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Abstract— In the automation of many kinds of processes, the
observable outcome can often be described as the combined
effect of an entire sequence of actions, or controls, applied
throughout its execution. In these cases, strategies to optimise
control policies for individual stages of the process might not
be applicable, and instead the whole policy might have to be
optimised at once. On the other hand, the cost to evaluate the
policy’s performance might also be high, being desirable that a
solution can be found with as few interactions as possible with
the real system. We consider the problem of optimising control
policies to allow a robot to complete a given race track within
a minimum amount of time. We assume that the robot has no
prior information about the track or its own dynamical model,
just an initial valid driving example. Localisation is only applied
to monitor the robot and to provide an indication of its position
along the track’s centre axis. We propose a method for finding a
policy that minimises the time per lap while keeping the vehicle
on the track using a Bayesian optimisation (BO) approach over
a reproducing kernel Hilbert space. We apply an algorithm to
search more efficiently over high-dimensional policy-parameter
spaces with BO, by iterating over each dimension individually,
in a sequential coordinate descent-like scheme. Experiments
demonstrate the performance of the algorithm against other
methods in a simulated car racing environment.

I. INTRODUCTION

In the automation of various kinds of physical systems,
sometimes a controller, or a control policy, needs to be
optimised based only on a total cost or reward evaluating its
performance. In robotics, the physical processes of interest
are often related to the motion or navigation of a robot. In
some cases, it is impossible to quantify the effect that control
actions at individual steps have on the final outcome of the
process. Examples include tasks such as ball-throwing [1]
or trying to hit a target on a wall with a dart [2]. In other
cases, individual rewards might be quantifiable for each step
taken, but a global approach, considering a whole episode of
execution, could yield better results, such as in autonomous
racing [3].

In the case of autonomous racing, the problem of finding
a control policy that will allow a robot racer to finish a track
in minimal time has been approached in many ways. Model-
predictive control (MPC) techniques have been applied to lo-
cally optimise driving policies over receding-horizons based
on external sensor data and internal dynamical models,
which are either pre-designed [4] or learnt [5]. From a
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global optimisation perspective, the same problem has been
approached as racing line optimisation [3], i.e. finding the
path within the track that will allow the car to finish the
race in minimal time, given a map of the race track and a
kinematic model of the vehicle. When global information
about the racing environment is available through external
images, deep reinforcement learning architectures have also
been applied to fine-tune control policies [6]. Lastly, this
problem has also been approached by using evolutionary
algorithms to optimise parameters for policies that either
combine different pre-designed heuristics [7], or directly map
the state of the car and the opponents to control actions via
some type of network structure [8].

In this paper, we are concerned with the problem of
enabling a robot to learn the control policy that will allow
it to complete a lap in a given race track as fast as possible,
improving over a single initial example given by a sub-
optimal controller. This is performed without the need for a
model of the robot or a map of the track, but by performing
multiple laps and learning from the outcome of each of them.
Model-based approaches are generally limited by the ability
of the model to represent the behaviour of the robot [9],
which can be hard to capture for real robots. In addition,
these approaches usually require the Markov assumption to
be valid for the model representation, which implies that
enough information about the dynamic state of the robot is
observable.

In a policy-search framework, ideally we look for policies
which are flexible enough to represent a variety of behaviours
and an optimisation procedure that can find the best policy
within a minimal amount of episodes and requires only
minimal information about the system. Radial basis function
(RBF) networks [9] are among the classes of policy param-
eterisations with high representation power. These policies,
however, can be very high dimensional and challenging to
optimise with conventional optimisation algorithms within a
limited budget of policy evaluations. Bayesian optimisation
(BO) [10], on the other hand, is a strategy to optimise
expensive-to-evaluate functions within a limited budget of
function evaluations that has shown promising results in
policy search problems [11], [12]. Although methods which
apply BO in high-dimensional search spaces have been
proposed [13], [14], it still remains an open question how
to do so without making restrictive assumptions about the
objective function.

