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Abstract
We introduce a new statistical modelling technique for building occupancy maps. The problem of mapping is addressed as
a classification task where the robot’s environment is classified into regions of occupancy and free space. This is obtained
by employing a modified Gaussian process as a non-parametric Bayesian learning technique to exploit the fact that real-
world environments inherently possess structure. This structure introduces dependencies between points on the map which
are not accounted for by many common mapping techniques such as occupancy grids. Our approach is an ‘anytime’
algorithm that is capable of generating accurate representations of large environments at arbitrary resolutions to suit
many applications. It also provides inferences with associated variances into occluded regions and between sensor beams,
even with relatively few observations. Crucially, the technique can handle noisy data, potentially from multiple sources,
and fuse it into a robust common probabilistic representation of the robot’s surroundings. We demonstrate the benefits of
our approach on simulated datasets with known ground truth and in outdoor urban environments.

Keywords
Occupancy mapping, non-parametric models, perception

1. Introduction

Constructing accurate maps of an environment remains a
fundamental yet challenging task for mobile robots. The
generation of meaningful spatial models of the robot’s sur-
roundings is central to the goals of navigation and path
planning. Since their introduction over two decades ago by
Elfes (1989) and Moravec (1988), occupancy grids have
been widely used throughout the mobile robotics commu-
nity. Their simplicity and computational efficiency have
made occupancy grids popular particularly when mapping
indoor environments and they can be easily adapted to pro-
cess data from a wide range of sensors such as sonar, laser
and stereo vision.

However, despite their widespread success, occupancy
grid models have a number of drawbacks. Perhaps the most
obvious is the manner in which occupancy grids decom-
pose complex mapping problems into single dimensional
calculations by making the ‘independence between cells’
assumption: the probability of each cell being occupied is
solely dependent on the rays which pass through it and is
not influenced in any way by the status of neighbouring
cells. This simplification ignores the fact that in the real
world, cells of occupancy are not distributed randomly over
the environment but rather there exists a spatial dependency
between cells due to the physical structure of objects and

the environment. The independence assumption frequently
results in cells of high uncertainty in regions where spatial
context could assist in determining the state of a cell. This
is perhaps most clearly seen in occluded areas or segments
between sensor beams.

A number of other drawbacks to the traditional occu-
pancy grids include the fact that they are constrained to
representing structures at a single scale, suffer from dis-
cretization errors, and require large amounts of memory to
represent 3D environments at any reasonable level of detail.
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Intuitively, the Gaussian process (GP) approach to occu-
pancy maps seeks to exploit the fact that environments
contain spatial structure to predict a continuous non-linear,
non-parametric function representing the map. The GP, a
Bayesian regression technique that intrinsically employs
the Occam’s razor principle (MacKay 2002) to avoid over-
fitting, uses statistical inference to learn dependencies
between points in the dataset. The resulting predictive mean
and variance distributions can then be used to classify
regions of the robot’s surroundings into areas of occupancy
or free space. The continuous nature of the underlying func-
tion means that the occupancy map is essentially an ‘any-
time’ algorithm. Coarse low-resolutions maps can be gen-
erated quickly to perhaps determine a possible path for the
robot while finer detailed, high-resolution reconstructions
could then be evaluated along paths of interest.

The primary contribution of this paper is the devel-
opment of Gaussian process occupancy maps (GPOMs)
that:

1. introduces dependencies between data points;
2. enables accurate maps to be generated with relatively

sparse and noisy sensor information from multiple
sources;

3. generates a continuous representation thus eliminating
the restriction of constructing a map on a single scale;

4. produces an associated variance plot that could be used
to highlight unexplored regions and optimize a robot’s
search plan.

In addition, a general method to approximate covariance
functions defined over probability distributions is derived.

The paper is organized as follows. Section 2 summa-
rizes related work. Section 3 gives an overview of the
proposed algorithm and describes the fundamental prin-
ciples behind techniques employed. Section 4 presents
experimental results for both simulated and real datasets
followed by a discussion in Section 5. Finally, Section 6
offers conclusions on the presented approach.

2. Related work

Many papers have attempted to address the problematic
issues inherent in the occupancy grid with varying degrees
of success such as Pagac et al. (1996) and Konolige (1997).
One interesting approach is the use of forward models by
Thrun (2002). They consider p( observation|map) rather
than the traditional inverse model p( map|observation). This
enables the likelihood of the sensor measurements to be
calculated and the problem becomes an optimization task
that maintains dependencies between neighbouring cells.
The method works particularly well with sonar where large
beam-width would normally result in ‘regions of conflict’
around narrow openings where certain cells appear to be
both occupied and free space. Optimizing the likelihood in

the original high-dimensional space using the Expectation
Maximization (EM) algorithm helps to resolve this issue.
An unfortunate drawback with this approach is the require-
ment to optimize the map each time an update is computed
which may be impractical for online application.

More recently, a number of authors have taken advan-
tage of the intrinsic structure in an environment to develop
mapping techniques that remove the independence between
cells assumption. Veeck and Burgard (2004) train polylines
to form a continuous representation of the environment’s
boundaries based on discrete range samples. This approach
greatly compacts the size of the map using a set of heuris-
tically derived rules to iteratively optimize the polylines.
A drawback to this method however is that uncertainty in
the sensor measurements is not handled in a probabilis-
tic framework and noisy data that does not conform to the
user-defined list of optimization criteria can lead to maps
converging to incorrect representations.

A more robust mapping technique was proposed by
Paskin and Thrun (2005) using polygonal random fields
to probabilistically reason about occupancy, rather than the
boundaries, of the environment. The maps generated are
continuous and allow for inference to be made in unscanned
regions. While this approach cannot iteratively add new
data, the use of a probabilistic model for occupancy enables
this approach to produce accurate maps with both laser and
sonar datasets. A significant disadvantage of this approach
is the computation required to get the random fields to con-
verge, as noted by the authors. Even for reasonably sized
indoor datasets, the random fields can take several hours to
converge to a final representation.

2.1. Applications of Gaussian processes to
robotics

The GP is a non-parametric method which is frequently
used to solve regression and classification problems, (Ras-
mussen and Williams 2006). Initially, GPs were unpopular
in the robotics community for online learning because of
their computational complexity. However recent advances
in approximation through the use of sparse models have
helped to overcome this limitation and reduce the complex-
ity to a near-linear form (Smola and Bartlett 2001; Snel-
son and Ghahramani 2006). GPs have previously been used
with considerable success in mobile robotics. The GP’s abil-
ity to learn behavioural characteristics of non-linear, non-
parametric functions has resulted in their growing use in
modelling real-world phenomena.

Ferris et al. (2006) and Ferris et al. (2007) employ a
GP with the commonly used squared exponential covari-
ance function to model Wi-Fi signal intensity in order to
perform localization as well as a novel form of SLAM.
Measurements of the Wi-Fi’s strength were made in a num-
ber of known locations and from this a predictive mean of
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the likely signal intensity at each point along with a vari-
ance could be computed. A particle filter was then used to
estimate the robot’s location based on the signal strength it
detects at each position. By comparing recorded intensities
to the predictive mean distribution over the environment, it
was possible to develop an approximate map of the robot’s
route.

