
Multi-Task Learning of System Dynamics
with Maximum Information Gain

Jose F. Zubizarreta-Rodriguez and Fabio Ramos
Australian Centre for Field Robotics, School of Information Technologies

The University of Sydney, Australia
{f.zubizarreta, f.ramos}@acfr.usyd.edu.au

Abstract— This paper introduces a new approach to adap-
tively learn the dynamics of a robotic system. The methodol-
ogy is based on maximizing the information gain from new
observations while modeling the dynamics with a Multiple
Output Gaussian Process (MOGP). High-dimensional state-
action spaces with unknown dependencies between inputs and
outputs can be highly computationally expensive to learn.
Gaussian process modeling is a Bayesian technique that natu-
rally overcomes one of the most difficult problems in machine
learning known as over-fitting. This makes it very appealing for
on-line problems where testing multiple hypothesis is difficult.
The computational cost of the learning task is reduced by having
a smaller dataset of informative training points. Therefore we
introduce a learning strategy capable of determining the most
informative training set for the MOGP. This method can be
implemented for learning the behavior of dynamic systems
where due to their complexity and disturbances are infeasible
to be analytically defined. The benefits of our approach are
verified in two experiments: learning the dynamics of a cart-
pole system in simulation and the dynamics of a robotic blimp.

I. INTRODUCTION

On-line learning of system dynamics using non-parametric
Bayesian techniques has significant advantages over tradi-
tional parametric modeling for control tasks. By exploring
elements of statistical learning theory, a stochastic dynamic
model that accurately predicts the next state given a pre-
vious state-action pair can be obtained where state transi-
tion uncertainty and sensor noise are naturally estimated.
Traditional model-based control fully described by ordinary
differential equations (ODE) requires extensive knowledge
of the system and usually assumes stationary system dy-
namics. Ignoring environment complexities such as unknown
disturbances could lead to a limited model of the robotic
system. Conversely, a flexible learning methodology, able
to learn complex dynamics from scratch and update itself
to the current dynamic conditions can potentially be more
robust than traditional approaches. However, learning from
high-dimensional state-action spaces could be challenging
specially when the dynamic conditions change.

In this paper we use a Multiple Output Gaussian Process
(MOGP) as described in [1] in conjunction with a search
action-state strategy to learn complex dynamics. Depending
on the exploration of the dependencies between the outputs,
the MOGP can require less training data than the conven-
tional Gaussian Process (GP). As a consequence, on-line
learning of complex robotic system dynamics is performed

more efficiently. Our search strategy is based on maximizing
the information gain [2] between the current model and a
model after adding a new state-action pair observation. This
method efficiently selects points from an extremely large data
set by updating itself in an incremental manner.

We derive an algorithm in which the dynamics learning
strategy uses a training set containing state-action observa-
tions as inputs, and the resultant state in the next time step
as outputs. Based on the information gain criteria, state-
action pairs are selected. In an incremental fashion, the
algorithm explores the system dynamics using the current
model to reach the desired state-action pairs. However, as
the dynamics knowledge is limited and the system stochastic,
nearby states might be reached. The strategy adopted incor-
porates all these observations while the information gain is
continuously recomputed. The algorithm stops searching for
new observations when a threshold indicating that sufficient
knowledge of the system dynamics is achieved.

We performed experiments on a simulated cart pole,
a simulated blimp and a real blimp. In the case of the
simulations we employ a theoretical model-based ODE for
obtaining the training data. To simulate the stochasticity of
real dynamic systems we add Gaussian noise. For the case of
the real system, a small sized robotic blimp was used, and the
vertical state dimensions height and speed were inferred. An
experiment comparing the predicted states and the resultant
actual states was performed for evaluating the prediction of
states of the trained MOGP.

This paper is organized as follows. In section II we present
related work of learning system dynamics using GPs and
efficient exploration strategies for training. In section III
a theoretical description of GP and MOGP modeling is
presented. In section IV we describe the search strategy for
getting state-action observations by maximizing the informa-
tion gain. In section V we present experiments demonstrating
our approach in both simulation and real dynamic systems.
Section VI concludes the paper.