Our contribution is a method that applies Bayesian opti-
misation (BO) [10] to optimise control policies with high-
dimensional parameter spaces. In each iteration of the BO
loop, our method sequentially optimises each parameter



of the policy in turn, following a randomised coordinate
descent [15] scheme. This is performed over a Gaussian
process [16] surrogate, modelling a reward function, that
is sequentially updated. The method is applied to optimise
control policies for a racing car in a race simulator. We
employ a general class of control policies, defined by feature
expansions in a reproducing kernel Hilbert space (RKHS)
[17]. RBF networks can be seen as a specialised instance of
this generic representation.

The remainder of this paper is organised as follows. In
the next section, we review relevant related work in the area
of Bayesian optimisation. In Section III, we formally present
the optimisation problem approached by this paper and some
background information about BO. Then, in Section IV, we
present our method. In Section V, we present experimen-
tal evaluations of the method using a race car simulator,
comparing the proposed method against other optimisation
algorithms. Finally, in Section VI, we conclude and propose
some directions for future work.

II. RELATED WORK

In this section, we review relevant prior work in the areas
of reinforcement learning and Bayesian optimisation.

Learning a control policy that maximises a reward that
depends on the combined effect of its actions can also be
approached as episode-based policy search in reinforcement
learning (RL) [9]. In [1], for example, a framework is
proposed to allow algorithms that learn policies using an
internal, also learned, forward model of the robot to simulate
trajectory roll-outs. In [2], a robot learns how to hit a target
throwing a dart using a model-free approach. This algorithm
models the policy parameters distribution with a Gaussian
process (GP) [16] prior over the contexts space for each
single parameter.

Bayesian optimisation [10] has also been applied to prob-
lems involving policy search. A similar approach to the one
in this paper is presented in [11], where the authors model
cost as a direct function of policy parameters. In that paper,
the robot’s task was to reduce uncertainty about its location
and its surroundings, and the policies were parameterised
by a small number of variables. Since the policy-execution
outcome/reward is usually more-closely a function of the re-
sulting behaviour of the robot than of the policy parameters,
another approach to this problem is applying a GP prior
over this mapping from behaviours to rewards [12]. This
approach, however, usually requires that enough information
can be observed from the system. Our aim in this paper is
to learn policies that can have enough representation power,
which generally implies high-dimensional parameter spaces,
while requiring the least amount of information from the
system.

One common issue with the presented applications of
BO is the curse of dimensionality. The great majority of
BO algorithms uses GPs to learn and model the objective
function, which does not scale well with high dimensions
and/or large amounts of data, degrading the performance of
BO in such settings. Several approaches have been recently

developed to tackle the scaling of GP/BO to high dimensions.
One could, for example, assume that the objective function
only depends on a small subset of input coordinates and do
variable selection to find these [18], [19]. Another approach
is to assume there is a lower-dimensional linear embedding
containing most of the variation of the function, including its
optimum, and using linear projections to reduce the dimen-
sionality of the search space [13], [20]. Another common
approach is to assume that the function is formed by a set
of low dimensional disjoint functions [14] combined in an
additive structure, which allows learning separate GP models
and optimising over them separately.

Given the particular nature of our problem, we chose to
tackle issues that arise in high-dimensional BO by approach-
ing it from the search side, while still using all available
information to build a model of the objective function. In
problems like racing, due to the constraints imposed by the
environment, i.e. the track, and the dynamic limits on the
agent, i.e. the car, we end up having a reward function
whose mass is highly concentrated within a particular region
of the search space. Therefore, we argue that, by applying
a relatively simple method such as randomised coordinate
descent (CD) [21], and starting the search from a valid
initial solution, we can optimise over a high-dimensional
GP model efficiently. CD relies on the fact that each sub-
problem is a lower-dimensional optimisation problem, which
is solved more easily than the full problem. We empirically
demonstrate that this simple search strategy when combined
with BO can be effective in the particular class of problems
we approach.

