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Abstract— Decision making under uncertainty is a chal-
lenging task, especially when dealing with complex robotics
scenarios. The Partially Observable Markov Decision Process
(POMDP) framework, designed to solve this problem, was
subject to much work lately. Most POMDP solvers, however,
focus on planning in discrete state, action and/or observations
spaces, which does not truly reflect the complexity of most real
world problems. This paper addresses the issue by devising a
method for solving POMDPs with continuous state, action and
observations spaces. The proposed planner, Continuous Belief
Tree Search (CBTS), uses Bayesian Optimisation (BO) to dy-
namically sample promising actions while constructing a belief
tree. This dynamic sampling allows for richer action selection
than offline action discretisation. CBTS is complemented by a
novel trajectory generation technique, relying on the theory of
Reproducing Kernel Hilbert Spaces (RKHS), yielding trajectories
amenable for robotics applications. The resulting trajectory
planner kCBTS outperforms other continuous planners on
space modelling and robot parking problems.

I. INTRODUCTION

Planning in real world scenarios presents complex chal-
lenges. Robots performing in this setting often need to
plan based on incomplete and limited information from
the environment and simultaneously deal with continuous
variables and their infinite dimensionality.

In many robotics tasks, robots start with very little knowl-
edge of their environment and gather data as they move
around. Newly gathered data improve planning quality by
allowing robots to take better informed decisions. This im-
provement motivates online planning methods, which recom-
pute policies whenever the robot executes an action, using
an updated belief of the environment.

Bayesian optimisation was proposed as a planning method
by [1] and extended to online informative path planning
by [2]. While choosing the immediate best trajectory yields
acceptable results, the myopic character of BO leads to
suboptimal policies. Indeed, the same planning problem
was reformulated as a POMDP by [3] to benefit from the
framework’s look-ahead planning capabilities, and shown
to perform better than its myopic equivalent. However, the
proposed non-myopic planner only addresses planning with
a set of discrete actions. While discretising the action space
is perfectly sound in engineered scenarios, it often leads
to suboptimal policies in real world problems. Furthermore,
action generation can be challenging in the continuous case.

This paper proposes a POMDP planner for fully con-
tinuous environments based on Monte-Carlo Tree Search
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(MCTS). MCTS is an approximate tree-based method pro-
posed by [4], able to handle continuous states and observa-
tions but limited to discrete actions. Our contributions are
twofold. We first present CBTS, an extension of MCTS, for
planning on continuous action spaces, which relies on dy-
namic action sampling. Because dynamic sampling favours
promising regions of the action space, it allows finding
and selecting more precise actions than traditional sam-
pling techniques, consequently yielding better policies. Our
second contribution is a kernel-based trajectory generation
method in RKHS. Trajectories are easily generated from
parameter optimisation, and display consistent properties
such as smoothness and differentiability, which are enforced
by the kernel functions. These properties are often desired
when generating realistic trajectories for real world robotics.
Our planning algorithm, CBTS, and the proposed kernel
trajectory generation technique are complementary; they are
combined into a trajectory planner we call kCBTS.

The final algorithm, kCBTS, is validated on simulated and
real robotics systems. kCBTS is first applied to a space
modelling problem in which a robot learns an objective
function by gathering noisy measurements along continuous
trajectories. The robot maintains a belief over the studied
function using a Gaussian Process, and monitoring behaviour
is achieved by defining a specific reward function balancing
exploration and exploitation of high-valued areas. The plan-
ning algorithm is then used to solve a simulated parking
problem, in which a robot must manoeuvre to a park with
restricted steering angle. Lastly, kCBTS is employed on
a real-world robotics problem analogous to the previous
parking task, validating the practical applicability of kernel
trajectories. Experiments show our method outperforms other
existing trajectory planners, while confirming that planning
with continuous actions results in higher accumulated reward
than when using a discrete set of actions. Additionally,
continuous actions allow for better space coverage, resulting
in lower errors in final models of the monitored function.

II. RELATED WORK

The planning problem in POMDPs has received much
attention over the last decades. Classic planning methods
compute a policy, a mapping from states to actions, before
experiments start. Such offline planners, presented in the
work of [5], generally rely on sampling techniques such as
the point-based approach, trading off optimality for speed.
In most realistic scenarios, new information is gathered as
robots interact with their environment, which offline methods
do not take advantage of. Unlike online techniques, offline



planners are typically computationally expensive and don’t
improve their policies over time.