II. RELATED WORK

GPs have been used in learning discrete-time dynamic
processes in [3]. The authors used the difference between
consecutive states, conditioned on the previous state-action
pair, as outputs. Each output dimension is defined as an
independent task with a single output GP. Then a trajectory

is defined by a set of consecutive state-action pairs and their
respective state difference. The prediction reliability of the
GP depends on sampling a reasonable number of trajectories
for ensuring reliable correlation in the training data. The
method is implemented in a robotic blimp which explores
a set of trajectories for yaw control. Since the performance
of this process depends on a large exploration task, it can be
very time consuming. As a consequence, they assume a time
invariant (stationary) model, and do not account for changes
in the dynamics of the model or in the environment. As the
environment always changes, autonomous systems need to
constantly adapt to new circumstances. In [4] the authors
propose to model the uncertainty of the environment by a
continuous interaction with it in a reinforcement learning
(RL) approach. [5] proposes a utility function for Bayesian
active learning. Training data is selected according to the
expected utility for maximizing the information gain.

An efficient exploration approach for adaptive learning al-
gorithms using sparsification was proposed in [6]. To reduce
the size of a training dataset, an observation is selected based
on a minimum distance threshold, which works properly
for uniformed spaced data points. Since a smooth stationary
kernel function is used, the algorithm might be suboptimal
when modeling highly non-linear functions if not enough
training data is used. As the method requires a sequence of
points equally spaced, it can potentially struggle to model
regions with high variation in the state-space (output). [7]
describes different sparse approximation methods for GPs
and propose a unifying framework. The authors suggest
sparse approximations to the GP prior on training and test
data, and use conditional independence between training and
test data given inducing variables, which leads to simplify
the training data selection.

Another approach for reducing the size of training datasets
for GPs uses the differential entropy score [8]. The score
is used to select training points for an active dataset while
jointly optimizing the model parameters. An analogue learn-
ing task using information gain for path planning of a robot
in environmental surveillance is proposed in [9]. In this
work a new training data point is selected when there is
information gain with the addition of a new observation.
An exploration path for the robot is obtained from this
method, which selects the most informative locations for the
surveillance of the environment.

Multi-task learning [10] can improve the generalization
properties of machine learning algorithms by exploring the
dependencies between related tasks. In [11], the inverse
dynamics of a robot is evaluated as a multi-task learning
problem. A robot manipulator is controlled while holding
different loads defined as contexts. Each context represents
an inverse dynamics function. For achieving higher control
performance, the authors proposed to use a multi-task GP
for exploiting the inter-task similarities among contexts.
[1] derives a similar approach where multi-task covariance
functions for GPs are constructed through kernel convolu-
tions. We explore this construction to define valid covariance
functions for the MOGP.

III. METHODOLOGY

GP regression can model transitions between consecutive
states s(k)→ s(k+1) given an action a(k) while estimating
prediction uncertainties given a training dataset D. Next,
we briefly describe single GP regression followed by the
Multiple Output GP. We then generalize GP regression to
multiple outputs with MOGP to account for dependencies in
the output dimensions.

A. Gaussian Process Regression

A GP is a non-parametric Bayesian technique that places
a multivariate Gaussian prior distribution over the space
of functions f(x), mapping inputs to outputs [12]. In a
supervised learning set up, a GP uses a training dataset
D = {xi , yi}Ni=1 formed by N input locations xi ∈ RD
and their respective target values yi ∈ R. After learning
hyperparameters, the GP is used to compute a new target
value f(x∗) at an unobserved location x∗. A GP can model
complex nonlinear functions and avoids over-fitting as it
naturally encodes the Occam’s Razor principle, balancing
data fit with model complexity. The model is represented as
GP(m(x), k(x,x′)), where m(x) is the mean function and
k(x,x′) is the covariance (kernel) function.