III. PRELIMINARIES

In this section, we present some preliminary information
for the work in this paper. We start with a formal description
of the particular problem we are dealing with, followed by
the formulation of our policies parametrisation. After that,
we review some basic concepts in Bayesian optimisation and
Gaussian process regression.

A. Problem Statement

Consider policies mapping the position x ∈ X of the robot
along the track to a corresponding control action a ∈ A.
Both X and A are continuous spaces. Our goal is to find
the control policy π : X → A that minimises the time T
required to complete the track.

We utilise a reward R defined as:

R =

{
L/T, if track completed

0, if failed to complete the track
(1)

where L is the length of the track. Therefore, for success
cases, the reward is equivalent to the average linear speed
of the robot. In this sense, minimising T is equivalent to
maximising R. With that, we search for:

π∗ = argmax
π∈AX

R[π]. (2)

We seek a method that solves the above problem for any
kind of mobile robot and without needing a map of the track.



Therefore, model-based solutions are out of scope, for they
would have to learn an approximate transition model of the
robot, whose representation varies among different driving
mechanisms, and use this model to simulate trajectories over
the track map.

B. Policy Parameterisation

We assume that the optimal π belongs to a reproducing
kernel Hilbert space (RKHS) [17]. This approach has been
relatively successful in modelling trajectories for motion
planning [22] and components of stochastic control policies
for reinforcement learning [23], [24]. This formulation al-
lows the policy to assume a variety of shapes, depending on
the choice of kernel function, allowing one to encode prior
knowledge about the ideal control policy. Considering a 1-D
action space A ⊂ R, a policy can be represented by:

π(x) =

N∑
i=1

αik(xi, x), (3)

where k : X ×X → R is a positive-definite kernel function,
and αi ∈ R and xi ∈ X are arbitrary. Besides that, it is
possible that N →∞.

In a RKHS, kernels are equivalent to inner products
between features mappings φ : X → H in the corre-
sponding Hilbert space, such that k(x, x′) = 〈φ(x), φ(x′)〉H.
With that, π(x) can also be represented by π(x) =∑N
i=1 αi〈φ(xi), φ(x)〉H. By the linearity property of inner

products, we can move the sum inside, and have:

π(x) = 〈
N∑
i=1

αiφ(xi), φ(x)〉H = 〈w, φ(x)〉, (4)

where w ∈ H, which can be infinite in dimensions. Sev-
eral techniques in the kernel machines literature, e.g. [25],
however, propose approximating φ(x) by a vector φ̂(x) ∈
RM , M < ∞, such that φ̂(x)Tφ̂(x′) ≈ k(x, x′). As a
consequence,

π(x) ≈ πw(x) = wTφ̂(x), (5)

where w ∈ RM is a vector of scalar weights, which uniquely
determines the policy π for a given feature mapping φ̂.
Therefore, we can rewrite Equation 2 as:

w∗ = argmax
w∈RM

R[πw]. (6)

In our case, the advantage of the features approximation
is that we don’t need to deal with the individual αi’s and
xi’s, which can be many more than M , but only with their
combined effect on the control policy. More importantly, we
also reduce the dimensionality of the search space, projecting
it to M dimensions.

Although the problem has been formulated for 1-D ac-
tions, it could be easily extended to actions composed by
multiple independent controls, by simultaneously optimising
the weight vectors for each corresponding policy. The draw-
back, however, is the multiplication of the number of weights
to optimise.

C. Bayesian Optimisation
We use BO [10] to perform the policy weights optimi-

sation as it allows finding the global optimum of arbitrary
functions that are expensive to evaluate. To aid in that, BO
applies a Bayesian model, which is typically a Gaussian
process (GP) [16], as a prior to internally approximate the
objective function.

At each iteration, BO selects the point to perform the
next evaluation of the objective by maximising an acquisition
function over the model. This acquisition function provides
a utility value that enables the algorithm to perform a guided
search for the global optimum, and is usually much simpler
to evaluate than the objective function. It represents a natural
trade-off between exploration (searching for areas with high
uncertainty) and exploitation (searching for areas where the
objective function is expected to be high), and aims to
minimise the number of objective function evaluations.

