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Abstract— Bayesian Optimisation has gained much popularity
lately, as a global optimisation technique for functions that are
expensive to evaluate or unknown a priori. While classical BO
focuses on where to gather an observation next, it does not
take into account practical constraints for a robotic system
such as where it is physically possible to gather samples from,
nor the sequential nature of the problem while executing
a trajectory. In field robotics and other real-life situations,
physical and trajectory constraints are inherent problems.
This paper addresses these issues by formulating Bayesian
Optimisation for continuous trajectories within a Partially
Observable Markov Decision Process (POMDP) framework. The
resulting POMDP is solved using Monte-Carlo Tree Search
(MCTS), which we adapt to using a reward function balancing
exploration and exploitation. Experiments on monitoring a
spatial phenomenon with a UAV illustrate how our BO-POMDP
algorithm outperforms competing techniques.

I. INTRODUCTION

Path planning under uncertainty is central to environmental
monitoring with mobile robots. The problem can be for-
malised as solving a partially observable Markov decision
process (POMDP), a popular and mathematically principled
framework. POMDPs allow for planning when the state
of the world is hidden or stochastic. This is achieved by
maintaining a probability distribution, called belief, over the
set of possible states the world could be in. The transition and
reward dynamics of the world are also defined as probability
distributions. They can be used by POMDP solvers to simu-
late the execution of sequences of actions and compute their
associated rewards. POMDP based planners can efficiently
compute the best action, looking several steps ahead, while
dealing with stochastic transition dynamics and sensor noise.

The task of picking trajectories to maximise information
gain is known as informative path planning, and is a fun-
damental concept of monitoring. Reasoning over trajectories
instead of over destinations was shown to increase informa-
tion gain [1].

While many monitoring applications use informative
path planning, most rely on myopic approaches. Myopic
techniques naively define the best action as the one with
highest immediate reward. By failing to account for future
potential rewards, myopic algorithms often yield suboptimal
behaviour. Classic non-myopic planners compute the
whole trajectory sequence offline. While these planners
can generate optimal policies when dealing with the most
engineered cases, they fail on real-life scenarios or when
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little or no data is known a priori. Their main shortcoming
is their inability to improve the sequence of trajectories with
the information gathered. On the other end of the spectrum
lies online planning: after each trajectory, robots recompute
the best action by simulating numerous sequences of
actions, thereby sampling the potentially infinite space of
possible scenarios. Finding the best action is a non-trivial
maximisation problem, especially when robots evolve in
stochastic and noisy environments.

This paper presents BO-POMDP, a POMDP based infor-
mative path planning algorithm based on [2], suitable for
monitoring real-life environmental phenomena. BO-POMDP
uses a Gaussian process to maintain a belief over the studied
phenomenon, thus including uncertainty information when
reasoning. By redefining the POMDP reward function as a
balance between belief uncertainty and gradient, we are able
to induce an exploration-exploitation behaviour. Encouraging
the robot to exploit high-gradient areas is paramount to
achieving high quality monitoring, as reconstructed maps
usually suffer from higher errors in complexly varying areas.
BO-POMDP simulates several steps ahead and recomputes
the best action after each trajectory finishes, making it a non-
myopic online planner. The inherent complexity of online
POMDP planners is dealt with by using an adapted version
of Monte-Carlo tree search (MCTS) to approximate the
aforementioned maximisation problem.

Our contributions are twofold. We first present a myopic
planner and our BO-POMDP algorithm, both improving on
[2] by redefining a reward function trading off exploration
and exploitation of gradients. We show in simulation that
such reward function yields superior results to the method
our work is based on. The comparison between our my-
opic and non-myopic algorithms suggests planning with
higher horizons improves monitoring behaviour. Secondly,
we display the first practical results of the BO-POMDP
formulation, using a cheap quad-copter to carry out real-
life monitoring. We show the method presented in this paper
can be used to successfully map terrains, only using limited
sensing capabilities.