Many successful online POMDP planners have been de-
veloped. While [6], [7] and [8] presented basic planners
restricted to discrete and low-cardinality states, actions and
observations, some were extended to larger and continuous
state and observation spaces in [9], [4], and [10]. Most of
these techniques sample spaces to compute more compact
representations. Random sampling leads to expectation esti-
mates for states and observations. However, finding actions
yielding maximum reward is not an expectation problem and
hence cannot be tackled with the same sampling techniques.

Several techniques were proposed by [11], [12], [13] and
[14] to plan in POMDPs with continuous actions. While
successful in their case studies, these methods rely on
diverse assumptions. [11] constrain finding the best policy
of a predefined class, greatly restricting policy outcomes.
Assuming beliefs to be Gaussian distributions as in [12]
limits the range of applications. [13] assumes to receive the
most likely observations, which does not result in a true
state estimate. The method of [14] relies on basic heuristics
to search the continuous action space, which converge to
local minima. This paper proposes an approximate and online
POMDP solver for continuous state, action and observation
spaces, which does not restrict the type of belief nor makes
strong assumptions on the nature of observations.

In robotics applications, generating continuous and plau-
sible trajectories is paramount. Much work uses waypoints
given by classic planners such as RRT. [15] makes robots
navigate a sequence of waypoints, and [16] need to further
work out robot kinematics. The first approach is not realistic
and does not consider robot capabilities, and the second
requires extensive problem-specific knowledge and compu-
tation to match robot kinematics. Cubic splines provide
smoother trajectories [2], but often result in unrealistic steer-
ing angles. Bezier curves use controlling points to constrain
curvature, yielding more realistic trajectories [17]. However,
they require many parameters to tune and do not necessarily
reflect the robot’s physical constraints. Recently, kernels
were used to define trajectories with desired properties, when
a cost function is well defined [18]. In this work, we propose
a method to build realistic trajectories using RKHS. These
trajectories are easily generated from a set of parameters,
adapting to the limitations and capabilities of specific robotic
platforms. Their execution requires no further tuning.

The techniques presented in this paper are applied to
spatial modelling, a problem which has received increased
attention over the past few years. Air pollution was success-
fully monitored in the work of [2] using a ground robot
and an online myopic planner to generate trajectories from
a continuous space of actions. [3] then extended this work
to non-myopic planning by solving a POMDP using MCTS,
then applied to environmental mapping with UAVs in [19].
However, this technique only handles discrete actions. Our
method shows planning with continuous action POMDPs for
space modelling yields superior results compared to planning
with previously discretised actions.

III. METHOD

A. Overview
We wish to achieve non-myopic planning in fully contin-

uous and partially observable environments. We formulate
the problem as solving a POMDP, and describe MCTS as
a solution in Section III-B. MCTS simulates sequences of
trajectories, effectively building a belief tree by iteratively
selecting branches to expand. We generalise MCTS to con-
tinuous actions by incorporating a continuous optimisation
method at each node. The proposed planner Continuous
Belief Tree Search (CBTS), is described in Section III-C.
We then present a kernel trajectory generation technique
in Section III-D which directly handles action parameters
optimised by CBTS. The combination of kernel trajectory
generation and CBTS, defined as kCBTS, is described in
Section III-E.

B. Belief tree search
We formulate trajectory planning as solving a Partially

observable MDP, a well-defined framework for non-myopic
decision making under uncertainty. A POMDP is a tuple
< S,A, T,R,⌦, O, � > where S,A,⌦ are spaces of states,
actions and observations respectively. At each step t, the
agent arrives at state s

0
2 S, receives a reward r 2 R and

an observation o 2 ⌦ for taking action a 2 A in its previous
state s at step t� 1. The transition dynamics distribution T

satisfies the Markov property, expressing the probability of
transitioning to state s

0 when executing action a in state s,
T (s, a, s0) = p(s0|s, a). Rewards r are given by a reward
function R which only depends on the current state and
action, r = R(s, a). The observation distribution O expresses
the probability of observing o when executing action a

resulting in state s
0, O(o, a, s0) = p(o|a, s0). � 2 [0, 1] is

a user-defined long-term reward discounting parameter.
Given the partial observability of the problem, agents do

not have access to the true state of the environment. Instead,
they rely on maintaining a belief b 2 B over possible current
states. POMDP planners compute policies ⇡ : B ! A

reflecting the action an agent should take when in a belief
state. Solving a POMDP is equivalent to finding the optimal
policy ⇡

