus requiring k-neighbours based algorithms
that can be cumbersome in real-time applications.

An alternative solution is to learn a generative model p(x|y),
where x is a vector in the high dimensional space and y is
its low dimensional representation. This model encapsulates the
uncertainties inherent in the inference of low dimensional points
from noisy high dimensional observations. It can be learnt in a
supervised manner to derive compact mappings that generalise
over large portions of the input and embedding space. The
input–output pairs of Isomap can serve as training data for an
invertible function approximator in order to learn a parametric
mapping between the two spaces. Once the model is learnt, the
low-dimensional representation for patches from new images can
be computed efficiently. This is the key point to enable real-
time recognition since the essential features of a new image can
be quickly computed from the model by making probabilistic
inferences.
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Fig. 4. Graphical model for computation of parametric models from non-linear
dimensionality reduction algorithms. An arrow directed into a node depicts a
dependency on the originating node. The discrete hidden variable s represents a
specific neighbourhood on the manifold.

Given the results of Isomap, a mixture of linear models can be
learnt to perform dimensionality reduction quickly. This mixture
model is very attractive computationally as it can be trained
with Expectation Maximisation (EM) [21] and inference can be
efficiently computed. The joint probability distribution for the
mixture model p(x, y, s) contains a hidden discrete variable s
representing the weights of the components. Mixture of linear
models are similar to mixtures of factor analysers, that are
commonly used to perform simultaneous clustering and local
dimensionality reduction [22]. The only differences are that the
low dimensional variable y is observed (through Isomap), not
hidden, and the Gaussian distributions p(y | s) have nonzeromean
vectors νs and full covariance matrices Σs. Learning when the
variable y is observed seems to discover a solution of better quality
than in the opposite situation as in the conventional mixture of
factor analysers [23].

The graphicalmodel in Fig. 4 depicts the assumed dependences.
The discrete hidden variable s introduced in the model physically
represents a specific neighbourhood on the manifold over which
a mixture component is representative. This representation
conveniently handles highly nonlinear manifolds through the
ability to model the local covariance structure of the data in
different areas of the manifold. It can be trained with very large
datasets and the computational cost of inferences does not depend
on the number of training samples. This is themain advantage over
non-parametric techniques such as Gaussian processes [24].

The complete generative model can now be summarised based
on the assumed dependences (Eqs. (1)–(3)). The joint probability
distribution in the graphical model is expressed as
p (x, y, s) = p(x | y, s)p(y | s)p(s) (1)
where the conditional distributions are given by

p(x | y, s) ∝ exp

−

1
2
[x − Λsy − µs]T Ψ −1

s [x − Λsy − µs]


, (2)

p(y | s) ∝ exp

−

1
2
[y − νs]T Σ−1

s [y − νs]


. (3)

In the distributions above, Λs is a linear transformation matrix,
µs is the high dimensional mean, Ψs is a diagonal matrix with
variances in the high dimensional space, νs is the low dimensional
mean and Σs the full covariance matrix for the low dimensional
space. All of them defined for component s.

A common inference in this model is the evaluation of the
posterior p(y, s | xi). This posterior represents the probability
of the low dimension point given an ith observation in the high
dimensional space. From the joint distribution, it is calculated as

p(y, s | xi) =
p(xi | y, s)p(y | s)p(s)

s′


p(xi | y, s′)p(y | s′)p (s′) dy

. (4)

The solution of this expression results in amixture of Gaussians
with means given by
µy|s,xi = E [y | s, xi]

= νs +

Σ−1

s + ΛT
s Ψ

−1
s Λs

−1 
ΛT

s Ψ
−1
s


(xi − µs − Λsνs)

(5)
and covariances

Σy|s,xi = E

yyT | s, xi


= Σs − ΣT

s ΛT
s


Ψs + ΛsΣ

T
s ΛT

s

−1
ΛsΣs. (6)

Since Ψs is a diagonal matrix and Σs is assumed to be non-singular
(since it is a covariance matrix), the inverse of Ψs + ΛsΣ

T
s ΛT

s
can be efficiently computed by using the matrix inversion lemma
(Sherman–Morrison–Woodbury).