The remainder of this paper is organised as follows.
Section II reviews the existing literature on informative
path planning and POMDP planners. Section III gives an
introduction to Bayesian optimisation and POMDPs. Section
IV presents a myopic solution to informative path planning,
then extending to the non-myopic case. Section V displays
simulation and real-life experimental results. The paper con-
cludes with Section VI.
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II. RELATED WORK

Path planning and decision making under uncertainty
have been studied by many researchers. Even though much
theoretical work exists on the topic, few advanced methods
were successfully applied to real-world robots.

Basic planning methods which only consider the next
destination are qualified of myopic. Myopic planners
are efficient to solve basic problems, but their lack of
anticipation makes them fail on more complicated tasks.
Bayesian optimisation (BO) is a perfect framework for
myopic decision making. It was successfully used in [3]
to pick the next best destination a robot should move to.
The in-built exploration-exploitation balance of BO yields
good monitoring behaviour. Exploiting the information
robots gather along their trajectories to improve planning
is referred as informative path planning in the literature.
Informative path planning enables robots to take more
complicated and more informative trajectories, by reasoning
over the route instead of the destination. For example, the
technique described in [1] defines the best trajectory as the
one maximising the sum of rewards given for travelling
along it. The main shortcoming of this type of method is
it neglects long-term consequences when taking decisions.
Indeed, not planning further than a single action ahead can
result in sub-optimal situations (eg. robot facing a wall,
requiring a sharp turn, trapped in a low-reward area).

Several frameworks for non-myopic planning were devel-
oped over the last decades. One of the best defined and most
successful ones is the partially observable Markov decision
process (POMDP), which allows the robot’s current state
to be unobserved. POMDPs allow one to simulate taking
sequences of n actions, and computing the overall reward of
executing such sequence. The action leading to the highest
sequence of rewards is selected for execution. More theory
is given in section III-B.

Over the years, many POMDP solvers were developed.
Their high complexity favours offline solutions such as [4].
However, because the robot has no a priori information of
the studied phenomenon, offline solutions cannot be used in
our set-up.

Several online POMDP solvers exist, and often tackle
high complexity by relying on sampling methods [5], [6],
[7], [8], [9], [10]. Some of them were extended to the case
of continuous state and observation spaces [6], [8], [9], and
to continuous action spaces [11]. These POMDP solvers
deal with large and continuous state and observation spaces
by sampling them to build more compact representations.
This approximation step does not satisfy our needs, as maps
built from sampled spaces suffer from poor resolution in
areas of interest, or incur tremendous costs on the planner
when very high sampling is used. Furthermore, we wish to
have access to the uncertainty of the state space to easily
determine areas to explore.

Another method is proposed in [2], based on Monte-Carlo

Tree search for POMDPs [8] and using a Gaussian process
(GP) to maintain a belief over a continuous state space.
Modelling the belief with a GP is an elegant way to tackle
continuous states and observations while keeping generality
with the type of functions the belief can represent [12].
Also, GPs naturally provide uncertainty information, a core
feature for balancing exploration-exploitation. Defining the
POMDP reward function as a BO acquisition function,
[2] takes advantages from both techniques to achieve
non-myopic informative path planning. While most of the
work we reviewed so far is theoretical, decision making
under uncertainty has also been applied to robots.

Planning for fault inspection is achieved using the travel
salesman problem on a submarine in [13]. The underwater
glider in [14] relies on simulated annealing and swarm
optimisation to find energy-optimal paths in strong currents.
Informative path planning is carried out in [15] by using a
variant of branch and bound. These methods minimise the
overall uncertainty of the underlying model, therefore not
fitting our problem definition in which different levels of
certainty must be achieved across the state space. Finally,
a method balancing global uncertainty reduction and re-
sampling of areas of interest is tested on a ground robot
in [1]. The major drawback of this method however is its
inability to plan more than one step ahead. This property
makes the planning algorithm converge to greedy suboptimal
paths.

We propose to build on the work of [2] and [1] to
formulate a non-myopic planning algorithm for real-life
environmental monitoring. We first modify the reward func-
tion defined in [2] to achieve a monitoring behaviour that
exploits high-gradient areas. We then implement and adapt
the algorithm to a real application of UAV terrain mapping.

III. BACKGROUND

We start with a brief description of Bayesian Optimisation,
and then present the classic POMDP formulation.

