
 http://ijr.sagepub.com/
Robotics Research

The International Journal of

 http://ijr.sagepub.com/content/32/14/1724
The online version of this article can be found at:

 
DOI: 10.1177/0278364913505657

 2013 32: 1724The International Journal of Robotics Research
Lionel Ott and Fabio Ramos

Unsupervised online learning for long-term autonomy
 
 

Published by:

 http://www.sagepublications.com

On behalf of:
 

 
 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for 
 
 
 

 
 http://ijr.sagepub.com/cgi/alertsEmail Alerts: 

 

 http://ijr.sagepub.com/subscriptionsSubscriptions:  

 http://www.sagepub.com/journalsReprints.navReprints: 
 

 http://www.sagepub.com/journalsPermissions.navPermissions: 
 

 http://ijr.sagepub.com/content/32/14/1724.refs.htmlCitations: 
 

 What is This?
 

- Jan 7, 2014Version of Record >> 

 at University of Sydney on January 19, 2014ijr.sagepub.comDownloaded from  at University of Sydney on January 19, 2014ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/
http://ijr.sagepub.com/content/32/14/1724
http://ijr.sagepub.com/content/32/14/1724
http://www.sagepublications.com
http://www.sagepublications.com
http://www.ijrr.org/
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/32/14/1724.refs.html
http://ijr.sagepub.com/content/32/14/1724.refs.html
http://ijr.sagepub.com/content/32/14/1724.full.pdf
http://ijr.sagepub.com/content/32/14/1724.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ijr.sagepub.com/
http://ijr.sagepub.com/
http://ijr.sagepub.com/
http://ijr.sagepub.com/


Article

Unsupervised online learning for
long-term autonomy

The International Journal of
Robotics Research
32(14) 1724–1741
© The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364913505657
ijr.sagepub.com

Lionel Ott and Fabio Ramos

Abstract
A reliable representation of the environment a robot operates in is vital for solving complex tasks. Models that represent
information about objects and their properties are typically trained beforehand using supervised methods. This requires
intensive human labeling which makes it time-consuming and results in models that are generally inflexible to changes. We
would prefer a robot that can build a model of the environment autonomously by learning the different objects and their
corresponding properties without human supervision. This would enable the robot to adapt to changes in the environment
as well as reduce the effort of deploying a robot to a new environment. In this paper we present solutions to these problems
based on novel extensions of affinity propagation; a clustering method that can be executed in real time to produce
meaningful models from observations gathered by a robot. Our method is applied to two different tasks. We demonstrate
how to automatically learn models for predicting collisions from raw laser data. Then, the method is used to learn visual
appearance models of the environment to recognize and avoid obstacles. In both cases, there is no human supervision;
the methodology is entirely based on sensory information gathered by the robot and its interaction with the environment.
In experiments we show how meta-point affinity propagation performs similarly to standard affinity propagation, while
being faster and capable of handling much larger data-sets. Furthermore, we show how different features influence the
prediction quality of the model for collision prediction from laser scans. Finally, we show how we successfully build and
maintain an appearance model for obstacle detection which can be used to detect obstacles well before a collision could
occur.

Keywords
Affinity propagation, clustering, long-term autonomy, unsupervised learning

1. Introduction

With robots being deployed in larger and less structured
areas, the need for robots to build and maintain reliable
models of their environment becomes increasingly impor-
tant. Typically when a robot is required to identify objects in
an environment, a supervised machine learning algorithm,
such as support vector machines or boosting, is used. While
these methods perform well, there are several drawbacks to
them. First, the process of manually annotating the large
amount of data required to train the classifier is tedious
and error-prone. Second, this approach is inflexible as it
is not able to adapt to changes in the environment with-
out more labeling and training. We propose techniques that
enable robots to autonomously learn objects and their prop-
erties using only their sensors. This has the advantage that
no human labor is required and the system can adapt to
changes in the environment. It also poses new challenges as
learning needs to occur in real time, using limited on-board
computational resources.

The main contributions of this paper are:

• An extension to affinity propagation which allows han-
dling of large data streams in real time on board a robot
while maintaining good clustering performance;

• A system that learns to recognize and predict collisions
with the environment directly from laser scans without
the need for human supervision;

• A system that learns and maintains a model of object
appearance and their obstacle property in an unsuper-
vised manner.

1.1. Related work

A lot of work has been done in the area of learning terrain
properties based on observations. In the LAGR program
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one area of interest was learning terrain traversability based
on visual observations by a robot. Happold et al. (2006) link
color information to terrain geometry. This geometry infor-
mation is then turned into a traversability cost using a neural
network. A similar approach was taken by Howard et al.
(2006) who use a support vector machine to learn the map-
ping between geometrical features and traversability. This
mapping is then used to assign traversability information to
clusters of color features obtained through k-means clus-
tering. Kim et al. (2006) use the experience of the robot
as it drives over parts of the environment to decide on
its traversability property. A simple incremental clustering
method is used to associate the terrain appearance with
traversability information gained in this fashion directly
by the robot. Similar to our proposed method for obstacle
learning, these approaches rely on visual features to repre-
sent the appearance of the environment. However, all but
the work by Kim et al. (2006) require a supervised classi-
fier to predict the traversability of the terrain, which requires
data being labeled by a human expert. Another big differ-
ence can be found in the way visual appearance is related to
traversability information. Whereas our method uses affin-
ity propagation and thus can infer the number of clusters
to use from the data, previous methods either define the
number of clusters a priori or use simple ad hoc rules for
clustering.

Training a classifier with the information gathered by a
robot while driving is not limited to determining terrain
traversability, but can also be used for terrain roughness
estimation, as shown in Stavens and Thrun (2006). The
roughness of the terrain is measured by an inertial mea-
surement unit as the vehicle drives over it. This estimate is
then associated with terrain discontinuities extracted from
a 3D point cloud, thus allowing the vehicle to predict ter-
rain roughness before driving over it, such that it can slow
the vehicle down if needed. A similar approach was taken
by Ulrich and Nourbakhsh (2000) to learn to detect obsta-
cles using only monocular vision. Their method uses the
terrain appearance of past trajectories to learn the general
appearance of the ground plane. Obstacles are subsequently
defined as parts in the image that differ significantly in
appearance from the ground plane. The main drawback of
this method is that it only learns a single model for the
ground plane, which requires the environment to be uni-
form. Secondly, training has to be performed by a human
driving the robot through the environment, as opposed to
our method where the robot learns the model on its own.
In a similar spirit Maier et al. (2011) use the information
of a calibrated 3D laser scanner and monocular camera to
train a ground classifier which is then used to avoid obsta-
cles using only vision, in the absence of continuous 3D data.
The work by Modayil and Kuipers (2004) is similar to ours
in that they collect features from the robot’s sensors, a laser
scanner in their case, and build a model using those. The
main difference is that their approach concentrates on the

feature extraction and ours focuses on the construction of
the model.

