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Abstract
This paper addresses one of the key components
of the mining process: the geological prediction
of natural resources from spatially distributed mea-
surements. We present a novel approach com-
bining undirected graphical models with ensemble
classifiers to provide 3D geological models from
multiple sensors installed in an autonomous drill
rig. Drill sensor measurements used for drilling
automation, known as measurement-while-drilling
(MWD) data, have the potential to provide an esti-
mate of the geological properties of the rocks being
drilled. The proposed method maps MWD parame-
ters to rock types while considering spatial relation-
ships, i.e., associating measurements obtained from
neighboring regions. We use a conditional random
field with local information provided by boosted
decision trees to jointly reason about the rock cat-
egories of neighboring measurements. To validate
the approach, MWD data was collected from a drill
rig operating at an iron ore mine. Graphical models
of the 3D structure present in real data sets possess
a high number of nodes, edges and cycles, mak-
ing them intractable for exact inference. We pro-
vide a comparison of three approximate inference
methods to calculate the most probable distribution
of class labels. The empirical results demonstrate
the benefits of spatial modeling through graphical
models to improve classification performance.

1 Introduction
Mining is a multi-billion dollar business employing thou-
sands of people worldwide. Given the current increasing de-
mand for mineral commodities, such as iron ore, more ef-
ficient and automated processes are needed in the industry.
The ultimate goal is to develop a fully autonomous, remotely
operated mine. A major challenge for autonomous mining
is to build accurate representations of the in-ground geol-
ogy to determine the quantity and quality of the minerals of
interest. Modern autonomous drill rigs are equipped with
multiple sensors that provide measurements while drilling
(MWD), which are normally used to monitor and control
the drilling process. Characterizing subsurface geology from

drilling measurements can be of substantial value for the min-
ing industry. The accurate assessment of lithology and rock
strength can be used to maximise the recovery of the desired
rock types and improve blasting design by accurately deter-
mining the optimal explosive load and distribution.

This paper addresses the problem of relating MWD data
to geotechnical properties of the rocks being drilled while
taking into account the spatial information. We propose a
novel approach that accounts for spatial relationships using
conditional random fields (CRFs). CRFs are very powerful
for modeling relational information, spatial relationships and
other types of contextual information [Sutton and McCallum,
2007]. By directly modeling the conditional probability of
the hidden states, given observations, rather than the joint
probability, CRFs avoid the difficult task of specifying a sen-
sor model for observations, as required by techniques such
as hidden Markov models or Markov random fields. CRFs
can, thus, handle arbitrary dependencies between observa-
tions which give them significant flexibility in modeling com-
plex geological dependencies in the data.

For the problem of modeling geological structure, learn-
ing of CRF parameters can be done efficiently [Monteiro et
al., 2009]; in this paper we optimize the pseudolikelihood.
However, inference of CRF models can pose a challenge, de-
pending on the complexity of the graph structure. We provide
a comparison of three message-passing-based inference algo-
rithms on graphs with different degrees of complexity. We
evaluate loopy belief propagation [Pearl, 1988] and two meth-
ods based on linear programming relaxation: sequential tree
reweighted (TRW-S) [Kolmogorov, 2006] and max-product
linear programming (MPLP) [Sontag et al., 2008].

CRFs are a type of log-linear model for structured learning.
The proposed method combines CRF models with boosting
classifiers in order to obtain a nonlinear classification of the
observations. Boosting is a machine learning technique for
supervised classification that has a sound theoretical founda-
tion and often yields accurate classification while being ro-
bust to overfitting [Hastie et al., 2009]. The set of labels
classified by boosting are used in the CRF model to learn
local parameters discriminatively. In other words, boosting
provides an initial estimate by combining the different sen-
sor measurements and the CRF then improves this prediction
to be spatially consistent. The resulting CRF model speci-
fies the spatial relationship between MWD data providing an



improved rock classification of the subsurface geology.
The main contributions of this paper are: (1) proposing a

novel approach to model 3D underground geological struc-
ture from multiple sensor measurements; (2) presenting an
empirical comparison of three modern inference algorithms
on a challenging real-world problem; (3) integrating two dis-
tinct machine learning techniques: undirected graphical mod-
els and boosting classifiers.