After evaluating the objective function at the selected
point, the prior is updated with the new observation and the
algorithm proceeds to the next iteration, keeping track of the
current optimum. As iterations proceed, it can be shown that
the prior approximation converges to the objective function
within the given search space, and consequently the global
optimum of the objective can be found.

D. Gaussian Processes
Gaussian process [16] regression is a Bayesian non-

parametric framework that places a Gaussian distribution
as a prior over the space of functions mapping the inputs
w ∈ RM to outputs z ∈ R, where z = f(w) + ε is a noisy
observation of the true underlying reward value f(w), and
ε ∼ N (0, σ2

n) is Gaussian-distributed noise with zero mean
and standard deviation σn. A GP model can be completely
specified by a mean and a covariance function, kR, which is a
positive-definite kernel. Using zero as the mean for the prior,
the values of f for a set of Q points W ∗ = {w∗i ∈ RM}Qi=1

obey a multivariate normal distribution:

f∗ = f(W ∗) ∼ N (0, kR(W ∗,W ∗)), (7)

where f(W ∗) = [f(w∗1), . . . , f(w∗Q)]T, and kR(W ∗,W ∗)
is an Q-by-Q matrix whose elements are determined by
kR(W ∗,W ∗)ij = kR(w∗i ,w

∗
j ). Given a set {W, z} of N

observations of f , where W = {wi ∈ RM}Ni=1 and z =
{zi ∈ R}Ni=1, the joint distribution of the observed outputs
and the function values at the query points under the GP
prior is given by:[

z

f∗

]
∼ N

(
0,

[
kR(W,W ) + σ2

nI kR(W,W ∗)

kR(W ∗,W ) kR(W ∗,W ∗)

])
(8)

Conditioning this joint on the observations, inference in a
GP can be done by:

f∗|W, z,W ∗ ∼ N (µ∗,Σ∗), (9)

where:

µ∗ = kR(W ∗,W )K−1W z (10)

Σ∗ = kR(W ∗,W ∗)− kR(W ∗,W )K−1W kR(W,W ∗), (11)



using KW = kR(W,W ) + σ2
nI , with each kR(W,W )ij =

kR(wi,wj).

IV. COORDINATE DESCENT BAYESIAN OPTIMISATION

We approach the problem in Section III-A from a Bayesian
optimisation (BO) perspective, which places a Gaussian
process (GP) prior over the objective function, in our case,
R[πw] = f(w), and optimises it by doing searches over the
GP-based surrogate model.

A. Acquisition Function Optimisation

In this paper, another problem that we face is the possibly
high dimensionality of the search space for the optimisation
of the acquisition function (AF) that BO utilises. Quite a few
methods have been proposed in the BO literature to deal with
high-dimensional search spaces, such as [13], [14]. However,
they usually require a few possibly strong assumptions about
the objective function. We instead employ a very simple
method, Stochastic Coordinate Ascent (Algorithm 1), which
uses a random axis selection scheme to optimise the AF over
each axis individually, starting from the current optimum
candidate. This way, we bias the search locally, avoiding
excessive exploration in a high-dimensional space. Depend-
ing on the choice of acquisition function, however, we can
still perform a global search with BO by following regions
of high uncertainty around the current optimum location.

Our AF optimisation technique was inspired by Coordinate
Descent (CD), a class of algorithms that are one of the oldest
in the optimisation literature [26]. It is based on the idea that
an n-dimensional problem can be decomposed in n one-
dimensional sub-problems, which makes it suitable to be
applied to large or high-dimensional datasets [15]. In the CD
strategy, each coordinate is updated sequentially by solving
the one-dimension problem with any suitable optimisation
algorithm, while all the others dimensions are kept fixed.
The methods vary in the way the sequence of dimensions
is chosen, if it optimises only one dimension or a block,
and if it uses gradients on the iterations or not. Several
works focused on describing the convergence characteristics
of these algorithms [15], [27], [28]. Under some assumptions
(e.g. Lipschitz continuity, strong convexity) they prove a
linear convergence rate for the sequential and randomised
CD method, and also for the block-CD. The most intu-
itive scheme for this technique would be to optimise the
dimensions in an ordered cyclical fashion. But [29] showed
an example of non-convex function that, when applied this
sequential scheme, the optimisation process cycles without
converging. To avoid these kind of issues, in our work
we adopt a randomised sequence that changes once every
dimension has been optimised.