GPs have also been used in the robotics community to
effectively model less natural and smooth functions such as
the work carried out in Plagemann et al. (2007) and Plage-
mann et al. (2008). In the former, a Gaussian beam process
was used to interpolate the range to an object in regions
between laser beams. The resulting predictive mean and
variance outputs were accurate enough to be used to local-
ize a robot within a known environment by comparing new
sensor data with the trained GP representation.

Furthermore, the GP’s ability to robustly handle sparse
and noisy data has been exploited to address the issue of
terrain modelling. Frequently, such datasets contain non-
stationary phenomena due to sudden changes in smooth-
ness and various approaches have been proposed to tackle
this. Vasudevan et al. (2009) use a neural network covari-
ance function while Lang et al. (2007) employs adaptive
smoothness methods similar to those proposed in Paciorek
and Schervish (2004). However, both of these techniques
are limited by their formulation to representing environ-
ments in 2.5 dimensions. Smith et al. (2010) present a pos-
sible method of addressing this by modelling the terrain in
the sensor space before being mapped back to the physi-
cal space. While this approach is capable of representing
overhangs in the environments, querying the model with
physical locations as inputs is no longer possible.

3. Algorithm description

A general overview of the proposed method is illustrated in
Figure 1. Essentially, we treat the occupancy map as a form
of classification problem. The robotic platform makes range
observations of the real-world environment. The resulting
occupied points and free space line segments are stored in
a kd-tree data structure (Section 3.7). A GP (Section 3.1),
which is modified to be defined over distributions rather
than deterministic points to account for noisy observations
(Section 3.6), is used to perform an initial regression on
processed sensor data. A probabilistic least-squares clas-
sification algorithm is then trained to identify regions of
occupancy and free space based on the GP’s outputs
(Section 3.3).

3.1. The Gaussian process and covariance
function

GPs provide a powerful framework for learning models
of spatially correlated and uncertain data. GP regression

Fig. 1. Block diagram of the proposed mapping methodology.

provides a robust method of prediction and can handle
incomplete sensor data effectively. GPs are non-parametric
approaches in that they do not specify an explicit functional
model between the input and output. They can be viewed as
a Gaussian probability distribution in function space and are
characterized by a mean function μ( x) and the covariance
function k( x, x∗), where x and x∗ are both input vectors.
Hence, the process itself can be thought of as a distribution
over an infinite number of possible functions and inference
takes place directly in the space of functions. By assuming
that the target data is jointly Gaussian, we obtain

f ( x∗) = N (μ, σ ) , (1)

where
μ = k( x∗, X )

[
k( X , X ) +σ 2

n I
]−1

y, (2)

σ = k( x∗, x∗) −k( x∗, X )
[
k( X , X ) +σ 2

n I
]−1

k( X , x∗) . (3)

Here X is a D × n matrix representing the training input
data where D is the dimensionality of the data and n cor-
responds to the total number of measurements employed
by model. x∗ refers to a query (or test) location. Here y
represents noisy observations of the function at the train-
ing locations, f ( X ), σ 2

n is the variance of the global noise,
k( X , X ), or simply K, is the matrix of the covariances evalu-
ated at all pairs of training inputs. The vector k( X , x∗) is the
covariance between the training set and the test set defined
depending on a covariance function k that is parameterized
by hyperparameters θ . A detailed explanation and deriva-
tion of the GP can be found in Rasmussen and Williams
(2006).

The covariance function is used to evaluate dependen-
cies between observations. Owing to the non-stationary
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behaviour of the typical map datasets that we examined
(sudden changes from free space to occupied regions), the
behaviour of the infinitely differentiable and commonly
used squared exponential covariance function was often
found to be too smooth for our application. The neural
network covariance function is non-stationary and is capa-
ble of modelling the sudden shifts in the trend of f ( ·).
Although a number of sharp functions such as several of
those derived from the Matérn family (Stein 1999) could
also be considered.

The covariance function is derived from a neural network
with a single hidden layer, a bias b and NH units:

f ( x) = b +
NH∑
j=1

υjh( x; uj) , (4)

where the υj’s are hidden-to-output weights and h( x; u) is
the hidden unit transfer function which depends on the input
to hidden weights u. Neal (1996) demonstrates that by let-
ting b and each υj have independent zero-mean distributions
of variance σ 2

b and σ 2
υj

, respectively, it can be shown for
weights w that

Ew
[
f ( x)

] = 0, (5)

and

Ew
[
f ( x) f ( x∗)

] = σ 2
b + NHσ

2
υEu

[
h( x; u) h( x∗; u)

]
. (6)

Hornik (1993) shows that networks with one hidden layer
are universal approximators as the number of hidden
units tends to infinity. Thus, as NH → ∞ the stochas-
tic process will converge to a GP and, by evaluating
Eu

[
h( x; u) h( x∗; u)

]
, the covariance function for a neural

network can be obtained. Williams (1998) deduces that by
selecting the error function

h( z) = erf( z) = 2√
π

∫ z

0
e−t2 dt

as the transfer function and let h( x; u) = erf
(
u0 + ∑D

j=1

ujxj

)
, the following covariance function can be derived by

representing u as a Gaussian with zero mean and a variance
of � that is learnt during the training phase:

k( x, x∗) = σ 2
f arcsin

(
2x̃�

�x̃∗√(
1 + 2x̃�

�x̃
)(

1 + 2x̃�
∗ �x̃∗

)
)

,

(7)

where x̃ =( 1, x1, . . . , xD)� is an augmented vector and σ 2
f is

a hyperparameter signal variance used to scale the correla-
tion between points. Paciorek and Schervish (2004) demon-
strates the ability of non-stationary covariance functions to
adapt discontinuities in the underlying function of interest.
This can be seen as a neural network with an infinite number
of units in the hidden layer.

The occupancy map is based upon the GP’s ability to pre-
dict p( O|x), where O is the occupancy hypothesis and x
represents a physical location within the map. Oi is essen-
tially a class, either occupied or free space, referenced by
its corresponding location, xi.

In our application, the GP is used to fit a likelihood
function to the training data

{
xi, yi

}
i=1→n

where xi is a two-
dimensional position on the map and yi represents occu-
pancy (+1) or free space (-1) at that location. In addition,
the global noise variance is taken to be quite low based on
the fact that σ 2

n relates to the output, Oi or the sensor’s abil-
ity to detect occupancy/free space, and is not an input noise
originating from uncertainty in the sensor’s bearing and
range readings. The resulting continuous function can then
be used to interpolate between data points to predict the
occupancy probability in unscanned and occluded regions.

3.2. Training the hyperparameters

An important aspect of the GP is the optimization of the
hyperparameters, θ . These are key to developing a realis-
tic model of the dataset and so it is important to ensure
that the covariance function they generate accurately cap-
tures the extent of the correlation in the environment. This is
achieved by maximizing a log marginal likelihood function;
the integral of the likelihood times the prior:

p( y|X ) =
∫

p( y|f, X ) p( f|X ) df. (8)

Here, the term marginal refers to the marginalization of the
function values f. Under the GP model, both the likelihood
(y|f ∼ N ( f, σ 2

n I)) and the prior (f|X ∼ N ( 0, K)) are Gaus-
sian distributions thus making the above integral tractable.
Consequently, it follows that

ln p( y|X ) = −1

2
y�( K + σ 2

n I)−1 y − 1

2
ln
∣∣K + σ 2

n I
∣∣

−n

2
ln 2π . (9)

The primary advantage of the marginal likelihood is that
it incorporates a trade-off between model fit and model
complexity. A function which overfits the data leads to poor
inference and large uncertainties while an over-generalized
outcome can result in a likelihood function which chooses
to ignore many of the data points in favour of adopting a
less responsive behaviour. Equation (9) helps to ensure an
even balance between these two extremes by intrinsically
rewarding data fit while penalizing complexity.