2 Related Work
The first attempts on relating drilling measurements to
geotechnical properties of rocks focused on determining em-
pirical indices as a proxy for rock strength, e.g. [Teale, 1965;
Scoble et al., 1989]. More recently, there have been a
few studies applying machine learning techniques to pro-
cess MWD data. Previous methods, such as the works
of [Utt, 1999; Itakura et al., 2004], mainly focused on us-
ing neural networks and their variants. The method presented
in [Kadkhodaie-Ilkhchi et al., 2010] used boosting classifiers
to map drilling measurements to rock properties. However,
none of those studies modeled the spatial dependencies of
nearby geology.

The paper by [Monteiro et al., 2009] attempts to use CRFs
to model drilling measurements. However, they relied on
a linear-chain CRF and could only associate measurements
within individual drill holes. Our proposed method builds
more complex graph structures and is, therefore, able to as-
sociate data of sections between neighboring drill holes as
well. They used sum-product belief propagation for infer-
ence, whereas, in our method, the increased complexity of
the resulting graph structure demanded the use of more so-
phisticated inference algorithms.

Our comparative study of different inference algorithms
is somewhat similar to the one presented by [Szeliski et al.,
2008] in computer vision. However, in our study we included
a more recent algorithm, max-product linear programming,
instead of graph cuts, and we compare their performance in a
different domain.

There are other related approaches that combine CRFs with
boosted decision trees. In particular, gradient tree boost-
ing has been successfully applied to learn CRF parame-
ters [Dietterich et al., 2004] and to train CRFs for logical
sequences [Gutmann and Kersting, 2006]. Although learn-
ing CRF parameters using boosting is a possible alternative
to pseudolikelihood, we chose to focus the paper on compar-
ing inference methods instead of learning methods.

3 Conditional Random Fields
CRFs are discriminative, undirected graphical models that
were originally proposed for labeling relational data [Lafferty
et al., 2001]. CRFs directly model p(x|z): the conditional
distribution over the hidden variables x given observations z,
where x = 〈x1,x2, . . . ,xn〉, and z = 〈z1,z2, . . . ,zn〉. The nodes
xi, along with the connectivity structure represented by the
undirected edges define a conditional distribution p(x|z) over
the hidden states x. The edges in the graph represent potential
functions which map sensor measurements to non-negative

numbers. By using log-linear combinations of potential func-
tions where local potentials are denoted as h(xi,zi) and pair-
wise potentials as g(xi,x j), the conditional probability distri-
bution is written as:

p(x | z) = 1
Z(z)

exp

{
∑

i

K1

∑
k=1

wh
khk(zi,xi)+

∑
i, j

K2

∑
k=1

wg
kgk(xi,x j)

}
,

(1)

where wh is a vector with K1 dimensions representing the
weights for local potentials, wg is a vector with K2 dimen-
sions representing the weights for the pairwise potentials and
Z(z) is a normalizing partition function. In our problem,
the pairwise potential function associates neighboring nodes
(borehole sections) in the graph while the local potential func-
tion associates nodes to observations (sensor measurements).

3.1 Inference
A CRF, together with its parameters, can be used to estimate
the labels of new instances of unlabeled data. This step is
referred to as inference. Inference in CRFs can estimate ei-
ther the marginal distribution of each hidden variable xi or the
most likely configuration of all hidden variables x (i.e., MAP
estimation), as defined in (1). Both tasks can be solved using
message passing algorithms, which works by sending local
messages through the graph structure of the model [Koller
and Friedman, 2009].

For graphs with no loops, such as chains or trees, it is possi-
ble to compute inference in closed form by message passing;
this method is called belief propagation (BP) [Pearl, 1988].
For more complex graphical models, containing many loops,
exact inference is not feasible. Furthermore, if the graph has
a high number of nodes, exact inference can also rapidly be-
come intractable. Our problem presents both characteristics,
high number of nodes and loops, which make inference par-
ticularly challenging. Therefore, we resort to approximate in-
ference techniques. We compare loopy BP with two promis-
ing recent algorithms.