Algorithm 1 starts the search from the current optimum
location. It randomly shuffles a sequence of M dimension
indices {1, . . . ,M}, and follows the shuffled sequence to
optimise one axis after the other. After passing through all
the dimensions, it returns the corresponding optimised vector
of weights.

Algorithm 1: StochasticCoordinateAscent
Input: h,w∗,D

1 w = w∗;
2 I = randomShuffle({1, . . . ,M});
3 for i ∈ I do
4 wi = argmax

v∈R
h(w0, . . . , wi−1, v, wi+1, . . . , wM |D);

5 return w

Although not using derivatives, as in standard coordinate
descent methods [15], in practice our approach is still able
to achieve similar results. We performed preliminary tests
applying other CD methods, e.g. the randomised accelerated
coordinate descent method (RACDM) [15]. We observed
that their performance is usually not as good as the simple
scheme in Algorithm 1. Reasons for that involve issues with
escaping saddle points and restrictions in the GP covariance
function, which needs to be differentiable for the method to
be applicable. The latter is not the case of Matérn 1 [16],
for example, the best performing in our experiments.

B. The Policy-Search Algorithm

We propose an algorithm that improves a valid initial
policy so that the robot racer can finish the track in minimal
time. The initial policy can be obtained by recording the
actions of a simple controller or a human driver, obtaining
an initial set of points X = {xi}ni=1 and the corresponding
observed actions a = {ai}ni=1. The initial weights w0 can
then be fitted by minimising the quadratic cost function:

w0 = argmin
w∈RM

‖a− φ̂(X)w‖22 + λ‖w‖22, (12)

where φ̂(X) = [φ̂(x1), . . . , φ̂(xn)]T is a matrix with the
features for each xi on the corresponding row and λ is a
regularisation factor, to avoid extreme values for the weights.
A solution to this problem can be found analytically by
zeroing out the gradient of the fit term with respect to w,
yielding:

w0 = [φ̂(X)Tφ̂(X) + λI]−1φ̂(X)Ta. (13)

Before starting the policy search with BO, an initial
training of the GP is needed to provide an estimate of
its hyper-parameters, which are the noise variance and the
parameters of the covariance function in our case. Due to
the vast majority of the search space being, in general,
composed of invalid policies, using uniform or Latin hyper-
cube random samples could provide too many observations
with zero reward. This can cause over-fitting to the initial
GP hyper-parameter selection. To avoid this, we sample
and execute a set of S samples from a normal distribution
N (w0, Iσ

2
0) to form an initial dataset {wi, Ri}Si=1 to feed

the GP with, so that BO can have an informative prior
over the reward function. In addition, the hyper-parameters
can also be re-estimated online after each observation of a
reward.



The proposed method is summarised in Algorithm 2. In
lines 1 through 4, it collects the initial set of observations
for the GP. In lines 5 through 12, the search for the optimal
policy is performed. Line 7 executes the policy parameterised
by the current weights. Lines 8 through 10 keep track of the
optimum. Line 11 updates the GP dataset. Line 12 performs
the maximisation of the acquisition function to select the
next vector of weights to evaluate. The algorithm proceeds
until its budget of N function evaluations is exhausted.