A. Bayesian Optimisation

Bayesian optimisation is a technique aiming to find the
optimum x̂ ∈ RD of an objective function f : RD → R by
gathering noisy observations from it. Formally,

x̂ = arg max
x

f(x) (1)

Noisy observations are assumed to result from an additive
Gaussian noise on the function evaluation. The ith observa-
tion is defined as yi = f(xi) + ε, where ε iid∼ N (0, σ2

n) is the
noise associated with each independent observation. More
theory on BO and GP can be found in [16] and [12]. Most
implementations of BO use Gaussian processes to model the
objective function f . The GP model is updated with the data
couple (xi, yi) every time a noisy observation yi is made at
location xi. The search of where to get an observation next
is guided by an acquisition function h(x). At each iteration
in the BO algorithm, the location at which to evaluate f
is determined by finding arg maxx h(x), therefore reporting



the maximisation problem from f to h. h is much easier to
optimise with traditional techniques such as DIRECT [17]
and, contrary to f , is cheap to evaluate. An implementation
of BO is detailed in Algorithm 1.

Algorithm 1 Bayesian Optimisation
1: Let xt be the sampling point at iteration t.
2: Let D = {(x1, y1), ..., (xn, yn)} be the data.
3: Let h be an acquisition function.
4: for t = 1, 2, 3, ... do
5: Find xt = argmaxxh(x|D1:t−1).
6: Sample the objective function yt = f(xt) + εt.
7: Augment the data D1:t = {D1:t−1, (xt, yt)}.
8: Recompute the GP model with D1:t.
9: end for

B. Partially Observable Markov Decision Processes

Partially observable Markov decision processes (POMDP)
are a framework for decision making under uncertainty
[18]. Unlike in Markov decision processes, the agent cannot
directly observe its current state. It must instead act relying
on a belief of the underlying state, built from observations. It
is therefore important for the agent to maintain a probability
distribution over the set of possible states. A POMDP is fully
defined by the tuple < S,A, T,R,Ω, O, γ >, with:

- S: Set of states {s1, s2, ..., sn}.
- A: Set of actions {a1, a2, ..., am}.
- T: S×A×S → [0, 1] is a transition function interpreted
as the probability to transition to state s′ when executing
action a in state s, i.e. T (s, a, s′) = p(s′|s, a).

- R: S×A→ R is a reward function defining the reward
of executing action a in state s, i.e. R(s, a).

- Ω: Set of observations {o1, o2, ..., ol}.
- O: S ×A×Ω→ [0, 1] is an observation function that
represents the probability of observing o when action
a was executed and led to state s, i.e. O(o, a, s) =
p(o|a, s).

- γ ∈ [0, 1] is the discount factor.
POMDPs rely on the Markov assumption, which states the
distribution on future states only depends upon the current
state. Hence it is not necessary to keep track of an obser-
vation history as all information at time t is assumed to be
embedded in the current belief state bt(s).

Solving a POMDP is equivalent to finding the optimal
policy π∗ : Ω→ A. The optimal policy is defined as the one
maximising the expected infinite sum of discounted rewards
rt starting from belief state b0. More formally,

π∗ = arg max
π

E[

∞∑
t=0

γtrπt |bo] (2)

where rπt is the reward given for following policy π at time t.

Numerous methods to solve POMDPs were proposed over
the years. In this context, we are interested in planning,
the case in which the transition and reward functions are

known. In the literature, planning in POMDPs was addressed
with numerous techniques [7], such as Value iteration [6],
heuristic search [9], [8], and branch-and-bound pruning [10].
The method we present in this paper is based on a tree search
algorithm.

IV. BO-POMDPS

We wish to solve the problem of finding the best sequence
of trajectories along which to gather samples. The value of
a trajectory depends on the quantity of information gathered
along it and how much it reduces the uncertainty of the global
belief on the monitored phenomenon. This value is captured
by a metric that balances exploration and exploitation. In the
myopic case, in which the planner only looks one step ahead,
the metric is computed for a single trajectory. In the non-
myopic case however, the value of a trajectory should take
into account all expected future samples. Ideally, it should
be computed with all future samples over an infinite horizon.
In practice however, the horizon (or look-ahead) needs to be
finite for tractability reasons. The extreme myopic case of a
1-look-ahead can be tackled by using Bayesian optimisation
with an acquisition function balancing exploitation of past
high-reward actions and exploration of unseen ones. This
approach yields acceptable results for simple problems and
is presented in the following section.