Ideally, the set of data used to train the hyperparame-
ters would consist of all observations made of the envi-
ronment. However, because of computational practicalities
or the availability of these measurements prior to evalu-
ating the test points, other approaches are often required.
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One solution involves generating the training data by ran-
domly sampling the first few initial scans of the environ-
ment which consist of both occupied points and free space
points obtained by discretizing the sensor beams. Alter-
natively, observations previously obtained from a similar
type of environment could be used and the hyperparame-
ters could be trained in advance. The optimal hyperparame-
ters for the neural network covariance function are learnt
by maximizing the marginal likelihood, which is a non-
convex function, over those training points. This is achieved
using a combination of a stochastic metaheuristic optimizer
known as simulated annealing (Kirkpatrick et al. 1983) to
identify an approximation of the global maximum and a
L-BGHS (Liu and Nocedal 1989) for further tuning of the
parameters.

3.3. Probabilistic least-squares classification

GPs are generally used in regression and so a modification
is required for classification problems. While the predictive
mean is useful for establishing the most likely appearance
of the occupancy map based on the available sensor data, it
can also be misleading if considered in isolation. One of the
key advantages of the GP is its ability to calculate the vari-
ance of each prediction. Not only does the variance provide
a method of identifying unexplored regions of high uncer-
tainty within the environment but it can also be combined
with the predictive mean to generate a distribution repre-
senting the probability of occupancy for each point on the
map using a probabilistic least-squares (PLS) classification
technique described by Rasmussen and Williams (2006).

A post-processing stage is used to ‘squash’ the predic-
tions through a sigmoid function whose hyperparameters
(α and β) were determined using a ‘leave-one-out’ (LOO)
approach. Platt (2000) introduces this sigmoid function and
the implemented likelihood used to training the sigmoid’s
parameters is

p( yi|X , y−i, θ ) = �
(yi(αμi + β)

1 + α2σ 2
i

)
, (10)

where �( ·) is the cumulative unit Gaussian, y−i refers to
the occupancy vector of all of the training data excluding
the point ( xi, yi). Here μi and σi refer to the predictive mean
and variance at the point xi, respectively, while θ signifies
the trained hyperparameters of the covariance function.

Training α and β can be performed online despite
the apparent need to evaluate a new likelihood func-
tion and variance distribution for each target point that
is excluded. Although this requires determining a unique
inverted covariance matrix of size ( n − 1) ×( n − 1) for
each value of i considered, they can be acquired by simply
partitioning the original matrix K to eliminate the influ-
ence of training points ( xi). Wahba (1990) adopted a similar

Fig. 2. Notation aid for Equation (13). Extraction of the training
points from the sensor data following its mapping to Cartesian
space.

approach with spline models. Thus, the expressions for the
LOO predictive mean and variance become

μi = yi − [K−1y]i

[K−1]ii
, (11)

σ 2
i = 1

[K−1]ii
. (12)

Using the resulting probability distribution, the environ-
ment can be classified into occupied, free space and unsure
regions using user-defined thresholds that depend on the
desired level of greediness.

Other approaches have also been proposed to model the
non-Gaussian likelihood functions that arise in classifica-
tion tasks such as Laplace approximation method (Minka
2001) or expectation propagation (Williams and Barber
1998). However, here we favour the PLS approach as
the savings in processing time outweigh the reduction in
accuracy.

3.4. The sensor model

For each returned laser beam, the robot stores an angle and
range to the target, Q in Figure 2, at time ti. This data
can then be used to represent a free space line segment,
PQ, originating from the robot’s position, P, at time ti. An
occupied point is located at the far end of the line segment.

Discretizing the line segment into numerous free space
points is not a viable option as the pre-defined distance
between each free space point effectively enforces a min-
imum resolution on the map. In addition, the number of
free space points required to accurately represent the free
space line segments increases rapidly with each additional
scan and becomes computationally unworkable relatively
quickly.

A solution to this problem is to incorporate the continu-
ous nature of the sensor beam into the GPOM by using the
following to extract relevant training points from the sensor
data:

xfree = P + d.
PQ

|PQ| , xfree ∈ PQ (13)
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d = PQ.Px∗/|PQ|, (14)

where d is equivalent to the distance between the robot’s
position at time ti and the desired training point location.
This has the effect of locating the closest point on each local
laser beam to the test point of interest (x∗) and then using
these as training data representing free space in the GP. All
of the locations are relative to the global coordinate frame.
The sensor beam is of finite length and so the location of
each training point must be bounded within the limits of
the beam segment PQ. This approach substantially reduces
the size of the training dataset allowing for larger environ-
ments to be mapped at a lower computational cost as well as
enabling an accurate representation of the continuous free
space beams to be passed into the GP.

3.5. GPOMs assuming fully observable locations

So far, we have considered the case where the location
of each training point is known exactly, i.e. we assume a
noiseless rangefinder and precise localization. Algorithm 1
details the steps involved in evaluating the probability of
occupancy at a point x∗. Here, r1:n and ν1:n denote all n
range and bearing observations, respectively. Here p1:n and
φ1:n are the corresponding vehicle position and orientation
for each observation, and θ represents the trained hyper-
parameters including the sigmoid function parameters, α
and β.

The algorithm can be divided into two main parts. Lines
1–7, convert the sensor measurements into physical loca-
tions with associated labels to indicate occupied or free
space points. Lines, 8–10 use this training data with the
trained GP and PLS classifier to predict the probability of
occupancy at x∗

Algorithm 1 GPOMs assuming fully observable locations
(GPFOL)
Input: r1:n, ν1:n, p1:n, φ1:n, x∗, θ

Output: Probability of Occupancy:- p( O|x)
1: for i=1:n do
2: xoccupiedi = Algorithm 2 (ri, νi, pi, φi)
3: qi = xoccupiedi

4: Determine xfreei from Equations (13) and (14)
5: xi =( xoccupiedi , xfreei )
6: yi =( +1, −1)
7: end for
8: Obtain k( X , X ) and k( x∗, X ) from Equation (7)
9: Use Equations (2) and (3) to determine μ and σ

10: p( O|x) = �
(

+1(αμ+β)
1+α2σ 2

)

3.6. Propagation of uncertainty in the Gaussian
process model

At its core, the GP is a regression technique. The technique
assumes that the training outputs may be noisy and accounts
for this by the inclusion of the hyperparameter σ 2

n in Equa-
tion (2) and (3). However, the classical GP does not account
for the possibility of uncertain training inputs as it assumes
fully observable locations, i.e. no noise in the x domain.

Fig. 3. Uncertainty due to ambiguous pose information (loca-
tion and orientation) and noise in the sensor measurements (range
and bearing) manifests itself as non-trivial probability density
functions over the training data when represented in the global
coordinate frame.