Given the uncertainty in sensor measurements, we model
observations as y = f(x) + ε, where ε is a zero mean
Gaussian noise with variance σ2

n. Assuming a zero mean
function m(x) = 0, the joint Gaussian distribution can be
expressed as:[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

n K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(1)

where N (µ,Σ) is a Gaussian distribution with mean µ
and variance Σ, and K is the covariance matrix calculated
for all input locations X . The predictive distribution at an
unobserved point is obtained by conditioning on the observed
points:

(f∗ | X∗, X,y) = N (µ∗,Σ∗) (2)

where

µ∗ = K(X∗, X)[K(X,X) + σ2
nI]−1y (3)

Σ∗ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1. (4)

Note that the predictive mean µ∗ is a linear combination of
N kernel functions, each evaluated on an observed point xi,
µ∗ = ΣNi=1αik(xi,x∗), with α = [K(X,X) + σ2

nI]−1y.
The covariance function is a kernel that satisfies the

condition of positive-definitiveness. One of the most used
covariance functions is the square exponential

k(x, x) = σ2
f exp

(
− 1

2 (x− x′)TΛ(x− x′)
)

(5)

Each covariance function has a set of hyperparameters θ =
{Λ, σf}. Λ = diag(l1 , . . . , ld) is the weight matrix with the
data-length ln of each input dimension and σf is a scale
factor. Each covariance function models noisy observations
with variance σ2

n. The final covariance matrix is given by
K(X,X) + σ2

nI .

Learning the hyperparameters of a Gaussian process is
performed by maximizing the log marginal data likelihood
of the observed training data D,

θmax = argmax
θ
{log(p(y|X, θ))}. (6)

The marginal likelihood is expressed as:

log(p(y|X)) = −1

2
yT (K(X,X) + σ2

nI)−1y

−1

2
log|K(X,X) + σ2

nI| −
n

2
log2π.

(7)

The computational cost of the inversion of the covariance
matrix (K(X,X) + σ2

nI) is O(n3) [12] where n is the
number of training points. Evaluating a new point test on
the covariance matrix requires a matrix multiplication with
a vector which has a cost O(n2).
B. Modeling Two Dependent Outputs

The multiple output formulation for GPs can be obtained
through process convolutions. We describe the specific case
for two outputs, the general multiple output case is straight-
forward from these definitions. Following [1], a single output
GP can be described as the sum of a process convolution
with a smoothing kernel h and a noise term ε, Figure 1a.
The output V is obtained by evaluating the input X through
the parametrized smoothing kernel h. In Figure 1b a Multiple
Output GP is modeling two dependent outputs y1 and y2. X0

is the shared training data set between the outputs, X1 is a
training data set that only is used for y1, and X2 only is used
for y2. Each output is defined as the sum of two process
convolutions yn = Vn + Un and a noise term εn. h1, h2,
k1 and k2 are parametrized smoothing kernels. In the case
of Gaussian kernels, k1(x) = v1 exp

(
− 1

2x
TΛ1x

)
, k2(x) =

v2 exp
(
− 1

2x
TΛ2x

)
and hi(x) = wi exp

(
− 1

2x
Tβix

)
.

The covariance function KY
ij (x, x′) represents the auto-

covariance (i = j) and models relationships between output
points for the same task yi. The cross-covariance (i 6= j)
models relationships between output points for tasks yi
and yj . Solving a convolution integral [1] with Gaussian
smoothing kernels leads to a close form for KY

ij (x, x′).
The result is analogue to the single output GP where the
covariance function is fully described by the hyperparameters
and noise variances σ2

1 and σ2
2 as:

KY
11(x, x′) = KU

11(x, x′) +KV
11(x, x′) + δabσ

2
1

KY
22(x, x′) = KU

22(x, x′) +KV
22(x, x′) + δabσ

2
2

KY
12(x, x′) = KU

12(x, x′)
KY

21(x, x′) = KU
21(x, x′)

where

KU
ii (x, x

′) =
π
p
2 v2i√
|Λi|

exp

(
−1

4
(x− x′)TΛi(x− x′)