A. A myopic continuous planning solution

In this section, we describe a naive solution to the UAV
monitoring problem. The approach we present is myopic,
but takes advantage of the continuity of trajectories when
planning. Most approaches rely on picking a destination at
which to gather samples next, then building a trajectory
between the robot’s pose and the destination that respects
trajectory constraints. While this simple approach works
well in practice, it neglects the information gathered along
the trajectory, making the method sub-optimal. Furthermore,
most sensors have a high sampling frequency when compared
to the frequency at which planning is carried. Making the
most out of the samples is essential to building a good
planning algorithm. To solve this problem, we propose to
include the information gathered along the trajectory in the
planning process. We define the value r of a trajectory
T (Θ,p) defined by parameters Θ and starting from pose
p as:

r(Θ,p) =

∫ 1

0

h(T (Θ,p)|u=t)dt (3)

where h is an acquisition function yielding the desired
behaviour. In practice, the integral must be replaced by
a discrete sum, in which the number of points to sum
depends on the sensor frequency. The Upper Confidence
Bound acquisition function [19] was selected for its intrinsic
balance between exploration and exploitation, then modified
to exploit areas of high gradient. Equation 3 then becomes:

r(Θ,p, b(f)) =

M∑
i=0

‖∇µ(b(f))|pi
‖2 + κσ(b(f))|pi

(4)



where b(f) is the belief the robot has over the objective
function f , ∇ is the gradient operator, µ and σ denote
the mean and variance functions respectively, and pi =
T (Θ,p)|u=i/M . From Equation 4, one can notice parameter
κ is used to balance exploitation (first term) of high gradient
and exploration (second term) of areas of high uncertainty.
The exploitation term is designed to encourage the robot to
get more samples in quickly varying areas, which often are
the most complicated areas to map.

For any predefined set of trajectories, the robot can simu-
late the value r of each trajectory based on its current pose
and belief. The myopic approach to continuous path planning
consists of finding the trajectory r∗ whose value is maximal:

r∗(p, b(f)) = arg max
Θ∈A

r(Θ,p, b(f)). (5)

The method guarantees to find the most informative tra-
jectory based on the chosen acquisition function. In our
experiments, we refer to this method as myopic. Note that
other choices of acquisition function will result in different
behaviours. We leave the investigation of the effect of
different acquisition functions for future work. The main
shortcoming of the technique presented here is that it is
myopic. Indeed, scenarios in which robots need to plan
several steps ahead are numerous.

To extend this solution to n-look-ahead, we propose to
formulate our problem as a POMDP in which the transition
and reward functions are assumed to be known, and rewards
are given by Equation 4.

B. A non-myopic approach

We choose to formulate our problem as a POMDP to
take advantage of the framework’s previous work and n-
look-ahead planning capabilities. Using a POMDP instead
of a simple Markov Decision Process enables us to encode
the fact that the robot takes actions only based on noisy
observations of the objective function f . The state of the
system {f,p}, fully described by f and the robot’s pose p,
is never completely given to the robot. However, because we
are not interested in learning the transitions of the system,
the transition function T is explicitly encoded so that the
robot can simulate sequences of actions. Similarly, the robot
is also given an approximate reward function R̃({b(f),p}, a)
based its current belief b(f) in lieu of f . The approximate
reward function is based on Equation 4, encoding the desired
exploration-exploitation trade-off.
Let us now define the POMDP formulation of our problem:

- S: The state is a tuple {f,p}, where f is the objective
function and p is the robot’s pose. Note that the robot
is never given f , but has access to its pose p.

- A: The actions are defined by parameters Θ, each
pair of action parameters and pose p fully defining a
trajectory T (Θ,p) starting from p. All trajectories are
defined over the domain of f , and observations are
gathered along them.

- T: The transition function models the probability
T ({f,p},Θ, {f ′,p’}) of resulting in state {f ′,p’}
given trajectory T (Θ,p) was taken in state {f,p}.