To illustrate the effects that uncertain training inputs have
on the GP, a dataset containing 10 measurements, one of
which has a degree of uncertainty associated with its loca-
tion, is used to estimate the underlying ground truth. Figure
4(a) compares the output of the traditional GP assuming
fully observable locations (GPFOL) with a GP that assumes
partially observable locations (GPPOL). By presuming that
each training input is a deterministic point, the standard
method incorrectly deduces very noisy observations is the
most likely explanation for the dataset. This results in the
importance of relatively accurate data points being under-
estimated. The GPPOL, on the other hand, learns depen-
dencies between distributions rather than single values thus
more closely matches the ground truth.

Examining the associated covariance matrix k( X , x∗) of
the GPFOL, Figure 4(b), reveals that the noisy training
point is wrongly influencing test points far from its true
position. Ideally, by accounting for this uncertainty in the
X domain, the influence of noisier training points should be
dispersed in proportion to the magnitude of the associated
variance.

Lets redefine the training inputs as observation locations
that have been corrupted with some Gaussian noise, εxi =
N ( 0,�xi ),

xi = ρi + εxi . (15)

The training inputs can now be expressed as xi ∼
N ( ρi,�xi). Girard (2004) details how it is still possible
to calculate the predictive mean and variance of f ( ·). This
approach can be extended to define kernel functions over
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Fig. 4. Comparison of a standard Gaussian process (GP) with a noisy input GP. (a) Effects of an uncertain training input on a GP.
Classic GP (left), noisy input GP (right). (b) Classic squared exponential covariance matrix. The noisy input’s covariance is shown on
the third row. (c) Squared exponential covariance matrix defined over distributions. The noisy input’s covariance is shown on the third
row.

probability distributions rather than between deterministic
points:

kn( ρ, �) =
∫∫ +∞

−∞
k( xi, xj) p( xi, xj; ρ, �) dxi dxj. (16)

In the above equation, p( xi) = Nxi ( ρi, �xi), p( xj) =
Nxj ( ρj, �xj ), ρ = [ρi, ρj]� and � =

[
�xixi �xixj
�xjxi �xjxj

]
. The term

kn( ρ, �) denotes the noisy covariance matrix.
In the case of sensor inaccuracies, it is reasonable to

assume that the noise is largely independent and so Equa-
tion (16) can be written as

kn( ρi, ρj, �xi , �xj ) =
∫∫ +∞

−∞
k( xi, xj)

p( xi; ρi, �xi) p( xj, ρj, �xj ) dxi dxj. (17)

It is possible to derive an exact expression for
kn( ρi, ρj, �xi , �xj ) when the chosen covariance function is

Gaussian. Girard (2004) formulates an exact representa-
tion for the commonly used squared exponential covariance
function:

k( xi, xj) = σf exp
[

− 1

2
( xi − xj)

� L−1( xi − xj)
]
, (18)

as

kn( ρi, ρj, �xi , �xj ) = σf |I + L−1(�xi +�xj ) |−1/2

×exp
[

− 1

2
( ρi − ρj)

� ( L +�xi +�xj )
−1 ( ρi − ρj)

]
.

(19)

Examining Equation (19) shows that the inclusion of
uncertainty has the effect of reducing the covariance’s mag-
nitude (σf ) while simultaneously increasing the lengthscale
(L) to extend the influence of the training point to addi-
tional neighbouring points. This diffusion of the training
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point’s covariance over a larger area enables accurate fus-
ing of the uncertainty’s effects into the system. Figure 4(c)
demonstrates the dissolution of the noisy input’s influence
across neighbouring test points.

However, in the case of many covariance functions, such
as the neural network, or when dependencies exist between
the probability distributions of training points, e.g. corre-
lation resulting from uncertainties in the vehicle’s location,
then a closed-form solution does not exist and approxima-
tions must be performed.

3.6.1. Gauss–Hermite quadrature The Gauss–Hermite
quadrature is a modification of the Gauss quadrature
which approximates the integration of a function between
limits −1 and +1 as a weighted sum of function values
at specified points within the domain of integration. It
introduces a decaying function, e−ψ2

, to extend the limits
to −∞ and +∞:

∫ +∞

−∞
e−ψ2

f (ψ) dψ ≈
η∑

m=1

wmf (ψm) . (20)

Here η is the number of samples depending on the user-
defined level of approximation while ψm refers to the roots
of the Hermite polynomial, Hη(ψ). The corresponding
weights for each sample point are given by

wm = 2η−1η!
√
π

η2[Hη−1(ψm) ]2
. (21)

Equation (16) or Equation (17) can be reformulated
to resemble Equation (20) by first expressing p( xi, xj) or
p( xi) p( xj) as a multivariate Gaussian distribution:

p( xi, xj) ∼ N
(

x; ρ, �
)

(22)

where x = [xi, xj]�, ρ = [ρi, ρj]� and � =
[

�xixi �xixj
�xjxi �xjxj

]
or

� =
[

�xixi 0
0 �xjxj

]
.

Following from this, the Gauss–Hermite quadrature can
be used to accurately approximate the effects of noisy train-
ing inputs on the performance of the GP by expressing the
covariance function as follows:

kn( ρi, ρj, �xi , �xj ) ≈ 1

2π

η∑
m=1

η∑
n=1

wmk( ϕim , ϕjn ) . (23)

For the case of independent distributions, ϕim =√
2�xiρi,m + ρi. Here, ρi,m is the mth root of the Hermite

polynomial Hη( ρi).
Figure 5 compares a Gauss–Hermite quadrature imple-

mentation of the squared exponential covariance function
with the performance of the closed-form solution derived
by Girard (Equation (19)). As the variance of the training

point’s location probability distribution is increased from 0
to 1 in steps of 0.2, the covariance between the points is
reduced and it becomes more dispersed. A level 1 approxi-
mation (11 sample points) accurately matches the closed-
form case for low degrees of uncertainty (Figure 5(a)).
However for significantly large variances, the quadrature
undercompensates for their influence. Increasing the level
of the quadrature considerably improves its ability to match
the output of the exact solution. Figure 5(b) illustrates the
output of a level 2 approximation consisting of 49 samples
from the kernel function.

3.6.2. Unscented transform Equations (22) and (23)
assume the training inputs to have Gaussian distributions.
The variance associated with vehicle pose (location and
orientation) and sensor readings (range and bearing) mani-
fests itself as a non-trivial probability density function when
represented in the global coordinate frame. An unscented
transform in Julier and Uhlmann (1997) is used to estimate
the first two moments of these distributions and represent
them as Gaussians. A preferred alternative to employing
Jacobians when the transition model is highly non-linear,
the unscented transform uses a deterministic sampling tech-
nique to pick a minimal set of sample points (2δ+1 for a δ-
dimensional space) around the noisy observations’ means,
μ′, using its associated variances, �′.

These sample or ‘sigma’ points, χ , and their associated
weights, w, can be obtained using the following equations:

χ [0] = μ′,

χ [i] = μ′ +
(√

( δ + λ)�′
)

i
for i = 1, . . . , δ,

(24)

χ [i] = μ′ −
(√

( δ + λ)�′
)

i−δ
for i = δ + 1, . . . , 2δ.