Visual appearance can also be used directly without link-
ing to other properties, for example, Giguere et al. (2009)
use k-means clustering to learn the model of a coral reef
for the purpose of steering a robot such that it remains
above the coral reef. The work by Steinberg et al. (2010)
uses Dirichlet process mixture models to learn models of
the benthic habitats present in image data gathered by an
autonomous underwater vehicle. One is not restricted to
only visual information either, as the work by Ruhnke et al.
(2009) shows: they cluster 3D point clouds using spectral
clustering based on a model consistency score.

Katz et al. (2010) propose a method to learn and classify
dynamic obstacles in an unsupervised fashion. They build a
model by clustering laser stamps and visual stamps using
affinity propagation. These clusters are then classified as
being either dynamic or static. As with our approach, affin-
ity propagation would be too slow for the task, thus they
propose a method to incrementally update affinity propa-
gation. The basic idea of their approach is to replace the
single exemplar used in affinity propagation with a collec-
tion of data points to represent the data-set. This effectively
reduces the number of points involved in the clustering
process.

Learning to detect objects has also been extensively stud-
ied in the computer vision community, which has produced
some interesting results. For example, the parts-based meth-
ods by Weber et al. (2000), Agarwal and Roth (2002) and
Fergus et al. (2003) represent an object by a collection
of parts from a vocabulary. While these methods success-
fully learn to detect objects in images it is unclear whether
such methods are suitable for robotic applications as the
scenes are sterile in comparison to those found in robotic
applications. Furthermore the training phase in all the men-
tioned approaches is too expensive to be performed in
real time.

Many of the methods mentioned above extract some kind
of feature from the sensors available to the robot. These fea-
tures need to be grouped somehow which often is achieved
using clustering methods. For most interesting problems,
specifying the number of clusters beforehand is infeasible
and we thus need clustering methods able to infer the num-
ber of clusters directly from the data. This is non-trivial and
in general there is no single correct answer. One solution is
to use simple methods based on heuristics, such as in the
work by Kim et al. (2006). Another option is to use more
theoretically principled methods such as latent Dirichlet
allocation (Blei et al., 2003), spectral clustering (Ng et al.,
2001), DBSCAN (Ester et al., 1996) and affinity propaga-
tion (Frey and Dueck, 2007). All of these methods make
different assumptions when modeling the clusters and in the
way the clustering is computed. In our work we use affin-
ity propagation due to its simplicity of implementation and
flexibility.
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Fig. 1. Processing steps of our pipeline. We build clusters from
features extracted from sensor data. These clusters are then asso-
ciated with properties of the objects in the environment. Using
the clusters and the properties, we build a classifier, mapping fea-
tures to properties. The blue rectangles indicate processing steps
producing outputs indicated by the orange ellipses.

1.2. Paper outline

The remainder of the paper is structured as follows. In
Section 2 we give an overview of how our systems are
structured. Following this, Section 3 introduces affinity
propagation and several extensions aimed at improving its
computational speed. Section 4 describes our two proposed
systems for unsupervised learning of collision detection
from laser data and visual obstacle avoidance. Section 5
presents experimental evaluation of the proposed cluster-
ing methods and the proposed systems. Finally, Section 6
concludes this paper.

2. Method overview

Our approach to long-term autonomy for robotic systems
is based on the idea of unsupervised and self-supervised
learning as a means to build and maintain a model of
the environment autonomously. This autonomy is crucial
as we cannot assume that the environment will remain
unchanged over time and thus a model will become inaccu-
rate over time unless it is maintained. Our approach builds
the model using features extracted from observations made
by the robot. These features are then grouped based on their
similarity to obtain clusters representing similar objects
in the environment. This provides us with a collection of
object appearances present in the environment. However,
we often need more information about the objects besides
their appearance. We can learn these properties by using the
robot’s experience from interacting with the environment.
If, for example, we are interested in learning which objects
are obstacles for the robot we can use the robot’s bumper to
determine if an observation was made when colliding with
an obstacle. This provides us with evidence about which
groups of objects represent an obstacle to the robot and

which do not. This is performed in a purely self-supervised
fashion based on the robot’s experience. Combining the
model and the properties associated with them allows us to
build simple classifiers that enable us to obtain properties
of new observations which can be used to make decisions.
The different steps of our generic processing pipeline are
shown in Figure 1 and explained in greater detail next.

2.1. Feature extraction

The first step of the process is to extract features from the
raw data obtained from the sensor. For images this can be
SIFT features or color histograms. In the case of range
data we can use FLIRT features, line segments or range
histograms, for example. These features are then grouped
together based on their similarity in the next step.

2.2. Model building

We group the features obtained in the previous step accord-
ing to their similarities. This is a task well suited to clus-
tering methods, however, the method needs to fulfil several
requirements. It must:

1. Determine the number of clusters directly from the data;
2. Be computationally efficient;
3. Be adaptive and incremental.

The first point is important since the method is supposed to
work autonomously without any kind of human assistance.
The second point is due to the fact that we work with real
robots which have limited computational resources at their
disposal. Finally, the algorithm should be flexible enough
to handle different types of data and adapt to changes. In
this work we extend affinity propagation (Frey and Dueck,
2007) to tackle these problems, which are presented in
greater detail in Section 3.

2.3. Object properties

The previous step provides a model consisting of a collec-
tion of clusters which represents the appearance of objects.
Often, however, we need more than just information about
appearance. We can obtain further information, or prop-
erties, of the learned clusters from the interaction of the
robot with the environment. This allows us to perform self-
supervised learning of the properties associated with the
clusters. For example if we are interested in which clusters
represent an obstacle for the robot we can simply monitor
which of the clusters are observed when the robot registers
a collision. This information is then stored with the clusters
and can be used later on.

2.4. Classification

A common use of an environment model is to classify
new observations in order to make decisions about the next
actions of the robot. With the clusters and their associated
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properties we possess enough information to build a simple
classifier, such as k-nearest neighbor, to make predictions
about the properties associated with new observations. This
information can then be used to make decisions about the
robot’s actions.

3. Affinity propagation

In this section we give a short introduction to affinity prop-
agation (Frey and Dueck, 2007). After that we describe two
methods aimed at improving the efficiency of affinity prop-
agation, namely streaming affinity propagation (STRAP)
(Zhang et al., 2008), and our own method, meta-point affin-
ity propagation. The main advantage of affinity propagation
over other popular clustering methods, such as k-means,
is that it does not require the number of clusters to be
defined a priori. This is important since we do not assume
any knowledge about the number of objects present in the
environment.