We assume the transition function to be deterministic,
and independent from the objective function f because
no transition affects f , nor f affects transitions. Thus,
it can be rewritten T ({p},Θ, {p’}) = δ(T (Θ,p)|u=1−
p’), where T (Θ,p)|u=1 is the resulting pose after
executing the full trajectory defined by Θ and starting
from pose p, and δ is the dirac function.

- R: The reward function computes the sum of rewards
obtained along trajectory T (Θ,p), and is defined as:

R̃({b(f),p},Θ) = r(Θ,p, b(f)) + cost(T (Θ,p)) (6)

where cost(T (Θ,p)) is the application-specific cost of
moving along T (Θ,p).

- Ω: The observations are noisy evaluations of f along
trajectories.

- O: At each location, the observation function O is
solely defined by the robot’s pose. It relies on the
distribution p(o|f(x)) from which noisy observations
of the objective function f are drawn. In the discrete
case, O is sampled along trajectories, resulting in a set
of observations {oi}:

O({oi},Θ, {f,p}) =
∏

xi∈T (Θ,p)

p(oi|f(xi)). (7)

We are interested in methods for finding the optimal policy
π∗, granting the maximum sum of discounted rewards as
defined in Equation 2. In practice, we need to approximate
the infinite sum by a finite one, therefore restricting π∗ to
be the optimal policy over a horizon of n actions.

In the next section, we will present a method for finding
an approximation for such policy.

C. Solving continuous non-myopic planning

In BO-POMDP, the belief b(f) the agent holds of the
objective function is a probability distribution over the space
of functions f . As such, we choose to use a Gaussian process
to represent it, allowing the belief to potentially capture a
very wide variety of objective functions. The update rule of
b(f) simply consists in adding a data point {x, o} to the GP,
where o is a noisy observation at location x. Lastly, the mean
and variance functions µ and σ required by Equation 4 are
naturally provided by the GP.

We use the Monte-Carlo Tree Search algorithm to solve
the previously formulated POMDP. MCTS has been proven
to effectively plan on large discrete POMDPs in [8]. MCTS is
a partial tree search relying on a metric to balance exploring
new branches or extending previous ones. When applied to
BO-POMDP, the algorithm searches the space of available
sequences of actions at a given step, represented in the
form of a tree. Each node vi of the tree is a fictive state
{bi(f),pi}, and branches emerging from vi are actions
starting from pose pi. Simulating taking an action from
node vi results in the fictive state {bj(f),pj}, which is
appended to the tree as vj , a child of vi. The tree is grown
by simulating actions until a fixed depth while keeping track
of simulated rewards obtained in the process. Because not
all branches can be explored, MCTS approximates the true



Algorithm 2 MCTS algorithm for BO-POMDP
1: function a∗ = MCTS(b(f),p, depthmax)
2: v0 = NewNode(b(f),p, depthmax)
3: for i← 0, i <{Max MCTS iterations}, i← i+ 1 do
4: vl ← TreePolicy(v0)
5: seq ← depthmax −Depth(vl) random actions
6: r ← Simulate seq starting from vl
7: Back up reward r up the tree.
8: Update visited counters for vl branch.
9: end for

10: v∗ ← child of v0 with max accumulated reward
11: return a∗ = action from v0 to v∗

12: end function
13: function vl = TREEPOLICY(a)
14: v ← v0

15: while Depth(v) ≤ depthmax do
16: if v has untried actions then
17: Choose a from untried actions
18: r ← Simulate a and get reward
19: Update b(f) and p
20: return vl = NewNode(b(f),p, r)
21: else
22: v = BestChild(v)
23: end if
24: end while
25: return v
26: end function
27: function vc = BESTCHILD(vp)
28: V ← Children of vp
29: for vi ∈ V do
30: V ← Visited counter of vp
31: Ni ← Visited counter of vi
32: Ri ← Accumulated reward of vi
33: g(i) = Ri

Ni
+ κMC

√
2 ln(Np)
Ni

34: end for
35: return arg maxvi∈V g(i)
36: end function

expected reward of a leaf node by simulating sequences of
random actions from the leaf itself. The algorithm finishes
when it reaches a predefined number of iterations, returning
the action associated with the maximum expected sum of
discounted rewards.