)
KU

12(x, x′) =
2π

p
2 v1v2√
|Λ1 + Λ2|

exp

(
−1

2
(x− x′)TΣ(x− x′)

)
KU

21(x, x′) =
2π

p
2 v1v2√
|Λ1 + Λ2|

exp

(
−1

2
(x− x′)TΣ(x− x′)

)
KV
ii (x, x′) =

π
p
2w2

i√
|βi|

exp

(
−1

4
(x− x′)Tβi(x− x′)

)

(a)

X

h~

?
V

?
ε - y (b)

X1

h1~

?
V1
@@R

ε1 - y1

X2

h2~

?
V2
��	

ε2y2�

X0

��
k1~
�
�
U1

��

BB
k2~
B
BN
U2

BBN

Fig. 1: a) Model of the Single Output GP. b) Model of two
dependent outputs

and
Σ = Λ1(Λ1 + Λ2)−1Λ2 = Λ2(Λ1 + Λ2)−1Λ1. In the above,
the hyperparameters are

Θ = {v1, v2, w1, w2,Λ1,Λ2, β1, β2, σ1, σ2}.

The covariance matrices K11, K12, K21 and K22 can be
written as KY

ij (x) in

Kij =

 K
Y
ij (xi,1, xj,1) · · · KY

ij (xi,1, xj,Nj
)

...
. . .

...
KY
ij (xi,Ni , xj,1) · · · KY

ij (xi,Ni , xj,Nj)

 . (8)

Then, the covariance matrix K is expressed for the com-
bined data D as

K =

[
K11 K12

K21 K22

]
. (9)

Analogue to equation 7, the log marginal likelihood is
expressed as:

log(p(y|X)) = −1

2
log | K | −1

2
yTK−1y−N1 +N2

2
log2π

(10)
where yT = [y1,1 · · · y1,N1 y2,1 · · · y2,N2].

Similar to equation 2, we have

(f∗ | x∗, X,y) = N (µ∗,Σ∗)

where µ∗ and Σ∗ for output i, at point x∗ are given by
µ∗ = kTK−1y
Σ∗ = k − kTK−1k

where k = KY
ii (0) = v2i + w2

i + σ2
i

and k =

[
KY
i1(x∗, x1,1) · · ·KY

i1(x∗, x1,N1
)

KY
i2(x∗, x2,1) · · ·KY

i2(x∗, x2,N2)

]T
The computational cost of the inversion of the covariance

matrix for the MOGP with m tasks is O(m3n3), since we
have a covariance matrix formed by m × m sub-matrices
(auto-covariance and cross-covariance) as shown in equa-
tion 9. Evaluating a new point test on the covariance matrix
requires a matrix multiplication with a vector which has a
cost O(m2n2).

IV. INFORMATION GAIN STRATEGY

In this section we present the information gain strategy to
perform efficient exploration of the state-action space. The
state-action pairs [st, at] and their resultant states st+1 =

f(st, at) are denoted as X and y respectively. The Linear
Quadratic Regulator (LQR) [13] is used to control the
platform and reach a nearby state s′t+1 ∼ st+1. We briefly
review the LQR in the next subsection.

A. Information gain based on posterior entropy

The information gain strategy adopted is based on the
Informative Vector Machine in [8]. A greedy algorithm is
used to select the next training point that maximizes a
differential entropy score:

∆j , H[p(fj)]−H[pnew(fj)], (11)

where H[p(fj)] is the entropy of the Gaussian process
prediction at point xj and H[pnew(fj)] is the entropy at
this point after observing a new point.

Let the variance at xj be vj before the observation inclu-
sion. The entropy of a Gaussian distribution with variance
vj is expressed as

H[p(fj)] = log(2πevj).