3.1. Optimization problem formulation

Affinity propagation considers the problem of identifying
clusters as the search for class label assignments c =
(c1, . . . , cN ), called exemplars, that minimizes the energy
function

E(c) = −
N∑

i=1

s(i, ci) (1)

where N is the number of data points, ci is the label assigned
to the ith data point and s(i, ci) is the similarity between
two data points. The minimization of the energy function
is then reformulated as a maximization of the net similarity
S(c), which is the sum of the negative energy function and
a penalty term to enforce valid configurations:

S(c) = −E(c) +
N∑

k=1

δk(c) =
N∑

i=1

s( i, ci) +
N∑

k=1

δk(c) (2)

where δk(c) has the form

δk(c) =
{

−∞ if ck �= k but ∃i : ci = k

0 otherwise
(3)

and penalizes invalid configurations. A configuration is
considered invalid when a point i chooses another point k as
its exemplar without k being labeled as an exemplar. Equa-
tion (2) can be solved with loopy belief propagation (Pearl,
1988) on the factor graph (Kschischang et al., 2001) rep-
resentation of (2). A detailed derivation of the messages
used in affinity propagation as shown next is given in the
supporting online material of Frey and Dueck (2007).

3.2. Standard affinity propagation

The affinity propagation algorithm requires as its sole input
the similarity values between pairs of data points. From this

information a graph is constructed, where the nodes repre-
sent the individual data points and edges encode the simi-
larity between pairs of points. The similarity values can, for
example, be the Euclidean distance between points or any
other similarity measure that is meaningful to the under-
lying data. While affinity propagation does not require the
number of clusters to be defined a priori, it uses the self-
similarity values s( i, i) to influence the amount of clusters
found.

The computations performed by affinity propagation
consist of exchanging two types of message between con-
nected nodes in the graph. Each of these two message types
measures a different property.

• Responsibility r( i, k), sent from data point i to the can-
didate exemplar k, measures how well suited data point
k is as an exemplar for data point i. This value considers
the other potential exemplars for point i as well.

• Availability a( i, k), sent from the candidate exemplar k
to data point i, measures how advantageous it would be
for point i to choose data point k as its exemplar. This
value takes into account the evidence obtained from
other data points about the suitability of point k as an
exemplar.

These two messages are computed as follows:

r(i, k) = s(i, k) − max
k′s.t.k′ �=k

(
a(i, k′) +s( i, k′)

)
(4)

a(i, k) = min
(

0, r( k, k) +
∑

i′ s.t. i′ /∈{i,k}
max

(
0, r( i′, k)

))
(5)

where s( i, k) is the similarity score between points i and
k. The so called self-availability a( k, k) is computed differ-
ently:

a( k, k) =
∑

i′ s.t. i′ �=k

max
(
0, r( i′, k)

)
(6)

The interaction of these two messages is shown graphically
in Figure 2. From this it is visible how sending a responsi-
bility message uses all the current availability messages and
vice versa.

To obtain the clustering result the algorithm first ini-
tializes all messages to 0 and then iterates the following
two steps until convergence: (1) update responsibilities,
(2) update availabilities. Convergence is measured through
the net-similarity score of the current clustering which is
computed from the responsibility and availability values.
Figure 3 shows a sequence of clustering states of a typical
clustering run, starting out with no clear preference until at
the end the set of exemplars is found.

3.3. STRAP

While affinity propagation converges reasonably fast, it is
not fast enough for use in real-time robotics applications
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Fig. 3. Different states in an exemplary run of affinity propagation. The arrows indicate the responsibility message sent from one point
to another. Darker arrows indicate a higher message value. At the beginning no point is better suited to being an exemplar than any
other, then over time by passing messages the most appropriate exemplars, marked in red, emerge.

Fig. 2. This figure shows the interaction between the nodes when
exchanging messages. The availability messages of neighboring
nodes are used when sending a responsibility message from node
i to node k. Similarly, the responsibilities of all connected nodes is
considered when sending an availability message from node k to
node i.

with a large number of observations. However, there are
methods which extend affinity propagation to handling data
streams in real time, such as STRAP by Zhang et al. (2008).
The naïve approach to using affinity propagation for data
streaming would be to recompute the clustering for every
newly observed data point. This obviously does not work
when real-time performance is required. STRAP solves this
problem with the following two ideas:

1. Reduce the number of data points involved in the
affinity propagation computation;

2. Limit the number of times affinity propagation needs to
be run.

These two goals are achieved by treating data points as one
of two types: those that are similar to existing clusters and
those that are dissimilar from the existing clusters. Points
that are similar to an existing cluster are used to update the
most similar cluster. Points that are dissimilar are added to
an outlier reservoir which stores the data points that cur-
rently cannot be represented by the clusters. Each cluster is
described by a 4-tuple (ei, ni, �i, ti) where ei is the exem-
plar associated with the cluster, ni is the number of data

points represented by the cluster, �i is the distortion of the
cluster and ti is the last time a point was added to the clus-
ter. Once the outlier reservoir is full, affinity propagation is
used to recompute the clustering. This requires the compu-
tation of similarity values between clusters and the points in
the reservoir. These computations take the statistics stored
in the clusters into account. The statistics representing the
clusters are recomputed once affinity propagation has clus-
tered the data. The net result of this approach is that the
affinity propagation algorithm is executed less often and
when it runs, the number of data points involved is small.

3.4. Meta-point affinity propagation

STRAP is fast and capable of clustering data streams, how-
ever, there is one drawback stemming from the compression
of the clusters. The method runs the risk of ‘forgetting’
clusters that have not been observed for some time. Depend-
ing on the application this may be acceptable. In robotics
though this is not the case as we want to be able to recognize
areas again even if we have not visited them for some time.
For this reason we propose a different method to increase
the speed of affinity propagation while guaranteeing that we
will not forget information. We therefore propose a method
called meta-point affinity propagation, which is inspired by
ideas presented in Cao et al. (2006). The main idea is that
data points which are close in feature space can be grouped
together and replaced by a single meta-point. In robotics,
similar observations occur frequently, for example multi-
ple observations made from a similar pose. By replacing
such redundant observations with a single aggregated one,
we effectively reduce the number of points involved when
performing affinity propagation.

A meta-point Pi stores the following information:

Pi = {count, mean, exemplar, last-update}
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with the fields having the following meanings:

Pi.count number of points represented by the
meta-point

Pi.mean the mean value of all represented data
points

Pi.exemplar representative raw data point for this
meta − point

Pi.last-update time the meta-point was updated last

Besides the immediate effect of reducing the computa-
tional burden, the concept of meta-points has two additional
benefits:

1. The number of meta-points is dependant on the size of
the feature space;

2. Random observations can be dealt with in a straightfor-
ward way.

The first point is a direct consequence of the usage of meta-
points instead of raw data points. If a robot moves in a
static environment all observations will be mapped to one of
the meta-points after a while and thus no new meta-points
will be created. The second point requires us to distin-
guish between two types of meta-point: cluster-points that
represent the points used for clustering, and noise-points
which are ignored during the clustering. A meta-point is
considered a cluster-point once it represents enough raw
data points, otherwise, it is considered a noise-point. This
allows us to discard points generated from random obser-
vations such as spurious readings from a laser scanner.
Put differently, we can detect and ignore outliers in our
observations.