Here λ = ξ 2( δ + κ) −δ where ξ determines the spread
of the sigma points around μ′ and is typically set to a
small positive value (e.g. 1 × 10−3). κ is a secondary
scaling parameter which is usually set to zero (Wan and
Van Der Merwe 2000). Each sigma point has two weights
associated with it. One weight, w[i]

mean, for computing the
mean and one weight, w[i]

cov, to recover the covariance of the
Gaussian:

w[0]
mean = λ

δ + λ
,

w[0]
cov = λ

δ + λ
+( 1 − ξ 2 + �) , (25)

w[i]
mean = w[i]

cov = 1

2( δ + λ)
for i = 1, . . . , 2δ

Here � can be used to encode additional higher-order
knowledge about the distribution. If the uncertainty in mea-
surements is assumed to be Gaussian, � = 2 should be used
(Thrun et al. 2005).
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Fig. 5. Gauss–Hermite quadrature (dashed red line) approximating the modified squared exponential covariance function (Equation
(19)) (blue line) evaluated over several distributions of increasing variance. σ = 0 → 1. (a) Level 1; (b) level 2. (Colour refers to the
online version.)

These sigma points are mapped from sensor space to a
physical location through an appropriate set of equations
(Algorithm 2), g( ·), such that g(range, bearing, vehicle
location, vehicle orientation) ⇒ physical world position,
thereby probing how g changes the shape of the Gaussian:

γ [i] = g(χ [i]) . (26)

Algorithm 2 Mapping from observation space to physical
location.
Input: ri, νi, pi, φi,
Output: Measurement Location:- xi

1: Convert ri and ( νi +φi) to Cartesian coordinates: xsens.i

2: xi = pi + xsens.i

The resulting positions of the sigma points in the physical
space, γ , can be used to estimate the posterior mean and

covariance (μ′ and �′, respectively) as follows:

ρ =
2δ∑

i=0

w[i]
meanγ

[i], (27)

�x =
2δ∑

i=0

w[i]
cov( γ [i] − ρ) ( γ [i] − ρ)� . (28)

These Gaussian functions approximate the training
points’ true probability distributions and can now be used
to form the inputs to the GP via Equation (23).

3.6.3. GPOMs assuming partially observable locations
algorithm Algorithm 3 details the sequence of actions
described in this section required to incorporate noisy
inputs into the GPOM. Here r1:n, ν1:n, p1:n and φ1:n, respec-
tively, refer to all of the measured range and bearing with
their corresponding vehicle position and orientation. σr1:n ,
σν1:n , �p1:n

and σφ1:n denote their associated variances.
Again, the algorithm can be divided into two principal

sections. Lines 1–11 deal with converting the sensor data
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into distributions in the physical world that can be used by
the modified GP and PLS classifier to predict the hypothesis
of occupancy in lines 12–14.

Algorithm 3 GPOMs assuming partially observable loca-
tions (GPPOL).
Input: r1:n, ν1:n, p1:n, φ1:n, σr1:n , σν1:n , �p1:n

, φr1:n , x∗, θ

Output: Probability of Occupancy:- p( O|x)
1: for i=1:n do
2: μ′

i = [ri, νi, pi,φi]
3: �′

i = diag[σri , σνi ,�pi
, σφi , ]

4: Determine ρoccupiedi and �occupiedxi
using Equations

(24)–(28)
5: Obtain di from Equation (14)
6: ri = di

7: Repeat Steps 2 → 3
8: Determine ρfreei and �freexi

using Equations (24)–
(28)

9: ρi = [ρoccupiedi , ρfreei], �xi = [�occupiedxi�freexi]
10: yi = [+1, −1]
11: end for
12: Obtain kn( ρ1:n, ρ1:n,�x1:n ,�x1:n) and kn( ρ1:n, x∗,�x1:n)

from Equation (23)
13: Use Equations (2) and (3) to determine μ and σ

14: p( O|x) = �
(

+1(αμ+β)
1+α2σ 2

)

3.7. Approximating the covariance matrix

One drawback of the GP is the requirement to invert the
covariance matrix in order to calculate the predictive mean
and variance. This introduces a computational complexity
of O( n3) where n is the number of training elements. For
large datasets such as those generated for any outdoor laser
scan of an appreciable length, this inversion of K becomes
a substantial bottleneck in the algorithm’s speed. However,
because of the nature of the covariance function, the impact
of distant training points have on the value of the test point
is considerably less than the influence of nearby data points.
Thus the predictive mean and variance can be accurately
approximated through the use of local models. By storing
the training data in a kd-tree structure as in Snelson and
Ghahramani (2006), observations in the neighbourhood of
the test point can be efficiently retrieved. These are then
used to create a small and hence quickly invertible K matrix
unique to that location. These local models overcome the
issue of the cubic growth in computational time with only
minor effects on the GP’s accuracy. Increasing the num-
ber of neighbours that should be considered generally leads
to an improvement in the resulting occupancy predictions
until eventually no significant benefit is gained from adding
distant observations. This is discussed further in Section 5.

Updating the kd-tree takes O( log( n) ) time and can be
done by inserting new observations into the structure in

the same way as one adds elements to other search trees.
Adding points in this manner, however, can eventually lead
to the tree becoming imbalanced and a rebuild would be
required which incurs a computational cost of O( nlog( n) ).

4. Results

4.1. Simulated environments

Our proposed approach to mapping was initially tested and
refined using simulated datasets with a known ground truth.
Here, we present the results from two such datasets. The
first experiment seeks to evaluate the performance of the
technique under close to ideal conditions with negligible
sensor noise. The second, more challenging, dataset con-
tains noisy observations from multiple platforms. Compar-
isons are made with the traditional occupancy grid in both
cases.

4.1.1. Simulated dataset I Figure 6(a) illustrates the
ground truth layout of the test environment. It is scaled to
represent a typical street scenario with main streets, side
streets and a number of parked cars and vans. The location
of the robot for each of the 28 scans, which in this case is
assumed to be known, is highlighted (in red in the online
version of this article). The ground truth covers an area of
approximately 18,000 m2. Each of the scans consists of 17
beams with a maximum range of 34 m evenly spaced over
a 180◦ sweep centred about the robot’s direction of travel.
This results in a sensor reading database of just 476 entries
including non-returns. The locations of the returned laser
hits when translated to reflect the robot’s position during
their associated scan are shown in Figure 6(b).

An occupancy grid using this laser data and some addi-
tional noise was generated for comparative purposes (Fig-
ure 6(c)). The posterior of the probabilistic classification
using the GP occupancy mapping technique is displayed in
Figure 6(e) and its associated predictive variance is shown
in Figure 6(d). Figure 6(f) shows the resulting map after
classification using a thresholding procedure.

If the assumption of low noise in the laser data is applied
to the occupancy grid, large portions of the map will
remain unaltered from the prior, even at a resolution of
0.25 m2, owing to the sparse nature of the sensor read-
ings. These regions of uncertainty would actually increase
if an improved laser with lower noise levels was employed
as the occupancy grid only updates the occupancy hypothe-
sis of cells within the scope of the sensor beam. A common
trick in occupancy maps is to add surplus noise to the sen-
sor’s bearing readings so as to artificially increase the width
of the beam. While this method results in less unknown
cells, this smearing is not true inference between beams
and the additional noise leads to conflicts within cells near
boundaries between occupied and free space regions on the
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Fig. 6. Sequence of images illustrating the simulated results for Bayesian mapping using a Gaussian process (GP): (a) ground truth;
(b) laser returns and robot pose; (c) occupancy grid; (d) predictive variance of GP; (e) probability of occupancy versus location using
the GP approach; (f) classified GPOM. Black = Occupied (p( O | x) ≥ 0.65). White = Free space (p( O | x) ≤ 0.35). Grey = Unsure
( 0.3 < p( O | x)< 0.7).
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Fig. 7. ROC curves for occupancy grid and the GP mapping
technique using simulated environment as a ground truth

map such as doorways. This effect is similar to the errors
which are common in occupancy maps produced using
sonar range-finders because of their wide beam angle.