Since p(fj |yI, yj) ∝ p(fj |yI)N (yj |fj , σ2) where yI is
the set of training output observations thus far, the variance
after including the new observation is (vnewj)−1 = v−1j +
σ−2. Then the entropy score is

∆j = log
(

1 +
vj
σ2

)
(12)

which is maximized by selecting

xnew = argmax
xnew∈RD

∆j . (13)

Note that this is equivalent to selecting observations with
the highest variance as predicted by the GP. This method is
defined for a single dimensional output y. In the multiple
output case, we need to evaluate the variance vf,n for each
output dimension yn. Therefore we select n new observations
per step of the algorithm. This incremental update procedure,
where new observations are added, is repeated until the
information gain is smaller than a predefined threshold. The
threshold defines an acceptable quality for the model and
depends on the application.

B. Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) [13] was employed
to control the system to follow target trajectories whose
dynamics evolve according to a linear model:

st+1 = Atst +Btat + εt (14)

where st and st+1 represent the state at times t and t + 1
respectively and at is an action at t. At and Bt are the system
matrices and εt is the system noise. For these models LQR
provides the optimal control.

When the system dynamics is not linear, LQR can still
perform well on linear approximations of the system obtained
thorough first order derivatives. This approximation is based
on the Jacobians of the dynamics model:

st+1 ≈ f̂(st, at) (15)

where the Jacobians of f̂ evaluated along the target trajectory
are

Ât = Dsf̂(s, a) |s=s∗t ,a=a∗t B̂t = Daf̂(s, a) |s=s∗t ,a=a∗t
with Ds and Da defined as the derivatives with respect to
the state and action dimensions respectively.

As in [14], this approximation is sufficient as long as
the approximate model captures the derivatives of the true
system well. Therefore, it has to at least specify correctly
the sign of the elements of the derivatives along with the
trajectory.

Algorithm 1 presents all the steps of the learning pro-
cedure. The approximate model f̂(st, at) is learned by the
MOGP producing estimates f̂∗ | D̄. The gradients for LQR
are obtained from the learned model of the system dynamics.

Algorithm 1 Information Gain Learning Strategy

Input
X, y, Θ
Output
Θtrained, XI and yI (active set)
Repeat until information gain is smaller than threshold
1. Optimize Θ based on XI and yI
2. For all points in X and y, compute the information
gain score
• select xj = argmaxxj∈RD×R\XI

∆j .

3. Use LQR to reach xj
• Repeat LQR actions until close enough to xj

4. Add xj and yj into XI and yI
5. Return

The computational cost of calculating the variance for this
strategy on a single iteration for the single GP case is O(n2)
and for the MOGP is O(m2n2) per point.

V. EXPERIMENTS

In this section we test the information gain strategy
in a blimp (simulated and real) and a cart-pole system.
The MOGP was trained using the proposed strategy and
compared against a random point selection strategy. In all
the experiments, the dynamics are defined in a discrete-
time and continuous-state environment. In the synthetic data
experiments the actions are continuous, whereas in the real
blimp experiment the actions are discrete. For either the
single GP and the MOGP models the square exponential
function described in equation 5 is used.

A. Synthetic data: Blimp dynamics

We simulate the dynamics of a robotic blimp in their
vertical components s = [x, ẋ] based on a blimp model
described in [3]. The task consists of estimating the vertical
position and speed of a robotic blimp using a two output
MOGP. The system state at time t+ 1 is defined as st+1 =
f(st, ut). A time step δt = 0.2 second is used for creating
the learning and testing data sets. As indicated in Figure 1b,

(a) Random training points for single GPs (b) Random training points for MOGP (c) Information gain strategy training points for
MOGP

(d) Prediction error with single GPs model
using random training points.

(e) Prediction error with MOGP model using
random training points.

(f) Prediction error for MOGP model using the
information gain strategy.