The most important part of meta-point affinity propaga-
tion is the handling of new observations. The pseudocode
in Algorithm 1 shows the steps performed in order to add
a point p into either the set of cluster-points P or the set of
noise-points N. There are three possible cases the algorithm
needs to cover:

1. There is a suitable cluster-point present;
2. There is no suitable cluster-point present but only a

noise-point;
3. No suitable cluster-point or noise-point is present.

In the first case we simply add the new observation into the
meta-point. In the second case we update the meta-point but
also check if the noise-point now represents enough data
points to be considered a cluster-point. Updating a meta-
point is done by recomputing the statistics of the meta-
point. Finally, in the third case we create a new meta-point
for the observation. These different cases are visualized in
Figure 4. This method requires two parameters, θmin-points,
which indicates how many points a meta-point needs to rep-
resent for it to be considered a cluster-point, and θsimilarity,
which represents the radius of the sphere of influence of
a meta-point. The choice of θmin-points is mainly dependant
on the noise encountered in the data but typically values

ADD-DATA-POINT( p)

1 nn = NEAREST-NEIGHBOR( P, p)
2 if DIST( nn, p) < θsimilarity

3 UPDATE-META-POINT( nn, p)
4 else
5 nn = NEAREST-NEIGHBOR( N, p)
6 if DIST( nn, p) < θsimilarity

7 UPDATE-META-POINT( nn, p)
8 if nn .count ≥ θmin-points

9 P = P ∪ nn
10 N = N \ nn
11 else
12 noise = CREATE-META-POINT( p)
13 N = N ∪ noise

Algorithm 1: Pseudocode detailing the steps performed by
meta-point affinity propagation when a new data point is
added. P is the set of cluster-points, N, the set of noise meta-
points and θ , the parameters.

Fig. 4. Visualization of meta-points and the different cases that
can occur when adding a new data point. A is merged into the
cluster-point while B is merged into the noise-point. Finally, C is
used to create an entirely new meta-point.

between 5 and 10 produce good results. However, θsimilarity

is a bit trickier as it is dependant on the magnitude of the
feature space. We typically use a value that is 5% to 15% of
the magnitude of the feature space.

We use two distinct sets for noise and cluster meta-
points to make their difference more obvious, but also
for performance reasons. The actual clustering result is
obtained by running standard affinity propagation using the
cluster-points as input data.

This form of merging data points obviously assumes that
small changes in the feature space distance result in no
noticeable change of the object class to be clustered. Addi-
tionally, the handling of noise only addresses noise which
results from random measurements or one-off sensing fail-
ures. It does not detect or handle complete failure of a
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sensor or systematic noise, as these produce consistent and
continuous observations.

4. Self-supervised model learning

4.1. Learning to predict collisions from laser
data

In this section we are going to present an approach that
enables a robot to learn to predict when it will collide with
the environment based solely on laser scanner range infor-
mation. Our method learns this model without knowing
anything about its own physical dimensions or the location
of the laser scanner. It is purely based on the laser scan-
ner returns and the information of the bump sensor on the
robot. This involves two learning parts, an unsupervised one
which learns an appearance model for the laser scans and a
self-supervised one which learns the probability of a given
cluster to indicate a collision. The combination of these two
allows us to learn to predict collisions without having to
provide specifics of the robot or the laser scanner to the
system.

This system follows the steps outlined in Section 2. As
such the first thing we need is a way to compute features
from the raw range data. For our case we want a feature
that is capable of capturing the broad shape of laser scans.
Therefore, we bin the range values equally into several bins.
We then compute a single value from all values stored in a
bin which yields a histogram for each scan. The following
shows the list of functions that can be used to obtain a single
value from each bin to produce the histogram representation
of a single scan:

Min-value min(S)
Max-value max(S)
Mean-value 1

|S|
∑

i(Si)
Global difference max(S) − min(S)
Sequential difference 1

|S|−1

∑|S|−1
1 ( |Si − Si+1|)

where S is the set of the range values contained in a sin-
gle bin and Si is the value of the ith entry in the bin. The
first three features capture straightforward statistical infor-
mation. The last two are a bit more elaborate. The global
difference feature tells us how much the distance changes
over the entire bin, independent of location. The sequential
difference feature gives an intuition on the overall smooth-
ness of the bin and if there are any sudden changes present.
Using any of the above simple functions yields a histogram
representing a single scan. In order to compute the similar-
ity between the histograms of two scans, needed by affinity
propagation, we use the Bhattacharyya distance,

d(H1, H2) =

√√√√√1 −
N∑

i=1

√
H1( i) H2( i)√∑N

j=1 H1( j)
∑N

j=1 H2( j)
(7)

where N is the number of histogram bins and H1, H2 are the
two histograms to be compared.

Fig. 5. Overview of the processes of our method. Common to all
operations is the division of the image into patches and the extrac-
tion of features from those. The learning of a model then proceeds
by attaching the obstacle property captured by the bumper to these
features. Next the features are clustered using affinity propagation
and the result is used to build a classifier. When using an exist-
ing model for movement decisions a patch is classified according
to its features and the assigned cluster and traversability property
is obtained. This information is then used to determine the best
motion command for the robot.

To know which clusters lead to collisions we keep track
of the number of observations within a cluster that were
made when a collision occurred and the number of times
none occurred. With this information we can easily com-
pute a probability of collision for each cluster. In order to
know if a new observation is likely to result in a collision
we simply select the nearest cluster and obtain its collision
probability.

4.2. A model to avoid obstacles

In this section we describe a system which enables a robot
to explore the environment and build a representation of
it based on visual features. The model represents objects
present in the environment and if they are an obstacle to
the robot. The features are clustered with a combination of
affinity propagation and STRAP. STRAP is responsible for
the long-term model of the environment while affinity prop-
agation captures the short-term model. With two separate
instances for different time scales we can react to sudden
changes in the environment while maintaining a stable long-
term model. By continuously adding new observations into
the clustering system the model adapts to changes in the
environment and improves over time. The labels required
for the classification of the discovered objects into obstacle
and non-obstacle classes are obtained through the robot’s
experience, that is, collisions or lack thereof with the envi-
ronment. A short overview of the processes involved in the
system is given next.