Loopy belief propagation
Since message updates in BP are only local, the method can
be easily extended to graphs with loops. The intuition is to
propagate messages in the graph while minimizing the overall
energy. The contributions from the loops diminish as the in-
fluence they cause into the graph reduces. Although optimal-
ity is not guaranteed, the resulting loopy belief propagation
(LBP) often provides a good approximation to the solution
in a range of applications, e.g. [Cho et al., 2010]. Moreover,
recent theoretical studies have provided some additional jus-
tification for applying LBP to graphs with cycles [Wainwright
and Jordan, 2008].

Sequential tree reweighted message passing
The TRW max-product is a message passing algorithm some-
what similar to LBP [Wainwright et al., 2005]. However,
unlike LBP it has some convergence guarantees. It attempts
to find the most probable configuration of undirected graphs
based on a linear programming (LP) relaxation of an integer



program for the problem. TRW approximates a loopy graph
by a convex combination of tree-structured graphs such as
spanning trees. We use a variant of the TRW algorithm called
sequential tree reweighted (TRW-S) [Kolmogorov, 2006],
which has better convergence properties than previous ver-
sions. Although in TRW-S the lower bound estimate is guar-
anteed not to decrease, there is no stability guarantees for
the energy itself, which may start to oscilate [Szeliski et al.,
2008].

Max-product linear programming
MPLP is a recent algorithm that can also be seen as an exten-
sion of the LP relaxation approach [Globerson and Jaakkola,
2008]. MPLP has similar convergence guarantees as TRW-S,
derived from the properties of the LP relaxation. Although
both MPLP and TRW-S are local methods not guaranteed to
provide global convergence in general, they have shown to
perform well in many practical applications in which stan-
dard LP relaxation or LBP methods have difficulty [Werner,
2010]. MPLP has the advantage of having no parameters to
tune and present better results compared to TRW-S, although
with higher computational cost. We use an extension of the
MPLP, due to [Sontag et al., 2008], that is able to obtain
tighter relaxations by using a convex combination of clusters,
which are calculated iteratively. This method approximates
the true MAP problem and, if convergence is achieved, has
global optimality guarantees.

3.2 Parameter Learning
The goal of CRF parameter learning is to determine the
weights of the feature functions used in the conditional like-
lihood (1). CRFs can learn these weights discriminatively by
maximizing the conditional likelihood of training data. Un-
fortunately, this optimization runs an inference procedure at
each iteration, which is intractable in our case.

Therefore, we resort to maximizing the pseudolikelihood
of the training data, which is given by the sum of local like-
lihoods p(xi |MB(xi)), where MB(xi) is the Markov blanket
of variable xi: the set of the immediate neighbors of xi in
the CRF graph [Besag, 1975]. Optimisation of this pseudo-
likelihood is performed by minimizing the negative of its log,
resulting in the following objective function:

L(w) =−
n

∑
i=1

log p(xi |MB(xi),w)+
(w−w̃)T (w−w̃)

2σ2 , (2)

where the terms in the summation correspond to the negative
pseudo log-likelihood and the right term represents a Gaus-
sian shrinkage prior with variance σ2. Without additional in-
formation, the prior mean is typically set to zero.

The gradient of the log of the pseudolikelihood can be com-
puted extremely efficiently, without running an inference al-
gorithm. We perform this optimization using unconstrained
L-BFGS [Nocedal and Wright, 2000]. Learning by maximiz-
ing pseudolikelihood has been shown to perform very well in
different domains, e.g. [He and Zemel, 2008].

4 CRFs for Modeling 3D Geological Structure
MWD data is typically logged sequentially, down the hole,
during drilling. A straightforward approach is then to build

a CRF model in the axial direction of the blast hole by us-
ing a chain-like structure, as illustrated in Fig. 1. The ith
section of a blast hole composed of n sections is modeled
as two interconnected nodes zi and xi representing the set
of drilling measurements and the rock category, respectively.
Drilling measurements are considered observed variables and
are represented by shadowed nodes. Blast-hole section cate-
gories, which are not observed, correspond to latent (hidden)
variables and are represented by clear nodes. The relation-
ships between nearby blast-hole sections are represented by
edges connecting them. However, the CRF chain only mod-
els within each hole and ignores the three-dimensional nature
of the underground geology.

x1

x2

xn

z1

z2

zn

..
.