Algorithm 2: CDBO
Input: w0: weights of the initial policy

σ2
0 : initial samples variance
S: number of initial samples
N : number of laps

1 for s = 1 . . . S do
2 Sample ws ∼ N (w0, Iσ

2
0)

3 Rs ← Execute π(x; ws)

4 D ← {ws, Rs}Ss=1

5 R∗ ← maxRs=1,...,S

6 for i = 0 . . . N − S do
7 Ri ← Execute πwi

8 if Ri > R∗ then
9 R∗ ← Ri

10 w∗ ← wi

11 D ← D ∪ {(wi, Ri)}
12 wi+1 =

StochasticCoordinateAscent(h,w∗,D)

13 return w∗, R∗

V. EXPERIMENTS

In this section, we present the experimental evaluation of
the performance of our method in simulation. We performed
tests with a robot car driving on race tracks performing
realistic full physics simulation using the race engine of an
open-source game, called Speed Dreams1, which is based on
TORCS [30]. In all the tests, we compared the performance
of the algorithm against:
• CMA-ES, which has been applied to reinforcement

learning problems [31], in particular, we use active
CMA-ES [32], with an implementation provided by an
open-source library2;

• standard BO, using CMA-ES to optimise the acquisition
function.

• REMBO [13], a Bayesian Optimisation technique that
uses random embeddings, developed to deal with high-
dimensional problems. We tested with both 5 and 10-
dimensional random embeddings.

To run the internal optimisation along each coordinate in
our method, we used COBYLA [33], a local derivative-free
optimisation algorithm, with an implementation provided by
a popular non-linear optimisation library [34].

1Speed Dreams: https://sourceforge.net/projects/speed-dreams/
2https://github.com/beniz/libcmaes

Fig. 1. Screen-shot of the race car used by our algorithm in simulations
using the game engine.

A. Setup

The state space of the robot is represented as its position
along a given race line normalised by its length, i.e. x ∈
[0, 1], where 0 corresponds to the start line, increasing to 1
when the robot crosses the finish line. As race line, we used
the centre line of the track, but it could be any other valid
trajectory, allowing our method to be combined with racing
line optimisation algorithms. The control policy actuates the
car’s acceleration by optimising throttle and braking, which
are combined into a single scalar output a ∈ [−1, 1], with
positive values for throttle and negative for braking. The
steering control was performed using a simple proportional-
integral (PI) controller, which tries to minimise the distance
between the car and the racing line. We have not approached
the steering control in this paper, since optimising only
the acceleration control of the car is already a challenging
problem and sufficient to demonstrate the capabilities of the
proposed BO method in dealing with high dimensions.

In this setup, the algorithm needed to be cautious not to
set huge acceleration values for the car at critical parts of
the track, like curves, both to not destabilise the steering
controller and also to respect the friction limits of the tires.
Figure 1 presents a screen-shot with the car model we used,
a Spirit 300.

For features φ̂, we utilised an array of M kernels placed
over a set of inducing points along the track, i.e.:

φ̂(x) = [ka(x, x̂1), . . . , ka(x, x̂M )]T. (14)

We chose X̂ = { i
M−1}

M−1
i=0 , so that it forms a set of M

regularly-spaced points along the track. In this sense, no prior
information about where the critical parts of the track are
was assumed. However, a possible way to choose X̂ would
be to place points around portions of the track requiring
a significant change in acceleration, such as curves, which
would require a map of the track. This could also be learnt
by analysing the initial control policy, searching for areas of
high variation.

If we set ka to be the RBF squared exponential kernel, we
have the RBF network policy parameterisation, which has al-
ready been applied to some reinforcement learning problems
[9]. However, that kernel has very smooth transitions, and
would not be flexible enough to provide fast transitions in
the commands profile. Therefore, for all the experiments, we
used the Matérn class of kernel functions (see [16], Chapter
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Fig. 2. Detail of the effect of different lengths scales on the fitting of the
initial policy for the same kernel placement. The recorded actions are shown
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4) for the policies, ka, in particular, we used Matérn 3:

ka(x, x′) =

(
1 +

√
3

l
|x− x′|

)
exp

(
−
√

3

l
|x− x′|

)
,

(15)
where l is a length-scale parameter controlling the smooth-
ness of the curve. We set l with values around the spacing of
the inducing points, i.e. l ≈ 1

M−1 , in our experiments so that
the gaps between the kernels can be filled without compro-
mising the flexibility of the function. Figure 2 demonstrates
the effect that different length scales have on the shape of the
curve. The fitting of the length scale can also be numerically
optimised before starting the race.