A simplified version of the algorithm is shown in Algo-
rithm 2. Each iteration comprises four phases. A node is
first selected according to the exploration metric defined in
BestChild. The selected node vi is then expanded in func-
tion TreePolicy, by simulating an untried action starting
from its state {bi(f),pi}, resulting in node vj . A sequence
of random actions is then simulated starting from the new
leaf node vj , yielding accumulated reward r. Finally, reward
r is back-propagated up the tree, and the branch’s visited
counters are increased. The algorithm returns the action
leading to the first-level child with maximal accumulated
reward.

Because this algorithm does not explore the full tree of
possible actions, its complexity is not exponential with the
planning depth. The most expansive operation being the
belief update in line 19, the complexity is only linear with
the number of MCTS iterations. As such, one can trade off
search accuracy for run time by tuning this parameter.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the behaviour of a robot
running BO-POMDP, learning a spatial environmental
phenomenon by picking the most informative paths over
which to gather samples. We first show key characteristics
of our algorithm and compare it to myopic planners in
simulator. We then give qualitative results of complex
simulated terrain reconstruction and demonstrate the method
is fit to run on a real UAV.

So far, actions have been defined to be trajectories T (Θ,p)
parametrised by Θ and starting from pose p. Trajectories
are functions of u ∈ [0, 1] so that T (Θ,p)|u=0 = p and
T (Θ,p)|u=1 = p’ where p’ is the resulting pose after
executing the full trajectory. Note that any type of trajectory
can be used with this setting.

In our experiments, we choose to define trajectories as 2D
cubic splines, functions from R to R2, defined as C(u|β)
where u ∈ [0, 1] so that C = [Cx, Cy]T = β[1, u, u2, u3]T

where β is a 2-by-4 matrix of parameters fully defining the
spline C. To ensure continuity from one trajectory to the
next, constraints are applied to the parameters β. Restraining
the trajectory to start at pose p and have a unit total length
is equivalent to:

Cx|u=0 = px Cy|u=0 = py

(8)

∂Cy/∂u

∂Cx/∂u
= pα

∫ 1

0

C(u|β)du = 1

The above equations allow for easy generation of a set of
splines which can be used as the set of available actions
in the POMDP. A set of five discrete actions is generated,
allowing the robot to move forward or take slight or sharp
turns on both sides. The robot travels at a constant speed
and gathers observations at regular time intervals, so that 8
samples are gathered per trajectory.

The state of the world is composed of the robot’s pose
p and the objective function f . The robot is assumed to
have access to its pose, but needs to learn a representation
of f . We use a Gaussian process to maintain a belief
over f , providing the robot with both point estimate and
uncertainty of the objective function. The kernel used varies
with the type of environmental variable studied. In our
experiments, both the RBF and Matérn kernels are used.
Slow changing and smooth variables such as hilly terrains
are well represented with the RBF kernel, while Matérn
works well harsh changes in the objective function, like
sharp objects (e.g. boxes or buildings).



Fig. 1. Trajectories followed by myopic explorer (left) and our myopic
planner (right). The background colours show the monitored objective
function, going from low (blue) to high (red) values. The high-gradient
diagonal is exploited by our myopic planner.

Fig. 2. Terrain used in second experiment. The pit in the bottom right
corner has higher gradient than the top left one.

In the following experiments, we address the problem of
terrain reconstruction by flying a UAV at constant altitude
and taking vertical distance measurements. Because all com-
putation is done in real time, planning many steps ahead is
intractable. We therefore restrict our non-myopic algorithms
to a maximum look-ahead of 3.

A. Simulated experiments

The reward function we use in our experiments, defined
in Equation 4, balances exploration behaviour with further
sampling of high-gradient areas. The first experiment aims
to demonstrate the behaviour achieved by using such reward
function. The myopic algorithm presented in Section IV-A is
compared with a myopic explorer on a simple environment
featuring a high gradient diagonal. The myopic explorer
favours actions that reduce its belief uncertainty the most,
therefore focusing only on exploration. Both algorithms run
for 35 steps; their trajectories and the objective function
are shown in Figure 1. The resulting trajectory shows a
clear difference in behaviour, with our myopic planner
exploiting high-derivative areas of the objective function.
This behaviour directly stems from the reward function used.