Weights can be computed bymarginalising the joint probability
p(x, y | s) over y to obtain:

p (s | xi) =
p(xi | s)p(s)

s′
p(xi | s′)p (s′)

, (7)

where

p (xi | s) =
1

(2π)D/2
| Ψs + ΛsΣ

T
s ΛT

s |
1/2

× exp


−

1
2

(xi − µs − Λsνs)
T

×

Ψs + ΛsΣ

T
s ΛT

s

−1
(xi − µs − Λsνs)


.

The result of the inference process is thus amixture ofGaussians
with means µy|s,xi , covariances Σy|s,xi and weights p (s | xi). To
make it feasible for the Bayesian learning this mixture is collapsed
so as to have a single mean, which will be used as a training point,
and a covariance matrix which will be used in the initialisation of
the hyper-parameters.

2.3. VBEM for mixtures of Gaussians

The data now represented with its essential features in the
low dimensional space is used to learn a generative model for
each place. This problem is formulated in a Bayesian framework
where themodel selection task consists of calculating the posterior
distribution over a set of models (which in this case will be
mixtures of Gaussians with different numbers of components)
given the prior knowledge and the dataset. Denoting s for the
hidden variable representing the weights, yi for the observations
of a place i, θ for the parameters of a modelM and p(M), p (θ | M)
for the prior over models and their parameters, respectively,
the posterior over models M given these observations is given
by:

p (M | yi) =
p (yi | M) p(M)

p (yi)
. (8)

The best model M is the model that maximises this posterior.
The first term in the numerator of Eq. (8) is known as marginal
likelihood and is the key expression in the Bayesian formulation
for model selection, since it represents an average of how
good a particular model fits the observations over all possible
parametrisation, convoluted by the prior. This quantity permits
the comparison of different models given the data by encoding
Occam’s Razor principle. Unfortunately, the computation of the
marginal likelihood involves the solution of integrals which in
most cases do not have an analytical form. To circumvent this issue,
the variational Bayesian approach is employed. The main idea is to
approximate the marginal likelihood with a lower bound by using
variational calculus techniques [25–27].

Introducing a free distribution q over s and θ , with
 

s q (s, θ)
dθ = 1, and applying Jensen’s inequality [28], it is possible to
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compute a lower bound on the log of the marginal likelihood:

ln p (yi | M) ≥

 
s

q (s, θ) ln
p (s, yi, θ | M)

q (s, θ)
dθ. (9)

Maximising this lower bound with respect to the free distribution
q (s, θ) is difficult. A better strategy is to factorise this free distri-
bution to yield a variational approximation in which q (s, θ) ≈

qs (s) qθ (θ):

ln p (yi | M) ≥

 
s

qs (s) qθ (θ) ln
p (s, yi, θ | M)

qs (s) qθ (θ)
dθ (10)

= FM (qs (s) , qθ (θ) , yi) . (11)
The quantity FM is a functional of the free distributions qs (s) and
qθ (θ) and is known as the negative free energy. The variational
Bayesian algorithm iteratively maximises FM with respect to the
free distributions until the function reaches a stationary value.
By taking the functional derivatives of FM with respect to qs (s)
and qθ (θ), and equating them to zero, ∂

∂qs(s)
FM (qs (s) , qθ (θ)) =

0, ∂
∂qθ (θ)

FM (qs (s) , qθ (θ)) = 0, produces:

VB-E Step:

q(t+1)
s (s) ∝ exp


ln p (s, yi | θ,M) q(t)

θ (θ) dθ


(12)

VB-M Step:

q(t+1)
θ (θ) ∝ p (θ | M) exp


s

ln p (s, yi | θ,M) q(t+1)
s (s)


. (13)

An interesting implementation of VBEM uses conjugate priors that
are analytically tractable and easy to interpret. Thus, Dirichlet,
Normal and Wishart multivariate distributions [29] are used as
priors over weights, means and covariances. They are denoted
as D (π; λ), N


x; µ, 6−1


and W (Γ ; α, B) and are functions of

their hyper-parameters. Also, amultivariate Student-t distribution
S (x; ρ, 3, ω) is used to represent the predicted density.
For the particular case of a Gaussian mixture model M with S
components, where each component hasweight given byπs, mean
µs and covariance 0s, the set of parameters can be written as θ =