Even with the addition of noise to the data, large areas
of uncertainty still exist in the occupancy grid. This is most
evident in the occluded areas behind the vehicles and along
roadways where the robot did not travel.

The GPOM was implemented in MATLAB and ran on a
2.33 GHz Duo Core machine with 1 GB of RAM. A training
set of 500 points was generated and used to learn hyper-
parameters for the GPFOL model which took roughly 3
minutes. This included 1,862 log marginal likelihood func-
tion calls from the simulated annealer and 170 calls from
the L-BFGS optimizer algorithm. Approximately 1,000 test
points could be evaluated per second when 30 of the nearest
training points were considered for each query (15 occu-
pied points and 15 free space line segments). The GPOM
more accurately reflects the ground truth of the environ-
ment. From Figure 6(e), all of the roads and side-streets
can be identified despite the fact that the sensor data did not
fully map them. The shapes of the buildings are also compa-
rable to those of the actual environment. The cars and vans
are also easily identifiable despite the fact that the areas
behind them were reasonably occluded from the robot’s
sensor. Figure 6(f), classifies the environment into occu-
pied, free space and unsure regions using a straightforward
thresholding procedure which assigns a class on the basis
of probability of occupancy. Regions of uncertainty mainly
exist in areas where there is a transition in the ground truth
from occupied to free space and the GP has relatively little
information to accurately model this transition.

Other aspects worthy of note include the manner in which
the probability of occupancy (correctly) tends towards 0.5

Fig. 8. Simulated ground truth (top). Platform poses and laser
returns from experiment (bottom). Platform I poses (orange) and
laser returns (green), Platform II poses (red) and laser returns
(blue). (Colour refers to the online version of this article.)

in regions with increasing uncertainty due to lack of infor-
mation such as behind walls, in occluded areas, and fur-
ther down along streets which the robot has not travelled.
The associated variance map (Figure 6(d)) highlights unex-
plored regions. This could be used in conjunction with the
GP map to identify accessible areas of high variance in
order to optimize exploration algorithms online.

The posterior of the probabilistic classification is not con-
strained by the sensor model to a particular resolution. Once
the hyperparameters of the GP have been learnt, produc-
ing maps of various resolutions becomes quite straightfor-
ward because the underlying continuous function is known
given the data points as context. This benefit is discussed in
Section 4.2.1 using a real-world outdoor dataset.

A receiver operating characteristic (ROC) curve was gen-
erated for both mapping methods to compare the accuracy
of each approach by plotting the rate of true positives (TP)
detected versus the rate of false positives (FP) detected
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Table 1. Numerical comparison of ROC curves.

Area under FP detection rate for
the curve TP detection rate of 0.95

Random guess 0.5 0.95
Occupancy grid 0.8938 0.1913
GP occupancy map 0.9948 0.026

Table 2. Comparison of simulated robotic platforms.

Platform I Platform II

Speed (m s−1) 0.5 4
Firing rate (scans s−1) 0.5 4
Sensor range (m) 20 8
Range variance (m2) Negligible 0.8
Bearing variance (degrees2) Negligible 0.5
Localization uncertainty (m2) 0 0

as the threshold of discrimination was varied (Figure 7).
The green (in the online version of this article) dashed line
which bisects the graph represents the ROC curve of a pro-
cess which randomly guesses the occupancy hypothesis for
each cell. The ROC curve for our Bayesian GP implementa-
tion is displayed in blue (in the online version of this article)
and, as illustrated in Table 1, it is possible to achieve a TP
detection rate of 0.95 while the FP rate is kept at just 0.026.
The occupancy grid’s ROC curve in comparison indicates
a FP rate of almost 0.2 for the same TP rate as a result of
the artificial noise that was added in order to produce a rea-
sonable representation of the environment with such sparse
data.

4.1.2. Simulated dataset II The use of a simulated dataset
enabled the levels of sensory and localization uncertainty to
be easily manipulated while also providing a known ground
truth for quantitative comparisons. Figure 8 is an example
of one of these simulated environments.

In this experiment, two robotic platforms are employed to
map the environment. The first platform is relatively slow
moving but possesses a highly accurate range finder. The
second platform, in contrast, is fast moving but the sensory
information it gathers is extremely noisy. Table 2 compares
the key characteristics of both platforms. Figure 8 illustrates
the sensor data obtained during the simulation.

The dataset was used to evaluate the performance of
three different mapping techniques. Specifically, this exper-
iment focused on the traditional occupancy grid, the GP
occupancy mapping technique that assumes negligible input
noise (GPFOL) and the method that incorporates sensor
uncertainty into the map by considering each training input
as a distribution rather than a deterministic point (GPPOL).

As can be seen in the first image of the Figure 9, the
independence-between-cells assumption made by the occu-
pancy grid leads to large portions of the map remaining
relatively unaltered from the prior hypothesis of occupancy.
This is despite the fact that significant contextual informa-
tion is available to perform reasonably confident inference
in these regions.

Alternatively, using GPFOL to generate the occupancy
map has led to the learning process converging to unsuitable
hyperparameters (303 training points taking 90 seconds).
The generated occupancy maps (second row of Figure 9) are
influenced heavily by the noisy data resulting in fragmented
walls and objects as well as several phantom obstacles. Con-
flicting hypotheses of occupancy in a number of regions
between the noisy and accurate sensors remain unresolved
due to both sources being treated as equally relevant. Owing
to these conflicts, the classified map highlights a large num-
ber of areas where the label is unsure despite having been
extensively scanned by the more reliable sensor.

In contrast, directly modelling the noise in the training
inputs’ locations generates maps (third row of Figure 9)
that bear a much stronger resemblance to the ground truth.
The boundaries of objects that were scanned by the accu-
rate sensor are well defined. In addition, it can be seen that
occupancy estimates in regions scanned only by the noisier
sensor, such as in the far right of the map, are correctly less
certain.

The classified output (bottom right of Figure 9) supports
this observation with the left section of the map (scanned
by both robots) contains significant portions of confident
and accurate classification. Conversely, the right half of the
map becomes unsure in areas where too few noisy read-
ings occur (upper right corner) and in regions where neither
platform has scanned (lower right corner).

Handling training input uncertainty appropriately also
yields benefits in the associated predictive variance output.
Figure 10(a) shows how the GPFOL approach does not dis-
cern between varying levels of sensor noise and the result-
ing plot poorly represents the degree of confidence one
could have in the associated predicted occupancy hypothe-
ses for each region. Alternatively, Figure 10(b) illustrates
how the predictive variance in the proposed GPOM method
is lowest in areas that have been accurately mapped by
Platform I and increases in regions scanned by the less reli-
able Platform II. As expected, the variance is highest where
estimates of occupancy are predicted in the largely unex-
plored lower right quadrant. Crucially, this output of the
algorithm could be combined with a subsequent path plan-
ner to optimize the trajectories of the vehicles to maximize
the system’s overall understanding of the environment.