For the GP model, we used the Matérn 1 kernel as
covariance function, which allows us some flexibility to
model sharp transitions in the reward function. This Matérn
kernel is equivalent to the exponential covariance function:

kR(w,w′) = σ2
f exp

(
−
√
d2(w,w′)

)
, (16)

where σ2
f is a signal variance parameter and d2(w,w′) =

(w−w′)TΛ−1(w−w′), with Λ = diag(l2i ), i = 1, . . . ,M , as
a length-scales matrix for automatic relevance determination
(ARD). The same GP hyper-parameters adaptation scheme
proposed in [13] was applied to all BO methods. In the
case of the GP noise model, since the simulations of the
physics engine in the game are deterministic, we set the noise
variance, σ2

n to 0.
As acquisition function for BO we applied the upper

confidence bound (UCB) criterion:

h(w|D) = µ(w) + βσ(w), (17)

where µ(w) is the mean of the GP posterior at w, σ(w)
is the square root of the GP posterior variance, and β is
a parameter controlling the exploration-exploitation trade
off. In most of our experiments, we were able to obtain
good performance results with β ∈ [0.5, 2] using CDBO.
For the experiments with REMBO, we used the Expected
Improvement acquisition function, since the results on [13]
were achieved using this function.

The initial policy demonstration is given by a PI controller,
whose only task is to drive the car at a constant speed of 15
m/s along the track, in all the experiments. An example of
such data for one of the test tracks is shown in Figure 2. That

(a) Forza (b) Allondaz

Fig. 3. The race tracks for the experiments (Source: Speed Dreams)

raw data is then fit through the specified number of policy
kernels, yielding the initial set of weights w0. All methods
under comparison are informed with this initial solution to
start the optimisation.

B. Results

We tested the algorithms on two different tracks. Each
one of them was given a budget of 300 policy evaluations.
Each policy evaluation corresponds to one lap. In the case of
BO and REMBO, the first 10 laps correspond to the initial
samples (Section IV-B). Before each policy evaluation, to
optimise the acquisition function, all versions of BO were
allowed a maximum of 50,000 acquisition function evalua-
tions, and had as starting point the best weights found up to
that lap. To minimise randomness effects in the algorithms,
each run of 300 laps was repeated 4 times, and the results
were averaged.

The first track, called Forza by the game, was a relatively
simple circuit inspired by a real race track in Monza, Italy.
This track is 5,784 metres long and 11 metres wide over flat
asphalted terrain. The critical parts of this track are the sharp
curves at the bottom of Figure 3a, which in terms of x value,
happen around 40% of the track.

Figure 4 presents the overall performance of the analysed
methods on Forza for policies with different numbers of ker-
nels. These experimental results allow us to assess how each
method handles the increase in dimensionality, which adds
flexibility to the control policy, but makes its optimisation
harder. As we can see, although finding better solutions in the
10 kernels setting, CMA-ES’s performance severely degrades
with the increase in dimensionality. When combined with BO
(BO-CMA-ES), CMA-ES helps it to improve performance
on average, but what we observed across individual runs is
that this behaviour is actually bimodal: sometimes very good,
and other times very bad. REMBO wasn’t able to achieve
good results for any number of kernels in this track. For the
100 kernel test, one of the problems with REMBO is clearly
visible: if the used random embedding is not able to capture
a (or if there isn’t any) relevant subspace, the performance is
poor. Overall, it is possible to see that CDBO’s performance
remains relatively stable with the increase in dimensionality
and it is able to find better solutions for this policy search
problem.

Figure 5 presents the best policy with 50-kernels obtained
by our method and the resulting speeds the car achieved
along the Forza track. From Figure 5b, it is possible to see
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Fig. 4. Performance comparison w.r.t. dimensionality of the optimisation problem, evaluated on the Forza track.
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that the algorithm adapts itself to speed up on the straight
portions of the track and reduce speed close to curves,
reducing the lap time.