{π, µ, 0} where π = {π1, π2, . . . , πS} , µ = {µ1, µ2, . . . , µS}

and 0 = {01, 02, . . . , 0S}.
Given these parameters and the model, the likelihood of an

observation yi,j in a d-dimensional space can be written as

p

yi,j | θ,M


=

S
s′=1

p

s = s′ | π


p

yi,j | µs, 0s


, (14)

where each component is a Gaussian with p

yi,j | µs, 0s


=

N

yi,j; µs, 0s


and p


s = s′ | π


is a multinomial distribution

representing the probability of the observation yi,j be associated
with component s′.
The prior over the parameters is given by

p (θ | M) = p (π)

s

p (0s) p (µs | 0s) , (15)

where the weight prior is a symmetric Dirichlet p (π) =

D (π; λ0I), the prior over each covariance matrix is a Wishart
p (0s) = W (Γ ; α0, B0) and the prior over the means given
the covariance matrices is a multivariate normal p (µs | 0s) =

N (µs;m0, β00s). The joint likelihood of the data, assuming the
samples are independent and identically distributed (i.i.d.), can be
computed as

p (yi, s | θ,M) =

N
n=1

p (sn = s | π) p

yi,n | µs, 0s


, (16)

where yi =

yi,1, yi,2, . . . , yi,n


and s = {s1, s2, . . . , sS}.
Fig. 5. VBEM results for a simulated dataset. The red dots are the sampled
points from the mixture of Gaussians represented with blue ellipsoids (1 standard
deviation). The estimated covariances from VBEM are represented by the green
ellipsoids. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Residual variance of Isomap as a function of the number of dimensions.

The variational approximation for the log marginal likelihood
leads to the following free densities q.

• For the covariance matrices, q (0) =


s q (0s) with q (0s) =

W (Γ ; αs, Bs);
• For the means, q (µ | 0) =


s q (µs | 0s) with q (µs | 0s) =

N (x;m0, βs0s);
• For the mixing coefficients, q (π) = D (π; λ), where λ =

{λ1, λ2, . . . , λs};
• For the hidden variable s, q (s) =


s q (ss).

Taking the functional derivatives of the free energy with respect
to the free densities q produces the update rules of VBEM for the
mixture of Gaussian cases. In the VB-E Step the weights of the
hidden variables are calculated and in the VB-M Step parameters
and hyper-parameters are updated. These rules are omitted here
for brevity but can be found in [30].

Once parameters and the model were obtained, the predictive
density for a particular patch p


y′

| yi,M


has a closed-form
solution of a mixture of Student-t distributions,

p

y′

| yi,M


=

S
s=1

π̄sS

y′

; ρs, 3s, ωs

, (17)
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Fig. 7. Sample images of the indoor dataset.
with ωs = αs + 1 − d degrees of freedom, where the means
are ρs = ms and the covariances are 3s = ((βs + 1) /βsωs) Bs.
The weights are computed based on the hyper-parameters of the
Dirichlet distribution with π̄s = λs/


s′ λs′ .

2.3.1. Heuristic for searching
VBEM allows direct model comparison by evaluating the free

energy function of different models. In the case of mixtures of
Gaussians this model can be a single component or a mixture
with hundreds of components. Theoretically, there is no limit for
the number of components and the search for the best model
can be cumbersome. To cope with this problem, a heuristic based
on birth and death of components is used. This heuristic appears
to be appropriate for robotics problems since simpler models
are evaluated before more complex ones, thus decreasing the
computational complexity.

The birth–death heuristic used here has the same stopping
and splitting criteria as in [27] for mixtures of factor analysers.
The selection for splitting is based on the component with the
smallest individual free energy. The search ends when all existing
components were divided but none of those divisions result in free
energy improvement.

As VBEM proceeds in estimating the parameters of a particular
model and optimising the objective function, it is necessary to
know when to stop and compare the free energy of this model
with another one. This stopping criterion must be invariant to
the dimensionality and amount of data. For this reason, the
obvious manner of checking the free energy difference between
two iterations is not adequate since it is hard to define a threshold
for this quantity that scales appropriately with dimensionality,
complexity and amount of data. Also, this method would require
the computation of the free energy in every iteration, which can
slow down the process as awhole. The alternative implementation
examines the rate of change in the weight estimation given by
q (si). A measure of this quantity averaged over all data is given
by the agitation:

agitation(s)(t) ≡

n
i=1

q (si)(t) − q (si)(t−1)


n
i=1

q (si)(t)
, (18)

where (t) denotes the iteration number. When the agitation is
smaller than a threshold, the estimation is said to be mature
enough and VBEM can stop, compute the free energy and compare
it with other models. The same idea was used in [27] for a mixture
of factor analysers. Note that by using agitation, the free energy
needs to be calculated only once for eachmodel – at the end, when
the estimation is mature – saving computations since agitation is
much simpler to calculate than the free energy.