⇤, maximising the expected infinite sum of future
discounted rewards,

⇡
⇤ = argmax

⇡
E

" 1X

t=0

�
t
r
⇡
t |bo

#
, (1)

where b0 is the initial belief, and r
⇡
t is the reward for exe-

cuting policy ⇡ at time t. Diverse techniques were proposed
to solve POMDPs [7]; we focus here on a stochastic tree
search method.

Monte-Carlo Tree search was first used by [4] to plan
in POMDPs. MCTS is an any-time method used to partially
and stochastically search trees. As a POMDP solver, it builds
a tree in which nodes are beliefs and branches are actions.
The tree represents numerous sequences of simulated actions
an agent can take at step t. Accumulated rewards and visit
counts are kept on each branch. Finding the branch with



the maximum accumulated reward approximates Equation 1,
with the infinite sum replaced by a finite one.

Unlike full tree search, MCTS does not require all
branches to be explored. MCTS approximates the true value
of an action by simulating sequences of random actions, and
computing the empirical mean of their values. Exploration of
new branches is guided by an acquisition function. A popular
choice is the Upper Confidence bound for Trees (UCT),
where a branch ai from v is selected when maximising

UCT (v, ai) =
ri

ni
+ c

r
ln t

ni
. (2)

ri and ni are the accumulated reward and visit count of ai

respectively, c is an exploration parameter, and t is the visit
count of v. The first term in Equation 2 favours branches with
high accumulated reward (exploitation), while the second one
encourages evaluating neglected branches (exploration).

C. Continuous Belief Tree Search (CBTS) with BO
MCTS is only defined to solve POMDPs with finite and

discrete actions. In this paper, we propose to generalise the
method to infinite and continuous action spaces. CBTS is an
approximate tree search algorithm based on PO-UCT [4],
a variant of MCTS which was proven to plan efficiently
in large discrete POMDPs. CBTS extends PO-UCT to the
case of planning with continuous actions, alleviating the
need to discretise the action space prior to planning. Classic
MCTS partially explores a belief tree by choosing promising
actions from the discrete set of available actions, maximising
Equation 2. CBTS extends this maximisation problem to
continuous action spaces, by only exploring a subset of
sampled actions. Choosing this subset of actions is crucial, as
it directly impacts the accumulated reward of all subsequent
branches of the belief tree. The method proposed here relies
on dynamically sampling the space of actions at the most
promising locations with Bayesian optimisation.

Bayesian Optimisation (BO) is a technique for finding the
optimum ⇥̂ 2 Rd of an objective function f : Rd

! R,
particularly when one does not have access to f or it is
expensive to evaluate. BO iteratively determines the best
⇥ at which to evaluate f at step t, based on previous
noisy data D = {(⇥i, ri)}

t�1
i=1 , where ri = f(⇥i) + ✏ is

a noisy evaluation of f and ✏
idd
⇠ N (0,�2

n) is Gaussian
noise. Most BO implementations represent f as a Gaussian
process, which can express a wide range of functions, trained
on D. The search of where to evaluate f next is guided
by an acquisition function h. The optimisation problem is
transferred from f to h because h is known and cheap
to evaluate. Traditional optimisation techniques are used to
find argmax⇥ h(⇥). Acquisition functions typically balance
exploration of the input space and re-sampling high-valued
areas, effectively guiding the search towards optima.

We adapt Bayesian optimisation to action selection, defin-
ing actions by a vector of parameters ⇥. The problem of
choosing new action parameters ⇥⇤ for simulation from node
v is formulated as follows:

⇥⇤ = argmax
⇥

h(⇥|Dv), (3)

Algorithm 1 Bayesian Optimisation for action selection

1: Let Dv = {} be the data, h be an acquisition function.
2: for t = 1, 2, 3, ... do
3: Find ⇥⇤ with Eq. 3 or 4.
4: Generate trajectory T from ⇥⇤ (Sec. III-E).
5: r, o Simulate T .
6: Augment Dv with (⇥⇤