Once again, a quantitative comparison between the out-
puts of all three approaches was carried out using a ROC,
Figure 11. By monitoring the TP rate as the frequency
of FPs is increased the benefits of the proposed approach
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Fig. 9. Sequence of images comparing the performance of (a) the traditional occupancy grid, (b) a GPFOL mapping technique that
assumes negligible input noise and (c) the GPPOL method which incorporates uncertainty in the observations. Probability of occupancy
versus location prior to thresholding are shown in the left column. Reddish areas indicate regions with high probability of occupancy
while bluish regions suggest the area is most likely free space. (Colour refers to the online version.) The right column illustrates their
corresponding classified maps after applying thresholds. Classification labels: Black = Occupied; White = Unoccupied; Grey = Unsure.
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Fig. 10. Predictive variance of (a) GPFOL and (b) GPPOL approaches.

Table 3. Computational time required to evaluate the query
points.

Resolution Resolution
0.2 m × 0.2 m 0.5 m × 0.5 m

(seconds) (seconds)

Occupancy grid 8.97 1.75
GPPOL method 10.76 1.84
GPFOL method 52.13 9.37

Table 4. Quantitative comparison of experimental results

Area under FP detection rate for
the curve TP detection rate of 0.97

GPPOL method 0.9303 0.2258
GPFOL method 0.8715 0.7957
Occupancy grid 0.8824 0.3405
No discrimination 0.5 0.95

become apparent. Ignoring the effects of noise in the train-
ing inputs (the red curve in the online version of this arti-
cle) has led to several misclassified regions which can be
catastrophic when considered in a navigation context and
explains the relatively slow increase in detection rate. Table
3 compares key features of each curve.

The penalty for this increased accuracy is the additional
computational time required to evaluate the quadrature.
Training the hyperparameters for the GPPOL model with
a level 1 Gauss–Hermite quadrature took approximately 30
minutes. Determining the value of the 12,445 query points
required on average 52.13 seconds. Table 3 compares the
processing time for each technique. Further discussion on
the computational requirements can be found in Section 5.

Fig. 11. ROC curve comparison between the GP method assum-
ing partially observed locations (GPPOL), GP method assuming
fully observed locations (GPFOL), and the occupancy grid.

4.2. Real environments

The mapping technique was also evaluated using several
outdoor real-world datasets. In this paper, we show the
results from two such experiments. The first experiment
compares the performance of the GPOM with that of the
occupancy grid over two large suburban blocks. The sec-
ond dataset is used to assess the algorithm’s ability to
incorporate uncertainty in the vehicle’s position into the
probabilistic model.

4.2.1. Outdoor dataset I The dataset was acquired using a
SICK laser rangefinder mounted onboard a vehicle which
travelled approximately 650 m around two blocks of resi-
dential and industrial housing (Figure 14). The data con-
sisted of approximately 600 scans which were aligned using
an Iterative Closest Point algorithm (Zhang 1994). To high-
light the GP’s ability to produce relatively accurate maps
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(a)

(b)

Fig. 12. Plan view of scanned area is shown in (a). The path of
the robot is marked in red. Laser returns for the real dataset after
ICP matching are displayed in (b). The red rectangle is the area
covered by the high-resolution maps in Figure 14. (Colour refers
to the online version of this article.)

even in regions where only sparse sensor readings are avail-
able, 5% of the beams from each scan were used to generate
the results.

The hyperparameters were learnt using laser rangefinder
data acquired during the first 100 m of the journey which
took approximately 5 minutes. Interestingly, the resulting
hyperparameters were quite similar to those learnt dur-
ing the tests in the simulated street environment; both sets
could be interchanged with one another without signif-
icantly affecting the performance on the classifier. This
could enable the optimization process to be carried out prior
to beginning a mission using data from previous missions in
similar environments.

Using the traditional GPFOL method, coarse maps such
as that illustrated in Figure 13 which covers an area of
120,000 m2 can be generated in less than 5 seconds to
identify large objects such as streets and buildings. The 30

Fig. 13. Low-resolution (5 m × 5 m) probability of occupancy
versus location: (a) occupancy grid and (b) GPOM of outdoor
dataset I.

nearest neighbours were considered when evaluating each
training point. Despite relatively little data, the beginnings
of several side streets were identified in this low-resolution
reconstruction. It is still possible to distinguish a number
of cars parked along the side of the road at this resolu-
tion of 5 × 5m2. For comparative purposes, a coarse sensor
model was also implemented in order to generate an occu-
pancy grid, Figure 13(a). Although the occupancy grid also
identifies some of the major roadways, the coarse sensor
model leads to conflict within several of the cells resulting
to incorrect estimations of the occupancy hypothesis.

In addition, because the occupancy grid is an itera-
tive technique that builds the map one observation at a
time, generating these large-scale representations is faster
with a batch algorithm such as the GPOM which evalu-
ates the entire map in one procedure. For comparison, the
occupancy grid described by Thrun et al. (2005) took
approximately 45 seconds to generate the map shown in
Figure 13(a).

Focusing in on a particular area of the environment (high-
lighted in Figure 12(b)), the GPOM’s ability to estimate the
probability of occupancy in occluded areas such as behind
parked vehicles using the available sensor data as a con-
text can be clearly seen in Figure 14(b). Compared with the
occupancy grid (Figure 14(a)) which provides no inference
into these regions apart from artificial smoothing achieved
by adding surplus noise to the sensor, the GPOM correctly
identifies a number of cars and the outline of the building
despite gaps in excess of a metre between laser returns in
a number of areas. At a resolution of 0.1 m, the GPOM
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Fig. 14. High-resolution (0.1 m × 0.1 m) representations of the
region highlighted by the red box in Figure 12. (a) Occupancy
grid. (b) High-resolution occupancy map using GPFOL. Laser
hits marked by stars. (c) High-resolution predictive variance using
GPFOL. (Colour refers to the online version of this article.)

took approximately 50 seconds to produce both the occu-
pancy and variance maps while using 30 of the nearest
sensor observations to evaluate each test point. The total
area evaluated in this figure is about 1,200 m2.

4.2.2. Outdoor dataset II To test whether the desirable
characteristics of the GPPOM could be replicated in a real
dataset, a SICK laser rangefinder was mounted onboard a
vehicle which travelled across approximately 1.2 kilometres
of the University Of Sydney’s campus. The vehicle itself
used a NovAtel IMU-HG1700 to perform dead-reckoning.
Figure 15 illustrates the path of the vehicle and laser returns
while Figure 16 shows the covariance for a small subset of
the dataset’s poses both prior to and following loop closure
using a sparse extended information filter (Liu and Thrun
2003).

Fig. 15. Satellite view of scanned region with laser returns indi-
cated.

Fig. 16. Vehicle poses and covariance ellipses before and after
loop closure.

Initially, coarse maps depicting the associated variance
in occupancy estimates over the entire region were gen-
erated using the GPPOL algorithm. As was suggested by
the simulated experiments, uncertainties associated with the
location of the training data now influence the confidence
in the predictions made by the mapper. Figure 17(a) cor-
rectly shows a growth in variance as errors in the vehicle’s
dead-reckoning increases. Similarly, following loop clo-
sure detection and subsequent shrinking of the covariance
ellipses, Figure 17(b) indicates the improved belief in the
accuracy of the predictions based on a higher degree of con-
fidence in the location of the training inputs. In both maps,
the variance is highest in regions where no measurements
were taken.