Fig. 2: Training performance of the learning strategy for the simulated blimp dynamics.

we trained the MOGP with only the shared input X0, so
the whole input dataset is shared between the height output
yh and the speed output ys. As a performance reference,
we compare the prediction error using MOGP with the
information gain strategy, MOGP with randomly selected
points and two single GPs (one for height, one for speed)
trained with randomly selected point. Our training data X
operating range is: [−5m ≤ h ≤ 5m,−1m/s ≤ s ≤
1m/s,−1 ≤ a ≤ 1] with a rate of 5 samples/s. The value
of the action a is multiplied by a fixed vertical force of
magnitude Fm = 10N to accelerate the system.

Figure 2 presents the comparison and the selected points.
The selected points (shown as asterisks) and prediction error
of a single GP regression trained with 56 randomly selected
points is shown in Figure 2a and Figure 2d respectively. The
selected points and prediction error of an MOGP trained
with 56 randomly selected training points is shown in
Figure 2b and Figure 2e, and an MOGP trained with 56
points selected by our information gain learning strategy
is shown in Figure 2c and Figure 2f. In each case we
initialize the training data set with the same 4 points shown
as squares in Figures 2a-c, so for each case we had the
same starting training data. We evaluate the prediction for
the single GPs and the MOGPs using for both the same
test set X∗ of 4 random points. The prediction error is the
mean square error between the prediction y∗ and the real
model. x is the error height measured in meters and xDot
is the speed error measured in meters/s. In the case of the
MOGPs Figures 2e and 2f show that they have the same
height and speed prediction error for their first 4 training
points since initially we had the same training data. However,

in the single GP case the starting prediction error is different
since the model does not account for dependencies in output
variables. The experiment was run 15 times for each model
and their respective variances are shown as the error bars in
Figures 2d-f.

For the MOGP trained with the information gain learning
strategy we started adding xj points to the training data based
on equation 13. Since the predicted variance is different for
each of d output dimensions of X we obtain new d points in
each iteration. We deliberately retrained the hyperparameters
after the addition of 4 points, 2 points per each output
dimension.

For the case of the single GPs we obtained a slower
prediction error reduction compared to MOGP specially for
the height as shown in Figure 2d. This is the result of
modeling both outputs independently with separate GPs.
To achieve the same performance as MOGP, more training
points would be necessary.

The prediction performance of the MOGP trained with
information gain required less training points to achieve
higher accuracy than using the randomly selected points as
shown in Figure 2f. The error limit is equivalent to the
noise level added to the outputs in the simulated data. The
faster convergence is achieved by selecting points with higher
predictive variance with information gain criterion. It can be
observed that the selected points are more spread through
the state-action space as shown in Figure 2c compared to
the randomly selected points shown in Figure 2b. The best
performance is achieved by combining the information gain
point selection with MOGPs. Next we describe another ex-
periment running on a higher number of output dimensions.

(a) Horizontal position error x (cm), and pole angle (theta) in radians. (b) Horizontal velocity xDot (cm/s) and angular velocity of the system
(thetaDot) in rad/s.

Fig. 3: Prediction performance of the learning strategy for simulated cart-pole dynamics.

B. Synthetic data: Cart-pole dynamics

In this task we trained a MOGP for learning the dynamics
of a simulated cart-pole. The MOGP has 4 output dimensions
y = [x, ẋ, θ, θ̇] and 5 input dimensions X = [x, ẋ, θ, θ̇, a],
where: x is the cart postion; ẋ is the cart velocity; θ is
the pole angle; θ̇ is the pole angular velocity. The state-
action range was [−5cm ≤ x ≤ 5cm,−1cm/s ≤ ẋ ≤
1cm/s,−π ≤ θ ≤ π,−1rad/s ≤ θ̇ ≤ 1rad/s,−1N ≤
a ≤ 1N] with a rate of 10 samples/s. For the discussion
of the results shown in Figures 3a and 3b we refer to the
model trained with the information gain strategy as MOGP-
A and with equally spaced points as MOGP-B. The plots in
Figure 3 show the mean of 15 experiments run for each of
the trained models.