In the implemented birth and death heuristic, the search starts
evaluating a model with a single component. Once VBEM reaches
maturity for this model and its free energy is computed, the
component can be split into two and the parameters of this new
model are evaluated. At this point, however, it is necessary to
define a direction or a method to divide the points associated
with the previous component into the other two. The procedure
implemented in this work samples a direction d and defines an
allocation indicator variable for each data point, d ∼ N (d; µs, 6s)
and

ri =


1 if (yi − µs)

T d ≥ 0
0 if (yi − µs)

T d < 0
for i = 1, . . . , n. (19)
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From these two expressions, it is then possible to reassign
points associated with the parent component q (si) to the two
children, introducing a hardness parameter αh, ranging from 0.5
to 1:
q

sai


= q (si) [αhri + (1 − αh) (1 − ri)] , (20)

q

sbi


= q (si) [(1 − αh) ri + αh (1 − ri)] . (21)

The hardness parameter defines how much weight is trans-
ferred to the assigned child. When αh = 0.5, the weight is shared
equally. With these responsibilities, the parameters of the new
model are updated in the VB-M Step which continues until ma-
turity.

A selection criterion needs to be defined to choose which
component to split. This is achieved by analysing the individual
free energies of the components. The component with the smallest
free energy is the preferable one for division since it is the worst in
modelling the data correctly (in a free energy sense).

The heuristic continues, trying to split existing components and
checking if there is improvement on the free energy. A tentative
model is disregarded if there is death of a component or if there
is no free energy improvement. This is easily verified by checking
if any of the responsibilities goes below a certain threshold,
meaning that a component has little or no importance for the
data description. The process ends when all existing components
were divided but none of those divisions result in free energy
improvement.

2.3.2. Example
To measure the quality of VBEM and the searching heuristic, an

artificial example is presented in this section. 5000 samples from
a mixture of Gaussians with 10 components were sampled in two
dimensions. This mixture contains components with covariances
of different shapes including components ‘‘inside’’ one standard
deviation of other components. The task of VBEM was to estimate
the number of components, their means and covariances from the
data supplied. The results can be seen in Fig. 5. VBEM correctly
finds the correct number of components and estimates means and
covariances accurately. Other tests for the same problemwere also
performed reducing the number of points sampled. VBEM starts
missing some components when the number of samples is less
than half of the initial set. In this situation, there is not enough
points to represent the complexity of the distribution. Even in
these cases, however, the estimated mixture model is reasonable
and closed to the original distribution. Given the difficulty of
the problem, VBEM seems to be robust in estimating complex
distributions even when the number of samples is small.

2.4. Multi-class classification

As opposed to most classification problems where the input is
a single feature-vector, in this approach the whole set of patches
of an image is used. Each patch has equal contribution to the
final classification decision and it is evaluated under the different
models representing the places. The idea is to compute the log-
likelihood of a set of image patches for every model learnt.
The log-likelihood with the largest value is the final decision
of the classification. Thus, the label of an image i is the label
corresponding to the place model that maximises the expression:

M∗
= argmax

M

m
j=1

log p

yi,j | M


. (22)

The computation for the log-likelihood in selecting the model
that best explains the set of patches can be quickly computed. Also,
it is possible to include more models, allowing sequential learning
implementations. This is one of the demands for autonomous
navigation as the robot visits new places, representations of
them should be incorporated and correlated with the current
knowledge.
Fig. 8. Generative model learnt for a kitchen. Points are plotted on the direction
of the two largest eigenvalues of the essential features. Ellipses correspond to the
covariancematrices of the components learnt with VBEM. The association between
the patches and their location in the real scene is also indicated.

3. Implementation

The framework was tested with a Pioneer 2-AT. 320 × 240
images were obtained with a 24-bit colour camera. Each image
is then divided into 3072 non-overlapping patches with 5 × 5
pixels. In addition to colour, the patches are convolved with 4
Gabor wavelets to account for texture information. The resulting
input space has a dimensionality of 175 (5×5×3(RGB)+5×5×

4(Gaborwavelets) = 175).
Learning is performed offline with labelled images from the

above set. The training images were selected to give a multi-view
perspective of the place. In the indoor experiment for example, if
an office has a rectangular shape, 4 training images are taken close
to the walls but the algorithm should still be able to recognise the
place when observing it from the centre.