..
.

..
.

Boosting

Observed

variables

Latent

variables
Borehole 

measurements

S
e

c
ti
o

n
s

MWD

Figure 1: Graphical model of a CRF to model the spatial asso-
ciation between neighboring blast-hole sections. The obser-
vations zi correspond to drilling measurements and the latent
variables xn indicate the corresponding classes.

4.1 Three dimensional graph structures
Our CRF approach attempts to model the 3D structure un-
derground by considering relationships between neighboring
holes. While inferring the optimal model structure is an in-
tractable problem, we make a few assumptions to propose a
practical method to build the 3D structures. We propose to
model the problem as a 3D quasi-regular lattice-like graph.

We devised an algorithm that takes into account the spatial
distribution of the holes and assign edges to the nearest hole
aligned to one of the axes. Our basic assumption is that the
actual distances between nodes remain fairly constant at each
dimension (x, y and z axis). In this approach, edges associ-
ated with the same axis can be modeled by the same pairwise
feature weight. If the data is perfect, i.e., it is distributed in
a strict regular grid pattern and has no missing values, the al-
gorithm will build a cubic structure as illustrated in Fig. 2, an
example of 16 holes equally spaced containing four sections
in each hole.

4.2 Local features
The CRF model can employ arbitrary feature functions to de-
scribe any particular property of the data. Instead of learning
the CRF model directly from the raw observations, e.g. MWD
data, it is sometimes advantageous to extract features from



Figure 2: Graph representing the edge connections between
latent variables of a cubic MWD data set; observation nodes
and local edges are omitted. Pairwise edges having the same
color indicate those that share the same weight value.

the data using a classification algorithm. This is because the
CRF’s log-linear representation, which corresponds to a uni-
modal Gaussian likelihood on each feature function, might
not be flexible enough to model complex multimodal rela-
tionships. We use boosting classifiers to provide a nonlinear
mapping from MWD data to rock categories, at each local
section of a blast hole.

Boosted trees
The concept of boosting is to train many weak learners on
various distributions of the input data and then combine the
classifiers produced into a single committee [Hastie et al.,
2009]. Initially, the weights of all training examples are set
equally, but after each round of the algorithm, the weights of
incorrectly classified examples increase. The final commit-
tee, or ensemble, is a weighted majority combination of M
weak classifiers and can be expressed as

hk(z) = sign

(
M

∑
m=1

α
k
mCk

m(z)

)
, (3)

where αm quantifies the contribution of each respective weak
classifier Cm.

We implemented a variant of the boosting algorithm called
LogitBoost (LB) [Friedman et al., 2000], which fits additive
logistic regression models by stagewise optimisation of the
maximum likelihood. It can be generalized to handle multiple
classes by using a symmetric multiple logistic transformation.
As weak learners, we used single-node decision trees, also
known as regression stumps. The boosting scores (3) are used
as local features.

4.3 Pairwise features
A pairwise feature is used to associate measurements from
neighboring sections. The function associating a node xi to a

neighboring node x j is defined as

gk(xi,x j) =

{
a if xi = x j
b if xi 6= x j

(4)

where a and b are parameters that just have to be distinct to
indicate equality or inequality. Those parameters need not
be learned but can simply be assigned values taken from the
dataset’s training labels. Only the weights multiplying the
indicator features are learned using pseudolikelihood. Note
that for the three-dimensional graph, K2 = 3 in (1) and, there-
fore, k = {1,2,3} in (4), corresponding to the x, y and z axis,
respectively. In other words, for each dimension, k, there is
a different weight, wk in (1), for the corresponding pairwise
feature, gk.