Initially both models were trained with the same data set
of 8 training points. The training plots shown in Figure 3
are additional to those first 8 training points. A test data
set [X∗, ys] composed of 10 points was used to evaluate the
prediction error of the MOGPs. In Figure 3a the horizontal
cart position x and pole angle θ prediction errors are shown.
In Figure 3b the horizontal velocity ẋ of the cart and the
angular velocity θ̇ prediction errors are displayed.

In Figure 3a MOGP-A performed better and achieved
higher accuracy compared with MOGP-B in all the predicted
state dimensions. The prediction error of x of MOGP-A
decreased significantly compared with MOGP-B, meaning
that the decrease in the variance contribute more to reduce
the prediction error. Referring to θ̇ (thetaDot), shown in Fig-
ure 3b, the prediction error using MOGP-A obtained higher
accuracy after 20 training points compared with MOGP-B.
Then, the prediction errors for ẋ (xDot) in Figure 3a and θ
(theta) were slightly similar but MOGP-A achieved higher
accuracy for both dimensions. Given that the dynamics of
the cart-pole are not linear, specially referring to the pole
dynamics, the MOGP trained with the points of higher un-
certainty outperformed the one with equally spaced training
points. This means that a uniform spaced grid would not take
into account some high variance points, which might lead to
a more accurate prediction of a non-linear system.

C. Real data: robotic blimp

Figure 4a shows the robotic blimp used for learning the
dynamics of a real system. The blimp is 1.8 meter long and
has 1 meter diameter with a gondola carrying a monocular
camera and two propellers actuated by independent motors.
The experiment consisted in letting the blimp to explore
its state-action space using the information gain strategy
(MOGP-A) and the randomly selected points (MOGP-B).
We define the state-action boundaries of our blimp system as:
[−1m ≤ h ≤ 1m,−0.6m/s ≤ s ≤ 0.6m/s,−1 ≤ a ≤ 1],
where: h is the height of the blimp; ḣ is the vertical velocity;
and a is the action of the propellers. This range represents
physical limits in our experimental set up. The sampling rate
was 4 samples/s. The vehicle could move in height in a range
of 2.2 meters, maximum speed of 0.7 m/s, and motor speed
ranging from -40 to 40 revolutions per second, scaled to -1
to 1 in the action range.

In this experiment the MOGPs were trained by iteratively
adding 10 new data points over 10 iterations. As in the
previous experiments, both MOGPs were trained with the
same initial dataset and have the same initial prediction
error. Given the rate of 4 samples per second, and that the
training of the MOGPs took around 0.1 secs with a 2.4 GHz
processor, we could retrain the MOGPs while the blimp was
in operation every 2.5 seconds. We used an LQR to control
the platform and reach the desired state-action point. The
matrices At and Bt were computed with the gradient of an
approximated model.

The experiments for each MOGP were run 10 times with
the same initial training data for both cases and all iterations.
The error bars in both figures represent the variance with
respect the 10 iterations of the experiments. For testing data
we used the same 4 randomly selected points in each iteration
and computed the respective y∗. Then we compared y∗ to the
actual measurements to obtain the prediction errors.

Figure 4b shows the mean prediction error for the blimp
height; MOGP-A had significant higher accuracy after 30
training points compared to MOGP-B. Figure 4c shows the
prediction errors for the blimp vertical velocity; MOGP-A

(a) Robotic blimp used in the experiments. (b) Prediction mean error of height (meters). (c) Prediction mean error of speed (meters/s).

Fig. 4: Prediction accuracy for the height and speed of the Blimp.

after 40 training points had reached a considerable improve-
ment in accuracy compared with MOGP-B. The iterations
using the information gain strategy were stopped when the
the prediction error of MOGP-A for the height reach a
threshold of 0.05 cm, this happened around 100 training
points as shown in Figure 4b.

Even though in some occasions the LQR could not reach
the desired state-action pair given the physical constrains
of the actuators, it was still getting closer to that particular
point through a subsequent action. Therefore, the prediction
accuracy of the MOGP with the information gain strategy
still performed better than the MOGP with the randomly
selected points as shown in Figures 4b and 4c.