, r) and recompute GP.
7: end for

where Dv is a node-specific dataset. Balancing exploitation
of high-reward action and exploration of unknown areas of
the action space is achieved by appropriately choosing h.
The Upper-Confidence Bounds (UCB) function is generally
used for such balance in the BO literature. Equation 3 then
becomes

⇥⇤ = argmax
⇥

µ(bv(⇥)) + �(bv(⇥)), (4)

where µ and � are the mean and variance operators respec-
tively,  is a parameter balancing exploration and exploita-
tion, and bv is a belief over the action-reward mapping at a
node level maintained using a Gaussian Process trained with
Dv . Gathering data to generate Dv is done as follows. When
an action a is simulated from node v of the belief tree ⌧ and
yields reward r, the resulting pair {a, r} is used to learn a GP
mapping from actions to rewards at a node level.1. Note that
the variance term of equation 4 encourages selecting actions
furthest from that in Dv , ensuring efficient coverage of the
action space. Algorithm 1 shows a practical implementation
of BO for action selection.

We now incorporate BO for action selection to MCTS
to handle continuous action spaces and ensure non-myopic
planning. We call the resulting algorithm Continuous Belief
Tree Search (CBTS). Branches to explore are first determined
by classic MCTS branching metric (Eq. 2), and BO chooses
actions to simulate. Each node v stores data Dv of previous
action-reward pairs, which are used by BO. Pseudo-code for
CBTS given in Algorithm 2 details how MCTS and BO
complement each other. As nodes are revisited, their action-
rewards mappings get more accurate. In practice, mappings
are often accurate enough with few data points. Therefore,
one can limit the maximum number of generated actions per
node to a problem-specific fixed value Amax, as shown in
Algorithm 2 line 12. Alternatively, a node’s action generation
could stop whenever a convergence criterion is met. For
example, such criterion can be ||⇥i�1 � ⇥i|| < �, where
⇥i�1 and ⇥i are the previously and newly generated actions
respectively, and � is a user-specified threshold.

Each node’s belief on the action-reward mapping is im-
plemented with a Gaussian Process, of complexity O(N3),
where N is the number of actions generated at a given
node. N is in practice very small, therefore leading to

1A mapping from actions to Monte-Carlo estimates of return could easily
be learnt instead, by using a GP with heteroscedastic noise model to reflect
the fact that returns do not have constant variance across the action space.
However, using rewards in lieu of returns leads to good results in practice.
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Fig. 1: Picking data points used to construct trajectories
in RKHS. This example uses 4 anchor points (including
the stating point) and only requires 3 parameters ✓0, ✓1, ✓2.
Times yi are evenly distributed between 0 and 1.

negligible computation time compared to the state belief
update whose complexity typically grows faster, with the
number of observations. In practice, the complete CBTS
algorithm displays similar running times to using MCTS with
discrete actions.

D. Kernel Trajectories
We now describe a technique for generating realistic

robot trajectories based on the theory of Reproducing Kernel
Hilbert Spaces (RKHS) presented by [20] and [21]. Resulting
trajectories encode the required characteristics (eg. smooth-
ness, acceleration, etc) by making use of kernel functions.

Trajectories are defined as functions T (⇥,x) of
y 2 [0, 1]! Rd parameterised by a vector ⇥, where d is
the dimension of the physical space, so that T (⇥,x)|y=0 is
the starting pose x and T (⇥,x)|y=1 is the ending pose x0.
This formulation does not make any assumption on the type
of function used to represent trajectories.

We formulate trajectory generation as finding the agent’s
pose x at any time y 2 [0, 1] given pose-time pairs
D = {(xi, yi)}ni=0. More formally, a trajectory T can be
defined as

T (y) = E[X|Y = y], 8y 2 [0, 1], (5)

were X and Y are random variables in the spaces of poses
X and times Y respectively, and y is an element of Y .
Generating a trajectory simply comes down to producing
waypoint data D, as explained in the next section, and
sampling Equation 5 for different times y 2 [0, 1].

Equation 5 can be solved by using an equivalent kernel
formulation. Let Hx and Hy be two RKHS defined over
spaces X and Y respectively, and fully defined by their
reproducing kernels kx and ky . One can then compute
the kernel mean mP 2 Hx of any arbitrary probability
distribution P on Hx with

mP =

Z
kx(·,x)dP (x). (6)

Provided conditions on kernel kx and ky are met, the
mapping P ! mP is one-to-one, and one can approximate
mP to estimate P from the available data [22].