The second test track, Allondaz, shown in Figure 3b, is a
road track with varying elevation along the path and filled
with portions of complex geometry. It is 6,356 metres long
and 12 metres wide, around the same dimensions as Forza.
The overall performance of the methods is presented in
Figure 6. In this track no algorithm was able to achieve
average speeds as high as in Forza. Despite increasing the
number of kernels to optimise, the best performing policy,
achieved with CDBO, does not significantly change when
using beyond 50 kernels. That’s why, for this track, we only
present results for setups with up to 50 kernels.

Similarly to the previous track, CMA-ES is not able to
handle the high-dimensionality, and CDBO still maintains
a consistent performance throughout the increase in dimen-
sionality, demonstrating the capabilities of the method in
high dimensions. Also, it’s possible to see in all the tests
that CDBO can achieve an even better result, if it is allowed
to run for more iterations. REMBO achieved better results
than the previous track, but it is still outperformed by BO-
CMA-ES and CDBO. One interesting detail about REMBO’s

TABLE I
AVERAGE RUNTIME (IN SECONDS) ON Forza

Method/Dimensions 10 50 100
CDBO 127 281 318

CMA-ES 173 234 252
BO-CMA-ES 553 680 3048
REMBO-5d 154 242 257

REMBO-10d - 244 299

performance is that, after some iterations it does not improve
any more, which means that it reached the optimum for
the subspace used, and the global optimum is not in that
subspace.

When compared to standard BO, another interesting fea-
ture of CDBO can be seen in Table I, which shows the
runtime for each experiment (300 laps) on Forza. It is
possible to see that with the increase in dimensionality,
standard BO with CMA-ES (BO-CMA-ES) significantly
increases in runtime when compared to the other methods.
On the other hand, REMBO and our method maintain a low
runtime through all the different problem dimensions. So,
even if BO-CMA-ES achieves results close to CDBO, the
runtime for the standard BO method is 10 times longer for
the 100 dimensions case, which highlights the efficiency of
the CDBO method for high-dimensional problems.

VI. CONCLUSION

In this paper, we presented a method to optimise control
policies to allow a robot to complete a given race track faster,
which is an instantiation of a more general class of problems
involving delayed rewards and costly policy evaluations. Our
method applies Bayesian optimisation to guide the explo-
ration of the parameter space towards the optimal policy.
By making use of ideas from randomised coordinate descent
methods, optimising a function one dimension at a time in a
randomised sequence, and by starting the search from a valid
initial solution, our method is able to be effective in the high-
dimensional acquisition function optimisation sub-problem.
Experiments with a car racing simulator demonstrated that
this relatively simple approach is able to outperform other
state-of-the-art black-box optimisation and BO methods in
complex scenarios, some times in a fraction of the time. As
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Fig. 6. Performance comparison w.r.t. dimensionality of the optimisation problem, evaluated on the track Allondaz

future work, the model can be improved to deal with policies
over higher-dimensional state and action spaces and to work
together with other conventional motion planning algorithms.
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[30] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom,
and A. Sumner, “TORCS, The Open Racing Car Simulator,”
http://www.torcs.org, 2014.

[31] T. Rückstieß, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmid-
huber, “Exploring parameter space in reinforcement learning,” Pala-
dyn, vol. 1, no. 1, 2010.

[32] D. V. Arnold and N. Hansen, “Active covariance matrix adaptation for
the (1+1)-CMA-ES,” in Proceedings of the 12th annual conference on
Genetic and evolutionary computation - GECCO ’10, Portland, OR,
2010.

[33] M. Powell, “A view of algorithms for optimization without deriva-
tives,” Cambridge University DAMTP, Cambridge, United Kingdom,
Tech. Rep., 2007.

[34] S. G. Johnson, “The nlopt nonlinear-optimization package,” http:
//ab-initio.mit.edu/nlopt, 2014, accessed: 2016-08-16.