The second experiment compares the performance of our
myopic and BO-POMDP algorithms to that of the previous
work we build on. The objective function used is shown in
Figure 2. It was designed so that the two pits are separated by
a distance which cannot be travelled in a single step, making
myopic planners less likely to switch pits.

We first consider the myopic method, which searches ex-
haustively all possible immediate actions. We then examine
the BO-POMDP method, which only searches a subset of all

Fig. 3. Accumulated rewards for second experiment.

sequences of possible actions, limiting its search depth to 3.
The method on which we build our work, presented in [2],
is denoted as SBO and is also limited to a search depth of 3.
A random exploration behaviour was included as baseline.
All algorithms are executed for 50 steps, averaged over 50
trials, with an exploration-exploitation parameter κ = 5.

Figure 3 compares the accumulated rewards of each
method. BO-POMDP shows higher accumulated rewards
than its myopic competitor, showing non-myopic methods
demonstrate superior behaviour. Indeed, the higher slope of
BO-POMDP after step 40 suggests the robot exploits the
high-gradient pit more often than the other methods, across
all trials. The non-myopic character of BO-POMDP allows
it to take low-reward immediate actions that lead to high-
reward situations after a few steps. It is the case when the
robot switches from the low reward pit (low gradient) to the
high reward one (high gradient).

Both of our methods myopic and BO-POMDP greatly
outperformed SBO. This is because SBO has no incentive
to exploit high-gradient areas and therefore performs poorly
on the given task.

Several error metrics are used to compare final belief with
the ground truth. The following metrics were computed:

- Root mean square error (RMSE).
- Weighted root mean square error (WRMSE). Similar
to RMSE, weighted so that errors in high-gradient
locations are penalised:

WRMSE =

√∑N
i=1(µ(xi)− f(xi))2‖ (∇f(xi)−min∇f)

max∇f−min∇f ‖2
N

(9)
- Mean Negative Log Likelihood (MNLL). Accounts for
the mean value and uncertainty of the final belief:

MNLL =
1

N

N∑
i=1

1

2
log(2πσ(xi))+

(µ(xi)− f(xi))
2

2σ(xi)
(10)

Table I displays final belief errors with respect to ground
truth for each method. Myopic or BO-POMDP perform
better than random or SBO on all metrics, showing that the



TABLE I
RECONSTRUCTION ERROR FOR SECOND EXPERIMENT.

Algorithm RMSE WRMSE MNLL
Random 28.4 24.3 7.64
SBO 18.5 15.7 0.329
Myopic 8.34 7.08 -1.16
BO-POMDP 7.92 6.7 0.623

Fig. 4. Drone flying over a hilly terrain in gazebo simulator. The houses
in the background are used for PTAM positioning.

reward function reformulation in Equation 4 leads to better
mapping quality. On this simple environment, BO-POMDP
outperforms myopic on most metrics. This suggests its
ability to plan ahead enables it to get measurements in
more informative locations, thus leading to better terrain
reconstruction. However, myopic achieves best performance
on MNLL, because its global belief uncertainty is smaller
than that of other methods.

Our last simulated experiment is run using Gazebo and
tum simulator1 to simulate an ARDrone quad-copter. The
robot’s pose is estimated by running PTAM on the frontal
on-board camera. A distance sensor attached underneath the
drone gives distance measurement, with respect to the object
directly under it. In this experiment, we propose to map a
hilly terrain. The experimental setup can be seen in Figure
4. The BO-POMDP algorithm is run for 25 steps, with
look-ahead of 3 and κ = 10. Figure 5 shows a 3D terrain
reconstructed from in-flight data, compared to ground truth.
The reconstructed terrain is very similar to the original one,
with only few differences. The final belief uncertainty is high
in the four corners, explaining higher error in all corners.
Errors could be reduced by running the algorithm for a few
additional steps.