Here, we are interested in finding an estimate of the
kernel posterior mean mX|y , the kernel mean of the posterior
distribution P (X|Y = ·), defined as

m̂
⇡
X|y =

nX

i=1

!
(y)
i kx(·,xi), (7)

a) b)

c) d)

Fig. 2: Trajectories generated with discrete cubic splines (a).
Plain splines are used for experiments with 5 actions, plain
and dashed for 9 actions, dotted splines are added to form
17 actions. Kernel trajectories with smooth (b, d) and sharp
(c) space kernel kx. The starting angle restriction is relaxed
to allow different types of motion (d).

where !(y) = {!
(y)
i }

n
i=1 is a weight vector depending

on the query time y, data D, kernels kx and ky , and a
prior ⇡ on X . !(y) is computed using kernel Bayes’ rule,
first proposed by [23]. We refer readers not familiar with
kernel embeddings to the theory of kernel embeddings of
conditional distributions described by [20]. The expected
pose T (y) defined in Equation 5 can simply be estimated
as a weighted sum of data points:

T (y) = E[X|Y = y] ⇡
nX

i=1

!
(y)
i xi, (8)

where !(y) = ⇤GY ((⇤GY )
2 + �I)�1⇤kY , (9)

⇤ = diag((GX + n✏I)�1m⇡), (10)

and GX = (kx(xi,xj)), GY = (ky(yi, yj)), kY =
{ky(y, yi)}Ti=1:n, m⇡ = {

1
l

Pl
j=1 kx(xi,uj)}Ti=1:n, ui are

i.i.d. drawn from ⇡, and ✏, � > 0 are regularisation constants.
In practice, to generate a trajectory in RKHS, one needs

to (i) generate pose-time pairs (xi, yi) as described in the
upcoming example, (ii) compute !(y) at discretised times
with Equations 9 - 10, and (iii) estimate T with Equation 8.

E. Kernel CBTS
To generate kernel trajectories, one needs to define a set of

anchor points to interpolate between. Pairs of anchor points
and corresponding trajectory times (xi, yi) can be chosen
in various ways. Parameter vector ⇥ given by Equation
4 and a starting pose x are sufficient to generate anchor
points and define a kernel trajectory. Our contributions are
combined as kCBTS in Algorithm 2; CBTS selects trajectory
parameters ⇥ which are then converted to kernel trajectories
with Equations 8 - 10, ready for execution.

We now present a simple and efficient method for generat-
ing anchor points. Assuming that a robot moves at constant
speed on a plane, we define a set of equally spaced anchor
poses xi with associated times yi evenly distributed between
0 and 1. In polar coordinates, one only needs to choose



angles ✓i between two consecutive trajectory segments to
fully describe the set of anchor points. See Figure 1 for a
graphical explanation. This technique is efficient as it only
requires one parameter per anchor point, effectively reducing
the size of the action space the planner needs to search.

To compute !(y) with Equations 9-10, parameters need
be specified. In our experiments, a uniform prior ⇡ on X

is chosen, therefore not penalising nor rewarding any part
of the pose space. Note that other priors might be useful
to encode obstacles, or to restrict specific moves as in the
case of robotic manipulators. RBF kernels are used for both
kx and ky for their smoothness, inducing desired properties
such as low steering angles and bounded acceleration; Figure
2 shows a set of trajectories generated following this method
with different parameter values.

Algorithm 2 Kernel CBTS (kCBTS)
1: function a

⇤ = KCBTS(b, depthmax)
2: v0 = NewNode(b, 0).
3: for i = 0 to {Max CBTS iterations} do
4: vl  TreePolicy(v0).
5: r  Random actions from vl until depthmax.
6: BackUp(vl, r).
7: end for
8: a

⇤
 action from v0 with max return.