4.2.1. Overview. A schematic overview of the processing
pipeline is shown in Figure 5. As a first step our method
extracts features from raw images (center row in Figure 5)
in the following manner:

1. Divide the original image into smaller patches in order
to roughly capture a single object per patch;
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2. Compute color histograms and histograms of local
binary patterns for each of the patches to capture color
and texture information.

Once the features are extracted we can use them to learn a
model of the environment as follows (top row in Figure 5):

1. Assign each patch a traversability property obtained
from the bumper for object classification;

2. Add the new features to the clustering system and
recompute the clusters to update the model of the
environment;

3. Use the clustering results to build a k-nearest neigh-
bor classifier to classify new observations as either
traversable or non-traversable.

With a model of the environment at our disposal we can
make decisions about the motion commands the robot
should execute using the following approach (bottom row
in Figure 5):

1. Obtain the object class for the features extracted from
the image patches by classifying them using the k-
nearest neighbor classifier;

2. Obtain the traversability property associated with each
object class;

3. Make movement decisions based on the arrangement
of traversable and non-traversable parts of the environ-
ment.

The steps outlined above will be described in greater detail
in the following. We start with the extraction of features
and traversability labels. Thereafter, we describe how the
model of the environment is built using affinity propagation
and how the traversability information is processed. Finally,
we show how the learned model can be used to determine
motion commands for the robot.

4.2.2. Feature extraction. Images are likely to contain
multiple objects with very distinct visual appearances, such
as the ground, chairs, trees, cars, etc. Ideally we would like
to compute the features for parts of the image that repre-
sent a single distinct object. The difficulty is how to select
parts of the image that are likely to only contain a single
object. We choose the widely used approach of segment-
ing the image into equally sized rectangular patches. For
our application we segment a 320 × 240 image into 32
rectangular patches of identical size. This has the advan-
tage that it does not require any additional computations
while providing a reasonable approximation, if the individ-
ual patches are small enough. Different numbers of patches
have been tried and values anywhere between 9 and 144
worked equally well. However, if the patches get too small
the performance will degrade. More elaborate approaches,
such as watershed-based methods (Meyer and Beucher,
1990), might provide better approximations but are also
more computationally expensive. For each of the patches
we compute two different features: the color distribution in

the HSV color space and the distribution of local binary
patterns (Ojala et al., 2002). These features allow us to con-
sider both color and texture when comparing image patches.
As we represent the features using histograms, the simi-
larity values required by affinity propagation are obtained
using the Bhattacharyya distance (7).

4.2.3. Obstacle label extraction. In order to associate
obstacle information with the learned objects we need to
know how the robot interacts with the environment. When-
ever the robot collides with obstacles in the environment we
assign an ‘obstacle’ label to the currently observed image
patches. This information is then transferred to the learned
objects represented by clusters. As the robot will never col-
lide with the ground, image patches representing the ground
will not be labeled as obstacles, while parts of the environ-
ment that represent obstacles, such as walls, chairs, trees
and cars will be labeled as obstacles. In the next section we
detail how the features and the obstacle labels are used to
learn object classes and their obstacle property.

4.2.4. Building the model. Features extracted from image
patches are added sequentially into the clustering system.
The clustering is performed by affinity propagation and
STRAP which are explained in detail in Section 3.

The pseudocode in Algorithm 2 shows the steps per-
formed for each observation we add. Each observation is
added to the long-term clustering instance Mlong (STRAP),
where it is either used to update an existing cluster, or
added to the outlier reservoir, outliers. In the latter case,
the data point is additionally added to the short-term
clustering instance Mshort (affinity propagation), which
is rebuilt thereafter. When merging the two clustering
instances, MERGE(Mlong,Mshort), the information about
clusters stored in Mshort is integrated into Mlong.

In order to decide if a specific cluster represents an obsta-
cle or not we keep count of how often members of a cluster
have been labeled as obstacle and non-obstacle. With these
two counts we can easily compute the probability of each
cluster representing an obstacle as follows:

p(obstaclei) = #obstaclesi

#obstaclesi + #non-obstaclesi
(8)

where p(obstaclei) is the probability of cluster i representing
an obstacle, #obstaclei and #non-obstaclei are the number of
image patches in the cluster that were labeled as an obstacle
and a non-obstacle respectively. It is important to note that
the clustering is based purely on the visual features and the
obstacle properties are never used for this.

There is always the possibility that one visual appearance
represents an obstacle in one environment but not in another
one. In such a case the model will adapt the obstacle prob-
ability of a cluster over time by making new observations.
This is not ideal as we try to model two different objects as
the same clusters. Therefore, detecting such discrepancies
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ADD-OBSERVATION( z)

1 INSERT(Mlong, z)
2 if z ∈ outliers
3 INSERT(Mshort, z)
4 UPDATE-CLUSTERING(Mshort)
5 if |outliers| > θ

6 UPDATE-CLUSTERING(Mlong)
7 MERGE(Mlong,Mshort)
8 CLEAR(Mshort)

Algorithm 2: Pseudocode detailing the steps performed
when a new observation z is added to the environment
model. Mlong is the long-term clustering instance, while
Mshort is the short-term one.

in the model and handling them at a higher level would be
preferable.

4.2.5. Building the classifier. In order to predict where
obstacles are located in new images a classifier is trained
based on the exemplars of the model. As the method has to
run in real time and the model can change frequently, meth-
ods that are computationally expensive to train cannot be
used. For this reason we use a k-nearest neighbor classifier
which can be efficiently trained from the clustering result.
The training data are the features of the exemplars identi-
fied by the clustering; in other words, only a small portion
of the original features are used to build the classifier which
further reduces the computational cost.

4.2.6. Decision-making. The first step of the decision-
making process is to obtain the obstacle information for the
current image. As described in Section 4.2.2 this is done by
classifying all patches using the previously trained classi-
fier. This yields an object class and the associated obstacle
property for each patch. Using this information and a sim-
ple set of heuristics based around the arrangement of the
traversable and non-traversable parts in the image we can
derive safe motion commands for the robot. The heuristics
consider aspects such as the free space in front of the robot
and directions most likely to maximize the free space in
front of the robot. Figure 6 shows some images, with obsta-
cles marked by the shaded areas, and the action chosen by
the decision-making process indicated below each image.

5. Experiments

In this section we present experimental evaluation of our
proposed method meta-point affinity propagation as well
as its application to laser-scanner-based collision predic-
tion and visual obstacle avoidance learning. Table 1 lists
the different experiments we perform as well as the sensors
used. First, in Section 5.1, we assess the clustering speed

Table 1. Overview of the experiments presented in the follow-
ing. We list the type of sensor used for the clustering and
self-supervision where applicable.