Estimates made of the hypothesis of occupancy within a
region should reflect the ambiguity of its training data. Fig-
ure 18(a) and 18(b) plot the probability of occupancy focus-
ing on an area highlighted by the black rectangle in 17(a)
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and 17(b), respectively. Akin to the simulated tests, predic-
tions using training inputs with distributions of higher vari-
ance results in less well defined boundaries however rough
estimates of larger objects such as the road and buildings
are still discernable. As a result of this poorly localized data,
the majority of occupancy probability predictions within the
map range from 0.4 to 0.65.

Once loop closure detection shrinks the covariances asso-
ciated with vehicle pose, the unscented transform in turn
reduces the uncertainty in the training inputs. The result-
ing map becomes sharp and more certain with probability
of occupancy predictions ranging from almost 0 to 1. The
roadway and buildings are easily identifiable. Similar to the
behaviour observed in the previous datasets, Bayesian infer-
ence is carried out between training points and in occluded
regions. As a result, a number of cars and side streets can
also be identified. Note also that the probability of occu-
pancy correctly returns towards 0.5 for estimates made far
from any scanned areas.

5. Discussion

5.1. Online use

In the proposed approach, evaluation of the test points is
highly parallelizable. Multi-core systems could exploit this
to yield high efficiency levels. In addition, the GPOM is not
fixed to a pre-specified resolution. The continuous under-
lying representation of the occupancy hypothesis can be
sampled at a resolution to suit the available time or com-
putational power on the vehicle. Moreover, several tunable
parameters in the mapping technique, such as the number
of nearest neighbours considered when approximating K as
well as the level of the Gauss–Hermite quadrature employed
in the GPPOL case, enable the user to trade-off between
computational speed and accuracy.

An incremental version of this algorithm can be imple-
mented to improve online performance. Owing to the near-
est neighbour approximation being made, only the query
points influenced by the new observations would need to be
updated. Thus, rather than recomputing every point when
subsequent observations are incorporated into the model, a
GPOM algorithm optimized for real-time use would only
need to re-evaluate query points identified as being close to
the new measurements.

The training phase of the both the GPFOL and GPPOL
algorithms can be computationally expensive. If possible,
it should be carried out beforehand using previous obser-
vations from similar environments. Failing that, initializing
the hyperparameters wisely and exploiting the paralleliz-
ability of the simulated annealing algorithm can reduce the
overall run time.

5.2. Nearest neighbours and computational com-
plexity

Figure 19 depicts the results of an analysis on the influence
that the number of neighbours considered has on the perfor-
mance of the GPOM. Figure 19(a) reinforces the statement
made in Section 3.7 regarding the improvement in perfor-
mance saturating after a certain number of nearest neigh-
bours. This number varies depending on the covariance
function and its hyperparameters however all results shown
in this paper never employed more than 30 neighbours per
query point.

Figure 19(b) highlights the need for approximating the
covariance function as well as providing an interesting com-
parison between the computational costs of the GPFOL and
GPPOL approaches. Assuming fully observable locations
results in a computational time that will grow roughly cubi-
cally with the number of nearest neighbours used. By mod-
ifying the GP framework to account for noisy inputs, addi-
tional time is required to calculate the quadrature detailed
in Section 3.6.1. The computational cost associated with
defining the covariance function over distributions rather
than points is approximately O( Cn2), where C is a con-
stant related to the order of the quadrature. The times shown
here for the GPPOL are based on a level 1 Gauss Hermite
quadrature running in MATLAB.

Compared with the traditional occupancy grid with a
memory requirement directly dependent on the resolution
and size of the map, the space required to store the GP
model is related to the total size of the kd-tree. Additional
memory is required to evaluate the test points however
because the resolution of the GPOM does not have to be
predefined, the number and locations of query points can
be varied to suit the availability of storage. Consequently,
in situations where the density of observations is relatively
sparse, the proposed approach lowers the memory require-
ment. Several papers have addressed the issue of prevent-
ing the size of the training data growing to unmanageable
levels. Notably, Smith et al. (2010) suggests using KL-
divergence as a metric to gauge the information gained from
incorporating new points into the training set and reject
those which fail to meet a certain threshold.

5.3. Dynamic environments

Currently, the proposed mapping technique does not model
dynamic objects and consequently a separate algorithm
would be required to track pedestrians and other vehicles.
In the case of the occupancy grid, a number of papers
have sought to address this issue such as through the time-
stamping of cells in Prassler et al. (2000). Chen et al. (2006)
propose a Bayesian occupancy filter for object tracking in
two-dimensional grids in which each cell has both a static
(occupancy) and active (velocity) characteristic. A simi-
lar approach could potentially be adopted for the GPOM’s
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Fig. 17. Comparison of coarse predictive variance maps (a) before and (b) after loop closure using the real outdoor dataset. Arrows
illustrate the path of the vehicle. The x and y axes are measured in metres.

Fig. 18. Comparison of contextual occupancy maps generated for a street segment (a) before and (b) after loop closure using the real
outdoor dataset. (a) Occupancy map of area highlighted by black rectangle in Figures 15 and 17(a). (b) Occupancy map of area high-
lighted by black rectangle in Figures 15 and 17(b). Arrows illustrate path of vehicle. As localization uncertainty decreases, contextual
occupancy maps referenced to the global coordinate frame become sharper and more certain about the hypotheses of occupancy within
its regions.

Fig. 19. (a) Number of nearest neighbours versus area under the ROC plotted for three different scan densities. (b) Number of nearest
neighbours versus time taken to evaluate 12,000 query points for the GPFOL and GPPOL algorithms. The training data was obtained
from a simulated environment similar to that of Section 4.1.2.
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training labels to generate more informative representations
of dynamic environments.

6. Conclusions

GP occupancy maps offer several important benefits when
compared with other mapping techniques being employed
by the robotics community today. Using GPs to model occu-
pancy in real-world environments allows Bayesian infer-
ences to be performed to produce continuous probabilis-
tic representations of occupancy estimates with associ-
ated variance plots. The continuous nature of the resulting
underlying function makes the GPOM an ‘anytime’ algo-
rithm and allows for maps of various resolutions to be
generated easily at a scale that suits the intended applica-
tion. Local approximations of the covariance matrix were
employed to overcome the effects of cubic growth of the
computational time with respect to the number of training
points.

We have also introduced several important modifications
to the GP framework that make it robust to the inescapable
effects of uncertainty present in measurements and local-
ization. Sensor readings from multiple sources of differing
noise levels can now be naturally integrated into the learn-
ing and inference procedures to create an accurate common
probabilistic model of the system’s surroundings. In addi-
tion, the associated variance no longer depends entirely on
the learnt hyperparameters and the sparsity of the data as
is the case with the classical GP but rather now accounts
for the ambiguity in the training inputs. The resulting maps
provide predictions of occupancy with corresponding vari-
ance that can be used to optimize path planning algorithms
to maximize the robot’s understanding of its environment.

Since the initial ideas were published at ICRA 2009 the
GPOM has been used to help tackle a number of issues in
different areas of robotics. The generated predictive vari-
ance plots of the robot’s surroundings have been employed
to enable the development of optimized exploration algo-
rithms that identify paths which would maximize informa-
tion gained regarding environment’s layout as employed by
Gan et al. (2009). In addition, the algorithm’s ability to learn
dependencies between observations and infer the hypothe-
sis of occupancy in occluded regions has been used to plan
multi-modal scene exploration strategies such as in Bohg
et al. (2010).
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