9: end function
10: function v = TREEPOLICY(v)
11: while depth(v)  depthmax do
12: if length(Dv) < Amax then
13: Run one iteration Alg. 1 with Dv .
14: Collect r, o and Dv .
15: Update b with o, and bv with Dv .
16: return v = NewNode(b, r).
17: else
18: v = BestChild(v).
19: end if
20: end while
21: end function
22: function BACKUP(v, r)
23: while v 6= v0 do
24: Increase visited counter for v.
25: Increase accumulated reward for v with r.
26: v  Parent(v).
27: end while
28: end function
29: function vc = BESTCHILD(vp)
30: V  Children of vp.
31: for vi 2 V do
32: Np, Ni  Visited counter of vp and vi.
33: Ri  Accumulated reward.
34: g(i) = Ri

Ni
+ MC

q
2 ln(Np)

Ni
.

35: end for
36: vc  argmaxvi2V g(i).
37: end function

In general, the choice of kernels kx and ky directly impacts

Fig. 3: Space modelling domain. Black rectangles are obsta-
cles, the red polygon represents the robot’s starting pose, and
the background colours show the monitored function (ground
truth). High values are red, low values are blue.

physical properties of generated trajectories. Slowly varying
kernels ensure trajectory smoothness, and conversely, sharp
kernels result in spiky trajectories. Space constraints such as
steering angle are determined by the space kernel kx while
velocity and acceleration are governed by the time kernel ky .
Note that the regularisation parameters from kernel Bayes’
rule also impact the nature of trajectories. Further work is
needed to draw rigorous conclusions on the impact of kernel
types and parameter values. Lastly, because these choices are
problem dependent, they are to be made offline by the user.

IV. EXPERIMENTAL RESULTS

In this section, we present experiments of kCBTS on
an environmental monitoring task, and on a robot parking
problem in both simulation and real world.

A. Space Modelling Problem
In this experiment, a simulated robot monitors an unknown

noisy environmental variable. The robot’s task is to learn
the monitored function and build the best possible spatial
model in a limited time. The robot starts with no data and
progressively enriches its belief of the monitored function by
gathering observations along trajectories. Each observation is
a noisy evaluation of the monitored function at the robot’s
position. The domain shown in Figure 3 features two high-
valued areas separated by a wall, and was designed so that the
robot can change areas by moving through a narrow corridor.
The robot is given full knowledge of obstacle locations,
but only receives information about the monitored function
from noisy observations. Exploration is therefore essential to
receiving higher long-term rewards.

1) POMDP Formulation: This formulation was proposed
by [3], enabling a robot to carry out exploration guided by
an acquisition function while benefiting from the non-myopic
character of POMDP planners. The POMDP used is:

- S: States s = {f,x} with f the objective function and
x the robot’s pose. While the robot knows its pose, it
only gets information about f from observations o.

- A: Continuous actions a are sets of parameters ⇥
defining kernel trajectories T (⇥,x) starting from x.

- T: The transition distribution T ({f,x},⇥, {f
0
,x0

})
models deterministic moves from x to x0 with action ⇥.
Because transitions and f are independent, T is written
as T ({f,x},⇥, {f

0
,x0

}) = �(T (⇥,x)|y=1 � x0).



- R: The reward function for action ⇥ in pose x is:

r(⇥,x) =

Z 1

0
h(T (⇥,x)|y=t)dt, (11)

where h is an acquisition function yielding the desired
monitoring behaviour. Note that h depends on the belief
b(f) the robot maintains in lieu of f . In practice,
Equation 11 is approximated with discrete simulated
rewards:

R(⇥,x) =
X

x2T (⇥,x)

h(x) + cost(⇥,x), (12)

where cost(⇥,x) is the application specific cost of
moving along T (⇥,x), e.g. colliding with a wall results
in a �100 cost. UCB is often selected as the acquisition
function h for the exploration behaviour it yields.

- ⌦: Observations o 2 R are noisy evaluations of f ,
typically sensor measurements. Similarly to rewards,
observations are computed on a set of locations along
T (⇥,x).

- O: The observation function O generates a set of
observations {oi} along the robot’s trajectory. As noisy
evaluations of f , observations only depend on the
robot’s pose:

O({oi},⇥, {f,x}) =
Y

xi2T (⇥,x)

p(oi|f(xi)). (13)

The robot can simulate observations by generating noisy
samples from its belief b.

The belief over f is maintained using a GP, allowing flexibil-
ity in the type of modelled functions that can be represented.
GPs allow one to define a prior belief b0 over the monitored
function, and gives mean and uncertainty information for f .