Experiment Clustering Self-Supervision
Sensor Sensor

Section 5.1.1 Synthetic None
Section 5.1.2 Camera None
Section 5.2 Laser scanner Bumper
Section 5.3 Camera Bumper (Laser scanner)

Table 2. Quality of the clustering solutions as computed using V-
measure.

Method V-Measure Score

Affinity propagation 0.87
Meta-point affinity propagation 0.88
STRAP 0.79
k-means 0.84
Mean shift 0.85

and quality of meta-point affinity propagation on synthetic
as well as image data. In Section 5.2 we evaluate the colli-
sion prediction performance of the model learned from raw
laser scanner data and classification based on bumper feed-
back. Finally, in Section 5.3 we show the visual appearance
model learned from images by our approach as well as the
classification of the clusters into obstacle and non-obstacle
classes. We also demonstrate how the model is able to deal
with long-term operation.

5.1. Meta-point affinity propagation evaluation

We evaluate the performance of meta-point affinity prop-
agation as well as the general applicability of the cluster-
ing methods to the type of data processed by our systems.
The following set of parameters was used for meta-point
affinity propagation. In Section 5.1.1, θmin-points = 5 and
θsimilarity = 0.2, and in Section 5.1.2, θmin-points = 5 and
θsimilarity = 2.5.

5.1.1. Clustering quality. Here we will give a comparison
of the quality of the clustering results obtained with affin-
ity propagation, STRAP, meta-point affinity propagation,
mean shift and k-means using V-measure (Rosenberg and
Hirschberg, 2007). V-measure considers the homogeneity
and completeness of the clustering solution in the compu-
tation of the score. The score is in the range [0, 1] where
1 is the best value. A factor β is used to weight the two
measures against each other. In our experiments β was
always set to one, in other words, equal importance is given
to homogeneity and to completeness. We cluster a set of
1200 image patches belonging to six different classes: brick
wall, asphalt, tree, grass, wood chips and red concrete.
Each group is equally represented in the data-set. Exem-
plary images of these six classes are shown in Figure 7.
The number of clusters used by k-means clustering was
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Fig. 6. Exemplary classification results and movement decisions. Obstacles are denoted by the shaded areas while the command
decision is listed below each image.

Fig. 7. Examples of image patches contained in the 1200 image patch data-set used to evaluate the clustering performance. From top
left to bottom right we have: brick, concrete, tree, grass, wood chips, red surface.

set to six while the other methods were left to find the
number from the data itself. The results in Table 2 show
that affinity propagation and meta-point affinity propaga-
tion perform at a similar level. STRAP, however, performs
worse, which can be explained by the way it discards data;
k-means performs slightly worse than affinity propagation,
but has a simpler problem to solve. Finally, mean shift
clustering gives a similar result to k-means. The impor-
tant thing here is that meta-point affinity propagation and
affinity propagation have similar clustering performance,
however, meta-point affinity propagation is much more effi-
cient than standard affinity propagation which we show in
the following.

5.1.2. Clustering speed. The previous section showed how
both meta-point affinity propagation and affinity propaga-
tion produce similar results. Here, we will show differences
in speed and the capability of handling noisy data between
the two methods. The experiments are performed using syn-
thetic data, shown in Figure 8, as this allows for easier
visualization. The data consists of several random 2D Gaus-
sian distributions with optional uniform noise added. In

the case without noise both methods find a good clustering
solution, as indicated by the colored points. The difference
between the two is that affinity propagation has to cluster
all the data points, whereas meta-point affinity propaga-
tion only has to cluster the meta-points, indicated by the
bigger circles. This makes a large difference in speed, which
is shown in Table 3. However, in the case where noise is
present affinity propagation tends to create a larger number
of clusters compared to the result obtained on the same data
without noise. This is due to the fact that affinity propaga-
tion has to assign each data point to a cluster and cannot
consider some observations as noise and ignore them. This
often will result in clusters being split, as can be seen in
Figure 8(c). Meta-point affinity propagation, on the other
hand, first builds meta-points which allows the method to
reject points it considers to be noise, and then the cluster-
ing has only to deal with data containing a minimal amount
of noise. Comparing the meta-points for the data with and
without noise we can see that in both cases they cover the
actual clusters. Consequently, as far as meta-point affinity
propagation is concerned, there is no noise in the data to be
clustered.
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Table 3. Results for different clustering tasks. Synthetic data shows the results of the 2D example, outdoor data shows the results for
the 1200 outdoor image patches data-set and large-scale data shows results for entire sequences captured by a robot moving through
the environment. For each of the data-sets we show the number of clusters obtained, the number of raw data points, the number of
actually clustered data points clustered and the total run-time. (AP denotes affinity propagation and MPAP denotes meta-point affinity
propagation.)

Method Clusters Synthetic data Duration (s)

Raw points Clustered points

AP no noise 10 2000 2000 60.61
AP with noise 35 2500 2500 63.43
MPAP no noise 10 2500 121 0.08
MPAP with noise 10 2500 122 0.08

Method Clusters Outdoor Data Duration (s)

Raw points Clustered points

AP 6 1200 1200 8.79
MPAP 6 1200 79 1.84

Data-set Clusters Large-Scale Data: MPAP Only Duration (s)

Raw points Clustered points

Outdoor 10 31,464 594 185
Indoor 10 48,600 626 307

Fig. 8. (a), (b) Exemplary results of affinity propagation and meta-point affinity propagation on data without noise. (c), (d) Exemplary
results of affinity propagation and meta-point affinity propagation with uniform noise. The small circles indicate the meta-points found
by meta-point affinity propagation. The coloring indicates points that have been assigned to the same cluster.

From the plots of the synthetic data it can easily be seen
how meta-point affinity propagation represents the original
data with fewer data points. This allows meta-point affinity

propagation to be significantly faster than affinity propaga-
tion, which is backed up by the data in Table 3. As affinity
propagation has quadratic run-time the gaps between the
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Fig. 9. This figure shows the classification of each single scan as
it is received by the robot as it travels through an environment. The
top plot shows the ground truth labels and the lower plot shows the
prediction made by our method. Values of 0 indicate no collision,
while values of 1 indicate a collision.

Table 4. Table showing the area under the curve for the differ-
ent features and bin sizes evaluated over the two environments.
We can see that the min-value, max-value and global difference
features perform at a similar level. While the mean-value fea-
ture worked well enough indoors it completely fails in the outdoor
environment.

Indoor Outdoor

Feature 6 bins 12 bins 6 bins 12 bins

Min-value 0.86 0.89 0.89 0.88
Max-value 0.90 0.90 0.91 0.87
Mean-value 0.87 0.85 0.69 0.81
Global difference 0.90 0.88 0.90 0.65
Sequential difference 0.77 0.78 0.78 0.70

two methods will keep increasing if more points from the
same underlying model are added, as meta-point affinity
propagation will only update the meta-point statistics, thus
keeping the number of points constant. Affinity propagation
on the other hand has to handle entirely new points which
increases the number of points to cluster. Table 3 also shows
the time it takes to process the data used in Section 5.1.1.