The essential features obtained with Isomap were estimated to
have 8 dimensions. This number was obtained by computing the
residual value of Isomap for different dimensions as depicted in
Fig. 6.

The mixture of linear models was learnt with EM using 16
components for both environments. EM was initialised with
k-means [15] for the low dimensional means and randomly
for the other parameters. Convergence is verified when the
increment in the log-likelihood was less than 0.01%. Inference is
performed using Eqs. (5)–(7) resulting in mixtures of Gaussians
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Fig. 9. The training images used for the kitchen model. The model learnt from them was able to recognise wider views of the place such as the image in Fig. 8.
Fig. 10. Graphical representation of the confusion matrix for the indoor
experiment. Darker cells represent larger values.

which are further collapsed to single components. This allows
the computation of the log-likelihood for the different place
models.

The variational Bayesian learning starts searching for the best
model from a single-component and follows the heuristic of birth
and death as described before. The covariance obtained from the
mixture of linearmodels is used to initialise the parameters α0 and
B0 of the Wishart distribution. As shown in Eq. (6), the covariance
is independent of particular observations, having the meaning of
how uncertain the model is.

A diagram showing the steps and their computational complex-
ities for learning and inference is depicted in Fig. 3. Note that learn-
ing is performed offline while the online classification procedure
runs in (near) real-time.

When testing the algorithm, the whole set of 3072 patches rep-
resenting an image is used. The process takes about 1 s per image
in a Pentium M 1.7 GHz which comprises Gabor convolutions, in-
ference in the mixture of linear models, and log-likelihood com-
putation for each model learnt. Future implementations may use a
subset of patches sampled from the original set to further reduce
the classification time. This, however, may decrease the accuracy
thus characterising an accuracy-time trade-off.
4. Experiments1

Two different experiments were performed to evaluate the
algorithm in different conditions—indoor and outdoor environ-
ments. In both experiments, there were people walking by the
places and sometimes occluding the robot’s view. In the outdoor
experiment, there were also cars and bicycles which add more
complexity to the problem as the environment becomes dynamic.

4.1. Indoor dataset

The indoor dataset consists of 55 training images of 9 different
places—each place has 5–9 training images only. The test set has
1579 sequence images obtained by the robot when navigating
inside the lab. The cl are {kitchen, seminar room, student cubicle
1, corridor 1, student cubicle 2, corridor 2, corridor 3, research
office and professor office}. Fig. 7 shows some images of the indoor
places. The generative model for the kitchen is depicted in Fig. 8.
It shows the covariance matrices learnt through VBEM from the
essential features. The correlation between the patches and their
real position is also indicated.

To assess the performance of the algorithm empirically, infor-
mation retrieval metrics were used. This allowed us to evaluate
correctness of the place recognition in a model-independent man-
ner. The two measures used are precision and recall.
• Precision: this corresponds to the ratio of correct labels (true

positives) found to the total number of images classified as a
particular class (true positives plus false positives). Intuitively,
it is a measure of howmany of the identified places are actually
correct (exactness).

Precision =
True Positives

True Positives + False Positives
. (23)

1 Videoswith the experiments and the datasets are available at: http://www.acfr.
usyd.edu.au/people/postgrads/ftozeto.

http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
http://www.acfr.usyd.edu.au/people/postgrads/ftozeto
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Fig. 11. Sample images of the outdoor dataset.
• Recall: this corresponds to the ratio of correct labels (true
positives) found to the total number of images in the particular
class. Intuitively, it is a measure of how many of the correct
places were found (completeness);

Recall =
True Positives

True Positives + False Negatives
. (24)

Table 1 shows precision and recall results for this 9-class
problem and Fig. 10 shows a graphical representation of the
confusion matrix. In general, classification is accurate as can be
seen by the strong diagonal in the confusion matrix. Considering
that in many occasions the robot moves less than one metre away
from walls and furniture, significantly reducing the angle of view,
these results are quite promising. In those situations even manual
classification is difficult. Also, some places are very similar, for
example, the corridors and the student cubicles. These places can
be distinguished from a few objects such as paintings in the case of
corridors, and books or computers on the desks of student cubicles.
However, both objects might not be observed by the robot since
they are in a higher position. Fig. 9shows the training images for
the kitchen model. Even without a training image of the kitchen
Table 1
Precision and recall results for the indoor dataset.