VI. CONCLUSIONS AND FUTURE WORK

An integrated method for active learning of system dy-
namics was presented in this paper. This method is based
on multi-task dynamics learning through a multiple output
Gaussian process in conjunction with an information gain
learning strategy.

The Multi-Task Learning performed by the MOGP was
able to achieve higher prediction accuracy with less training
data than a set of independent Gaussian processes in learning
the dynamics of the simulated systems and the real blimp.
This prediction performance was achieved by the ability of
the MOGP to correlate the output dimensions through the
cross covariance functions.

We verify our information gain strategy in 3 different ex-
periments where we select the training points that minimize
the posterior variance (maximum information gain). Our
learning strategy is more efficient for learning the dynamics
of robotic systems and can be used to reduce the amount
of training data. At each iteration of the algorithm, the
prediction error is reduced significantly compared with a
random selection procedure as the case of the simulated
and real blimp experiments, and compared with the equally
spaced points used for the cart-pole problem.

The linear quadratic regulator can be used in practical
applications to control the system and obtain state-action
observations as requested by the active information gain pro-
cedure. It is important to underscore that the reliability of the
LQR depends on using an approximated model that captures
reasonably well the derivatives of the robotic system.

As future work we plan to investigate the performance
of the information gain strategy for exploring higher dimen-
sional dynamic systems. The information gain strategy would
be reformulated for selecting one single training point that
represents the highest entropy decrease independent of the
number of output dimensions.

ACKNOWLEDGMENTS
This work is supported by Rio Tinto Centre for Mine

Automation, the ARC Centre of Excellence programme,
funded by the Australian Research Council (ARC) and the
New South Wales State Government, and the Secretariat of
Public Education, Mexico.

REFERENCES

[1] P. Boyle and M. Fren, “Multiple output gaussian process regression,”
Victoria University of Wellington, Tech. Rep. CS-TR-05/2, April 2005.

[2] D. MacKay, Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.

[3] J. Ko, D. Klein, D. Fox, and D. Haehnel, “Gaussian process and
reinforcement learning for identification and control of an autonomous
blimp,” Proc. of the International Conference on Robotics and Au-
tomation (ICRA), 2007.

[4] Y. Liu, Z. Pan, D. Stirling, and F. Naghdy, “Q-learning for navigation
control of autonomous blimp,” Australasian Conference on Robotics
and Automation (ACRA), December 2009.

[5] M. P. Deisenroth, C. E. Rasmussen, and J. Peters, “Gaussian process
dynamic programming,” Neurocomputing, Elseiver, vol. 1, 2009.

[6] A. Rottmann and W. Burgard, “Adaptive autonomous control using
online value iteration with gaussian processes,” Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[7] J. Quionero-Candela and K. Rasmussen, “A unifying view of sparse
gaussian progress regression,” Journal of Machine Learning Research,
2005.

[8] N. Lawrence, M. Seeger, and R. Herbrich, “Fast sparse gausian process
methods: The informative vector machine,” in Advances in Neural
Information Processing Systems 15 (NIPS). MIT Press, 2003.

[9] A. Singh, F. Ramos, H. Durrant Whyte, and W. Kaiser, “Modeling
and decision making in spatio-temporal processes for environmental
surveillance,” Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2010.

[10] R. Caruana, “Multitask learning,” Ph.D. dissertation, School of Com-
puter Science, Carnegie Mellon University, 1997.

[11] K. Chai, C. Williams, S. Klanke, and S. Vijayakumar, “Multi-task
gaussian process learning of robot inverse dynamics,” Proc. of NIPS
21, 2008.

[12] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[13] B. D. Anderson and J. B. Moore, Optimal Control Linear Quadratic
Methods. Prentice Hall, 1989.

[14] J. Kolter, C. Plagemann, D. Jackson, A. Ng, and S. Thrun, “A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving,” Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2010.