B. Real-world experiment

For the last experiment, an ARDrone quad-copter was
used. It was modified to include an infra-red range sensor
facing down and a Raspberry Pi mounted on top, running
ROS and communicating with a base station. See Figure
6. Similarly to the previous experiments, the goal is to

1Software available at http://wiki.ros.org/tum simulator

Fig. 5. Surface reconstruction after simulated experiment with BO-POMDP
depth 3 (right), trajectory is displayed in black. Ground truth of the hilly
terrain (left), as shown in Figure 4.

Fig. 6. Quad-copter used for real-world experiments.

reconstruct the 3D surface of an area. The environment of
study features an 3x3 meter indoor area with sharp-edged
props, as displayed in Figure 7 (right). The robot’s pose
is estimated by running the same PTAM algorithm as in
the previous experiment. All computation runs in real time,
most of it in a single thread on a base station featuring a
2.90GHz i7 CPU. Because of real-time constraints and flight
time limitations, planning was only carried out with depth 3,
and the number of steps restricted to 15. In this configuration,
choosing the next trajectory takes less than 5 seconds for
each step. The 3D surface reconstructed from data gathered
during the experiment is shown in Figure 7 (left). While
one can clearly see the resemblance between the recon-
structed surface and the real environment, reconstruction is
not perfect. All props were detected by the range sensor, and
positioned properly. However, their sharp edges are not well
represented in the 3D surface, and notably the hole between
the props on the left side of the area. The reconstruction error

Fig. 7. Surface reconstruction after real-world experiment with BO-
POMDP depth 3 (left), trajectory displayed in black. Photo of the corre-
sponding 3x3 meter experiment area (right).

http://wiki.ros.org/tum_simulator


Fig. 8. Centred surface reconstruction error. A GP with Exponential kernel
was used to reconstruct the map from flight data. The highest error is
achieved around prop edges.

in Figure 8 confirms edges are where error is the highest.
This problem is likely due to a lack of data, resulting from
short flight time. Note that the belief uncertainty is high
in several locations after the flight finished, meaning the
belief could be further improved with more exploration. The
range sensor angle (3 degrees) also contributes to smoothing
edges. Using a laser sensor instead would yield more precise
and much sharper measurements. The mean and variance of
the reconstruction error are 6.01 and 1.98 cm respectively.
The mean value can be disregarded as it only is an offset.
However, the error variance is small in comparison to the
sensor’s theoretical accuracy of±4cm, suggesting low sensor
accuracy deteriorated mapping quality.

Using a sharper GP kernel such as the exponential kernel
improves edge reconstruction, but fails in areas where data
is sparse. Running the experiment for longer would allow
more data to be gathered and probably lead to more accurate
terrain reconstruction with such kernel.

Despite the fact our last experiment suffered from practical
limitations, it clearly shows our method can be implemented
and run on real UAVs, and successfully applied to real life
scenarios of environment monitoring.

VI. CONCLUSION

In this paper we present BO-POMDP, a non-myopic
planner relying on a POMDP formulation of sequential
BO, first introduced in [2]. Our first contribution is the
reformulation of the reward function to balance exploitation
of high-gradient areas and exploration. We show in sim-
ulated experiments how the behaviour emerging from the
new reward function favours varying areas over constant
ones, yielding better mapping accuracy and accumulated
reward than previous methods. Comparisons of 3D terrain
reconstruction shows BO-POMDP achieves lower errors than
its myopic equivalent.

Our second contribution is the adaptation of our method to
real-world monitoring problems. We first showed promising
results of terrain reconstruction in a realistic simulator. Our
method was then deployed on a cheap quad-copter with very
limited sensing capabilities to achieve decent mapping of an
indoor area. While real-world experiments did not yield a
very accurate reconstructed map, it should be noted that the

problem of accurate edge reconstruction is challenging when
dealing with so few and sparse data. Reconstruction could
be greatly improved by upgrading the single-beam infra-
red sensor to a more accurate multi-beam laser sensor, and
increasing flight time.

We believe that choosing trajectories that exploit high
gradients leads to more informative data gathering, thus
improving mapping accuracy. The method we described can
be applied to a wide variety of environmental phenomena to
improve mapping quality. As future work, we plan to address
the problem of environmental monitoring when discretization
of the action space is impossible.
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