To show why meta-point affinity propagation is neces-
sary for use in robotic applications we consider the task of
clustering a stream of about 1000 images. Each image is
segmented into 36 smaller patches we wish to cluster. This
gives us between 30,000 and 40,000 data points to cluster,
which is just too much for standard affinity propagation to
handle in a reasonable amount of time. However, by using
meta-point affinity propagation we can reduce this number
to something much more manageable on the order of 500
to 700 points. This means we only need 1% of the origi-
nal data to obtain meaningful clustering results with meta-
point affinity propagation. The ‘Large-Scale Data’ section
in Table 3 shows the run-times for two such data-sets
obtained with meta-point affinity propagation.

The results shown here from both synthetic data and real
images shows that meta-point affinity propagation obtains
results that are comparable with affinity propagation but at
a fraction of the computational cost. The added robustness
of meta-point affinity propagation to noise makes this new
method very appealing for use in robotics.

5.2. Collision prediction from laser scanner data

In this section we evaluate how well our method proposed
in Section 4.1 performs the task of grouping laser scans and
predicting if they correspond to the robot colliding with the
environment. To this end we collected data-sets in which
the robot collides with the environment. The data was col-
lected in both indoor and outdoor environments. The main
difference between those is that the indoor environment
has smaller distances between objects and more reflective
objects due to the presence of chairs and tables. The outdoor
environment features more areas where no measurements
are available due to the limited range of the laser scanner.
This data is processed by our method which allows it to
learn a model of the laser scans by clustering them and to
build collision statistics for each of the clusters. In Figure
11 we show scans collected in an indoor environment. The
plots show the scan both in polar and Cartesian coordinates
as well as the image taken at the same time. From the plots
one can see that there are distinct differences between col-
lision and collision-free scans, in particular the amount of
maximum-range readings present in the case of collision
observations. These are due to the physical location of the
scanner on the robot. The Cartesian plots also show that just
relying on those would in many cases make it very hard to
decide if a robot is in collision with the environment or not.

In Section 4.1 we proposed several simple functions to
obtain a histogram feature from a single laser scan. We are
going to evaluate these features with two different bin sizes:
six bins with 30 values each and 12 bins with 15 values
each. Figure 10 shows ROC curves of the classification per-
formance of the different feature and bin-size combinations.
We can see that all plots share an overall trend as far as
feature performance goes, with slightly better performance
when using only six bins. As for the features themselves,
the min-value feature performs best, but only if we accept
a large percentage of false positives. Both max-value and
global difference perform close to the min-value feature but
attain a good and stable performance at a much lower false
positive rate. The reason that max-feature performs so well
can be explained by the large number of maximum-range
readings produced by the laser scanner as shown in Fig-
ure 11. Therefore the global difference feature seems the
best choice due to its more generic nature. The mean-value
feature performs reasonably well indoors but does a poor
job outdoors. The sequential difference feature performs
similarly in all cases but is outperformed by the global dif-
ference feature, which seems to indicate that smoothness
is not particularly typical for either collision or collision-
free scans. The area-under-curve values corresponding to
the ROC curve plots are shown in Table 4 and paint a similar
picture. It is easy to see how similarly the min-value, max-
value and global difference features perform. Combining
this with the data from the ROC curves we can conclude that
the simple global difference feature is a good and robust
feature to use for this task.
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Fig. 10. ROC plot for different features evaluated on different binning sizes of laser scans in indoor and outdoor environments. We can
see similar trends independent of the number of bins we use. The “minvalue” feature obtains the best results, however, at a larger false
positive rate then other features. Both the “max-value” and “over all difference” features obtain similar results.

Another way to look at how well the learned model per-
forms is by comparing the timeline of collision and non-
collision scans. Figure 9 shows the plot obtained for the
indoor data-set with the global-distance feature using a
threshold of 0.2. The top plot in red shows the hand-labeled
ground truth while the bottom plot in blue shows the predic-
tion of our model. It shows that the blue plot mostly covers
the actual instances of collisions with some short instances
misclassified as a collision. It is worth noting that in many
cases the prediction triggers before the actual classification
in the ground truth plot, indicating that we could stop the
robot before it collides with the environment.

5.3. Visual appearance learning and obstacle
avoidance

In this section we present evaluation results of our system,
presented in Section 4.2, which learns visual object appear-
ance and obstacle property in both indoor and outdoor envi-
ronments. We show results of the clustering quality as well
as the learning performance of our system. All the experi-
ments were performed with a Pioneer-AT robot, equipped
with a SICK laser scanner and a Point Grey Firewire cam-
era. The laser scanner was used to detect obstacles in close

proximity to the robot and issue a ‘bump’ event instead of a
bumper, in order to avoid damage to both the robot and the
environment. The camera on the robot is angled downwards
such that obstacles on the floor are visible at a distance of
1.2 m. The images were subdivided into 36 equally sized
patches of 52 × 40 pixels. Other subdivisions were tried but
provided similar results.

Our method is implemented in C++ using the Robot
Operating System (ROS). All the computations were per-
formed on a Pentium M with 1.7 GHz at a rate of 5 Hz. The
entire process is CPU-bound and only minimal memory is
required as only the patches of the exemplars are stored for
the clustering and classifier.

5.3.1. Learning visual appearance from images over time.
Our method learns the appearance of objects in the environ-
ment by observing them with a camera and labeling them
as obstacles when they are very close to the robot (a simu-
lated bump). When the robot starts its exploration there is
no information about the environment available. But as time
progresses previously unobserved parts of the environment
are encountered and their appearance and obstacle property
are added to the model.
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Fig. 11. Some exemplary scans shown in both polar and Cartesian coordinates as well as an image taken by the robot. The first two
rows represent cases where no collision with the environment is present. The second two rows both contain collisions. The third row is
in collision with a metallic table leg to the left while the fourth row is in collision with the big cardboard box in front of the robot.

In an initial experiment the robot moved for 15 min in an
environment and collided with it while gathering images.
During this time the model was continuously updated. One
would expect that in the beginning all observations are new
to the system and thus worth keeping. Over time as more
and more of the environment is covered fewer and fewer
of the observations should contain new information. This
expected behavior is verified by plotting the percentage of
observations that were novel to the system over time in Fig-
ure 13. We can see that for all three environments in the
first few minutes, when the robot is still mostly traversing
undiscovered areas, the majority of the observations contain
novel knowledge for the system. Then as time progresses
most observations can already be explained by the learned
model and are thus uninteresting. Every now and then a
larger amount of observations contains information which
can be explained by the robot actually looking at something
it has not seen before or changes in the lighting condi-
tions producing observations that are different enough for
the model to not be able to explain them.