Place name Precision Recall

Kitchen 81.82 76.60
Seminar room 68.07 81.82
Student cubicle 1 52.86 48.05
Corridor 1 74.96 84.09
Student cubicle 2 62.96 46.12
Corridor 2 40.00 62.50
Corridor 3 100 15.13
Researcher office 73.01 90.16
Professor office 62.96 71.83
Average 68.52 64.03

with a wider view, the classifier was able to recognise the kitchen
from the image of Fig. 8. This generalisation is one of the main
properties of the algorithm which is achieved through a compact
representation obtained with dimensionality reduction combined
with a generative Bayesian model for places. The dimensionality
reduction step extracts the important information from the image
while the Bayesian model integrates several images of the same
place to produce a generalised model.
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Table 2
Precision and recall results for the outdoor dataset.

Place name Precision Recall

ACFR front 71.04 87.44
ACFR park 83.19 71.05
Eng. Building 65.40 77.31
Eng. Road 91.43 45.43
Eng. Carpark 26.17 87.10
Mech. Building 64.47 17.63
Mech. Corridor 90.68 65.54
ACFR carpark 55.24 76.40
ACFR road 87.00 74.34
Garage 23.94 87.18
Office 99.47 61.84
Average 68.92 68.30

4.2. Outdoor dataset

The outdoor dataset consists of 57 training images of 11
different places at University of Sydney, with each place having
3–8 training images. The test set has 3820 images obtained from
a half-kilometre journey around the university. The classes are
{ACFR front, ACFR park, Eng. Building, Eng. Road, Eng. Carpark,
Mech. Building, ACFR carpark, ACFR road, garage (indoor) andoffice
(indoor)}. Fig. 11 shows pictures of those places. The generative
model for the class ACFR park is shown in Fig. 12. Also annotated is
the correlation between patches and their location in themanifold.

Table 2 presents precision and recall results and Fig. 13 the
confusion matrix. In general, the results are better than the indoor
dataset. The most difficult problem of the outdoor dataset was to
distinguish between the two carparks. When the robot was very
close to a car, it was not able to have a more general view of the
place which resulted in classifying the image as the other carpark.
Also, ‘‘Mech. Building’’ and ‘‘Eng. Building’’ are physically in the
same building and the limits of where one starts and the other
finish are not very clear.

5. Conclusions

This paper introduced a new algorithm for place recognition
that can be learnt from very small datasets with significant
generalisation properties. Specifically, the proposed framework
has three main contributions: it shows that mixture of linear
models can be used as a tool for nonlinear regression problems
with noise such as in Isomap mappings; it demonstrates how
variational Bayesian learning with a free-energy heuristic can
choose the right number of components of a mixture of Gaussians;
it shows how the log-likelihood can be applied to multi-class
problems where classification is given from a set of samples rather
than from a single point.

If compared to other algorithms such as [31], the proposed
approach can be trained incrementally and with much less
data while achieving similar performance as the hidden Markov
model (HMM) employed. Furthermore, the dataset used here was
obtained with a mobile robot with a camera fixed in a lower
position, that ismuchmore sensitive to irregularities in the terrain,
occlusions and blurring than the camera mounted in a human
helmet used by them.

Patches of images and images themselves are treated here as
independent and identically distributed. In the case of patches,
further implementations can include the positions of each patch
as additional dimensions in the feature-vector. Also, spatial
relations among them can be included in more sophisticated
relational statistical models. This, however, should preserve the
main benefits of the model such as learning from few images and
efficient classification.

Most of the false classifications took place when the robot was
close to a wall or an object occluding a wider view of the scene.
Fig. 12. The same as Fig. 8 but for the ‘‘ACFR-park’’ model.

Fig. 13. Graphical representation of the confusion matrix for the outdoor
experiment. Darker cells represent larger values.

This problem could be avoided if a topological map of the
environment were encoded in a HMM to constrain the search
to fewer places. In future works, algorithms for learning HMMs
incrementallywill be investigated aswell as how to integrate them
in the existing framework.
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