2) Results: We compare kCBTS to other POMDP plan-
ning methods on the previously described continuous state-
action-observation POMDP. Compared methods are a dis-
crete action planner (SBO) [3], and a recent approximate
POMDP solver compatible with continuous action spaces
(GPS-ABT) [14]. For reference, we also included a random
planner choosing discrete actions uniformly. Discrete cubic
splines trajectories are used by SBO and Random, as shown
in Figure 2a. GPS-ABT and kCBTS use smooth kernel
trajectories with constrained starting angle, see Figure 2b.
Because SBO and kCBTS bear similar planning algorithms,
comparisons between the two methods underline advantages
of planning with kernel trajectories compared to discrete
ones. Conversely, GPS-ABT and kCBTS both use kernel
trajectories, and comparisons only showcase differences in
planning performance.

In this experiment, the acquisition function h in Equation
12 is UCB, with parameter  = 10. Figure 4 reports
accumulated rewards for each of the four methods, averaged
over 200 episodes. Overall, kCBTS and GPS-ABT perform
better than discrete action planner SBO, regardless of the
number of discrete actions used. Several numbers of discrete
actions were tested |A| 2 5, 9, 17, but for clarity only the best
case is reported. The first 8 steps however, yield very similar
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Fig. 4: Mean and standard deviation of accumulated rewards
in the space modelling problem, averaged over 200 runs.

TABLE I: Errors on Final Model Reconstruction.

Algorithm |A| RMSE WRMSE runtime (s)
SBO 5 72.9 61.9 106
SBO 9 52.5 44.7 463
SBO 17 52.8 44.9 734
kCBTS - 42.6 36.9 356

rewards across all methods because the robot first explores
the left side of the domain. After step 8, the robot is drawn
to explore the rest of the domain, and discrete actions are
often not precise enough to navigate through the corridor.
This experiment shows that planning with kernel trajectories
enables robots to efficiently avoid obstacles and navigate
more precisely than when planning with discrete actions.
Figure 5 shows an example of trajectories using kCBTS

and SBO. kCBTS can generate actions precise enough to
navigate through the corridor and reach the rightmost area
whereas actions available to SBO prevent the robot from
navigating efficiently. Indeed, When in a tricky situation,
discrete actions do not allow the robot to manoeuvre and
lead to collisions. Lastly, kCBTS and GPS-ABT yield very
similar performance on this problem, with a slight long-term
advantage in favor of the CBTS planning technique.

At the end of each experiment, robots build a spatial model
of the monitored function. Final models are compared to
ground truth based on two error metrics: the root-mean-
square error (RMSE) reflects how far from ground truth
the belief is at each point in average; the weighted root-
mean-square error (WRMSE) is weighted so that errors in
high-valued locations are penalised. Note that because GPS-
ABT does not build a model of the monitored function,
it is omitted from the comparison. Table I shows kCBTS
significantly outperforms SBO on both metrics regardless of
the number of actions used. Overall, kCBTS yields similar
running times to SBO, achieving superior performance in
both accumulated rewards and model error.

SBO with 5 actions outperformed its equivalent with 9
and 17 actions both in terms of accumulated rewards and
model error. While one might expect improvements for



kCBTS, kernel trajectories SBO, 5 discrete actions

Fig. 5: Example of robot trajectories when using kCBTS
(left) and SBO (right). With kCBTS, the robot manages to
navigate through the wall gap. The red circle on the right
figure denotes a collision.

increasing the number of actions available to the planner,
this experiment shows the opposite. We believe this is due
to the planner’s inability to efficiently construct a belief tree
with higher branching factors, given a fixed iteration bud-
get. Better performance could be achieved by exponentially
increasing the number of MCTS iterations.

When using a number of discrete actions similar to the
number of continuous actions Amax generated with BO,
kCBTS outperforms SBO. Indeed, BO takes advantage of
the continuity of the action-to-reward mapping: very similar
actions often result in similar rewards. This property allows
BO to find optimal actions before trying Amax actions,
therefore reducing the belief tree branching factor.