A visual representation of the model this system learns
in an indoor environment is shown in Figure 12. The grid

map is not part of the model; it is just shown for visualiza-
tion purposes. The patches show the appearance the robot
perceives at those locations. A green border indicates a non-
obstacle while a red border indicates an obstacle. We can
easily see how the carpet floor is recognized as not being an
obstacle while other things such as walls, doors and boxes
are picked up and correctly labeled as obstacles.

Exemplars found by the clustering in both indoor and
outdoor scenarios are shown in Figure 14. As can be seen
the clusters found can be easily distinguished from each
other and represent the different types of object present in
the environment, such as floors, pavement, walls and pre-
dominant obstacles. Ideally clusters should be distinct from
each other, that is, far apart in the feature space. However,
clusters should also contain a reasonable amount of data
points, in other words, allow for a certain amount of vari-
ability within a cluster. The examples of cluster members
shown in Figure 15 demonstrate that the clusters obtained
exhibit this property. Each row in Figure 15 contains mem-
bers of a single cluster. As can be seen their appearance is
sometimes considerably different from each other. Nonethe-
less they are assigned to the same cluster even though
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Fig. 12. Map of one of the indoor environments with exemplary
image patches referenced to the location they have been perceived
at. The colored box around the patches also indicates if they are
an obstacle (red) or not (green).

Fig. 13. The plot shows the percentage of all observations made
during a 60 s window that add new information to the environment
model. It is clear that the majority of observations which lead to
new knowledge are observed in the beginning.

they appear blurred, were observed at a different viewing
angle, had different lighting conditions or were only par-
tially visible. This ability to group similar objects, even
with diverse appearances, allows the overall number of clus-
ters to be kept small and thus more representative of the
environment.

5.3.2. Model consistency for long-term autonomy. The
previous section shows that we can successfully learn a
model of the environment from scratch without human
supervision. However, for long-term autonomy we not only
need to be able to build an initial model but also to maintain

Fig. 17. This plot shows the percentage of novel observations
when the method is presented with two types of environment start-
ing with environment A then switching to environment B, and
then back to environment A. The black vertical lines indicate the
change from one environment into the other. This clearly shows
two desirable properties. Upon entering a novel environment most
of the observations are novel and need to be represented. Upon
switching back into the already-known environment A no such
spike in novelty occurs which is exactly what we would expect.

it in the event that the environment changes. To demon-
strate this we had the robot move in two visually distinct
outdoor environments and move between them. Figure 16
shows exemplary image patches from the areas used in
the experiment. The robot starts out in environment A and
moves there for a while before moving to environment B,
and returns to environment A after a while. The plot of nov-
elty of observations over time for this experiment is shown
in Figure 17. The two black vertical bars in the plot indi-
cate the transition between the two environments. At the
first transition there is a clear spike in the amount of new
knowledge contained in the observations, as we visit a visu-
ally novel area. When moving back from area B into area
A there is no such spike as the model learned previously
in area A can be reused. To simulate an operation over an
extended period of time the above experiment is repeated
with data gathered several months after the initial visit of
area A, and referred to as A’. We perform the same task
as in the previous experiment, moving from A to B and
then to A’. The novelty of observations for this are shown
in Figure 18. We can see a behavior very similar to that in
Figure 17. We have spikes in the novelty when first visit-
ing areas A and B but not when entering A’. The novelty
values of area A’ are not as low as in the previous exper-
iment, however, they still indicate that major parts of the
existing model are reused even though the original model
is based on data gathered months prior to this. While this
experiment is not performed with a robot operating for an
extended period of time it still shows that the method can
deal with changes that occur over time by reusing an exist-
ing model and adding to it. These experiments show how
the proposed system can learn valid models from observa-
tions and adapt and update the model when changes occur
over time without compromising the current model.
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Fig. 14. Examples of the exemplars as determined by STRAP. Results from indoor experiments are shown on the left while on the right
exemplars obtained in outdoor experiments are shown.

Fig. 15. Examples of cluster members from both indoor and outdoor experiments. Each row contains image patches that are assigned
to the same cluster. The examples show that even if the appearance changes significantly between images, the clustering procedure is
still able to assign them to the appropriate cluster. The rows from top to bottom represent a cardboard box, a piece of structured room
divider, carpet, wood chips, brick wall and asphalt (best viewed in color).

5.3.3. Obstacle avoidance performance. In order to test
the capability of our method to detect and avoid obsta-
cles we placed obstacles in the environment for the robot
to detect. The system was allowed to automatically learn a
model of the environment before the test started. Whenever
our method detected an obstacle in front of the robot, the
robot stopped and the distance to the nearest obstacle was

recorded. This experiment was carried out in different envi-
ronments. Overall our method recognized and stopped at a
distance of 0.94 m ± 0.23 m. This shows that the environ-
ment model learned by our approach can be used to detect
obstacles well before a collision can occur. This leaves
enough time and distance to execute actions to avoid the
detected obstacle.
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Fig. 16. Exemplary images from the different areas, from top to bottom: A, A’ and B. Areas A and A’ differ mainly in illumination and
camera setting changes, which affects the color appearance.

Fig. 18. This plot visualizes the novelty of observations when the
data from areas A and A’ is recorded several months apart, emulat-
ing long-term operation. From the graph we can see that although
the data was recorded several months apart the method still is able
to reuse most of the existing model when visiting A’.

6. Conclusion

We propose to approach the long-term autonomy problem
in robotics by enabling robots to learn and maintain models
of their environment without the need for human supervi-
sion. To this end, we improve the computational efficiency
of affinity propagation, the clustering method used in our
methods, by introducing meta-point affinity propagation. In
experiments we show how this new method has a similar
clustering quality to affinity propagation but at a signif-
icantly lower computational cost. We then show how the
proposed methods can be used on a real robotic system to
learn to predict collisions with the environment from raw
laser scanner readings without any information provided by
a human expert. Finally, we show how a robot can build
a model of the visual appearance of its environment in an
unsupervised way. Making use of the bumper of the robot
we can additionally self-supervise it to learn which objects
identified by the model represent obstacles. This combina-
tion allows a robot to build a model of the environment and
learn to avoid obstacles without any human help.

Overall the proposed methods give robots the capabil-
ity to build a model of their environment and adapt to
changes in the environment in an entirely unsupervised
manner. This is a crucial skill for the long-term auton-
omy of robots as we cannot assume that the environment
remains unchanged over days, weeks or months. It addition-
ally makes the deployment of a robotic system easier and
quicker as no human labor is required to build the model of
the environment the robot is going to operate in.
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