B. Robot Parking Problem

The robot parking problem is a domain in which a robot
navigates in a two-dimensional space to a designated parking
area. The state space is the space of positions within a
delimited area, augmented with the robot’s angle S =
[�4, 4]2⇥[0, 2⇡). Starting from a random location and angle,
the robot’s goal is to reach terminal state (0, 0, 0) with a max-
imum of 15 steps by moving along continuous trajectories.
Observations are noisy robot poses, and actions are defined
as continuous trajectories in the ground plane, of constant
velocity. All trajectories are normalised to have constant
length, regarding of the trajectory type used. Rewards are
granted according to

R(s) =

8
>>><

>>>:

�|sin(�)|� dmax � 1, if |sin(�)| > ✏�

�|sin(↵)|� dmax, else if |sin(↵)| > ✏↵

�d, else if d > ✏d

1000, otherwise
(14)

where ↵ is the difference between the robot’s angle and the
objective’s angle, � and d are the angle and distance between
the robot and the objective respectively, dmax is an upper-
bound on d, and ✏d = 0.1, ✏↵ = ⇡/10, and ✏� = ⇡/10 are
parameters reflecting required parking precision. A reward
of 1000 is given for successfully parking in the delimited
area, whereas exiting the limits of the domains results in a
reward penalty of �1000. Both events terminate the episode.
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Fig. 6: Accumulated rewards in the simulated robot parking
problem, averaged over 200 runs.

The difficulty of this domain arises from the robot’s
inability to turn on the spot, effectively constraining it to
generate multi-step trajectories with a precise approach to
reach the parking area. Experiments on this domain aim to
highlight the advantage of continuous actions to manoeuvre
in difficult scenarios.

1) Simulated results: Planner kCBTS is now compared
to SBO, GPS-ABT and a random planner on a simulated
version of the robot parking problem. The maximum MCTS
budget is limited to 300, while the planning horizon is limited
to 3 simulated steps for all algorithms. At each node of the
tree search, kCBTS generates a maximum of Amax = 20
actions.

Figure 6 shows accumulated rewards for all planners
on the robot parking problem starting from random poses,
averaged across 200 episodes with random starting pose.
Note that variance information is not included, as it mostly
results from the randomness in starting poses.

kCBTS and SBO both manage to park properly in most
episodes by step 6, as reported by the increased accumulated
rewards at this point and steady decrease afterwards. How-
ever, GPS-ABT fails to park in most episodes while man-
aging to keep within domain bounds. The random planner
accumulates collision penalties and never manages to park.
The performance difference between kCBTS and SBO shows
the advantage of using continuous actions on this domain.
Indeed, continuous actions yield a much richer spectrum of
trajectories, allowing the robot to precisely navigate towards
its end goal.

2) Robotics results: We now present results on the same
robot parking task, this time applied to a real robot. The
goal of this experiment is to demonstrate kernel trajectories
are adapted to real robotics problems, and advantageous over
classic cubic splines trajectories.

The platform used, shown in Figure 8, is a non holonomic
wheeled ground robot, constrained to forward motion. The
robot’s position and orientation is computed by an external
marker-based tracking system, and transmitted back to the
robot’s on-board computer; all other computations are made
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Fig. 7: Accumulated rewards for five runs (plain) and mean
(dashed) in the robot parking problem.

on board, in real time. Planning times are around 3 seconds at
each step. The operating area is reduced to 3 by 3 meters, and
all other parameters are left unchanged from the simulation.

Figure 7 displays results on the robot parking domain for
both kCBTS and SBO, averaged over 5 runs. SBO reached
a successful parking pose in only one of the 5 runs, and
circled around the parking location in other runs. This be-
haviour highlights the low expresivity of discrete trajectories,
yielding poor manoeuvring. Conversely, kCBTS successfully
parked on all runs, in a maximum of 5 steps. Although CBTS
and SBO feature similar planning algorithms, results reflect
the advantage of continuous trajectories. This experiments
shows kCBTS is applicable to real robotics problems, by in-
corporating robot motion constraints to trajectory generation.
Lastly, results demonstrate planning with kernel trajectories
leads to enhanced robotic motion.

V. CONCLUSION

CBTS is a planner for continuous state-action-observation
POMDPS, extending MCTS to continuous action spaces
using BO. Our kernel-based technique to build trajectories,
relying on the theory of RKHS, is combined with CBTS into
trajectory planner kCBTS. Planned trajectories show proper-
ties important in robotics applications, such as smoothness
and steering angle restrictions. kCBTS outperforms other
POMDP planners on several simulated and real problems.
Results show planning with CBTS and kernel trajectories
yields better accumulated rewards and reduces modelling
errors, while enabling robots to move smoothly and avoid
obstacles.
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