5 Experimental evaluation
The CRF method was evaluated using MWD data collected
from a blast-hole drill rig, which is shown in Fig. 3. From a
total of 17 drill sensors recorded, 5 measurements were man-
ually selected for analysis: rotation speed, rotation pressure,
pull-down rate, pull-down pressure, and bit air pressure; the
excluded measurements are mainly binary flags indicative of
the state of the drill’s hydraulic system. Since each sensor has
a different sampling rate, the measurements need to be resam-
pled and grouped into appropriate sections of 10 cm depth
intervals. MWD data is typically collected while drilling
blast holes in the same vicinity on a “mine bench.” We chose
to present results of a representative bench that contains the
three main rock types found in our study area, as the perfor-
mance of the algorithm in other benches followed a similar
trend. The chosen data set consists of 180 blast holes with an
average depth of 14 m.

Figure 3: Drill-rig used to collect MWD data.



The ground-truth labels were determined by mine geolo-
gists using a combination of geophysical, chip and core logs.
Note that this is a subjective process that creates minor un-
certainty in the labels. A hierarchical labeling scheme was
devised to group the geological zones into categories. The
main geological categories are: shale, ore and banded iron
formation (BIF). Each category can be further divided based
on rock strength.

The numerical performance of the proposed method was
evaluated by calculating accuracy, precision, recall, F-score,
and area under the ROC curve (AUC); for details on those
metrics, see [Sokolova and Lapalme, 2009]. The overall per-
formance for all metrics except accuracy was calculated by
macro-averaging. Accuracy was micro-averaged to avoid op-
timistic bias. The models were evaluated using 3-fold cross-
validation. The cross-validation sets were not randomly sam-
pled, but selected based on their spatial distribution to al-
low testing of the 3D structure of the CRFs. For compari-
son purposes, in all experiments the number of weak learners
in the boosting algorithms was constant, 50. Nevertheless,
the boosting algorithm is quite resilient to overfitting and we
observed that using more weak learners does not degrade per-
formance severely.

To investigate the effect of increasing the complexity of
the graph, we examined four scenarios. We started with a
graph without edges, which corresponds to solely applying
LB classification, i.e., no pairwise features in the CRF, only
the local features. Then we added the vertical edges (z axis),
which corresponds to a chain-like structure; we refer to this
graph as one-dimensional (1D) CRF. Next, we added the hor-
izontal edges (x and y axis) one after the other; we refer to
the resulting graphs as two-dimensional (2D) CRF and three-
dimensional (3D) CRF, respectively. For the selected data set,
the total number of nodes was 24,896. An illustration of the
graph structure for this data set is shown in Fig. 4. The total
number of edges in the full 3D graph was 67,564.

Figure 4: Birdseye view of the graph structure for the data set
with 180 blast holes. Only the nodes at the top and the edges
connecting them are shown.

The algorithms—CRF graph building, pseudolikelihood
optimization and LBP—are implemented in MATLAB. Code
for the TRW-S1 and MPLP2 is implemented in C/C++, as
provided by the respective authors. An empirical compar-
ison of the processing time for all three inference methods
is presented in Fig. 5; the total processing time presented is
the sum of all cross-validation folds. The experiments ran
on a 16-core Linux computer. Note that the different times

1http://research.microsoft.com/downloads
2http://people.csail.mit.edu/dsontag/

for LB reflect the basic computational overhead of each in-
ference algorithm, which occur even when there is no edges
in the graph, not differences in the performance of LB. This
comparison was not intended to be a strictly fair comparison,
since the implementations were not optimized for speed and
LBP was in a different language. It can, however, provide a
good indication of how each algorithm scale to more complex
graph structures.
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Figure 5: Experimental inference time required for the infer-
ence algorithms on different graph structure configurations.
Note that the y-axis is in logarithmic scale.

A quantitative analysis of the algorithms’ performance on
all 180 blast holes is presented in Table 1, for the 3 categories
scheme. The qualitative results for estimating the geology of
all 180 blast holes using the 3 categories scheme is presented
in Fig. 6. Note that the experiments include a comparison
with two previous methods, specifically, the LB (LogitBoost
only) method, proposed in [Kadkhodaie-Ilkhchi et al., 2010],
and the 1D (chain CRF) method, proposed in [Monteiro et
al., 2009].

6 Discussion
The main goal of our proposed approach was to model the ge-
ology from multiple sensors installed in an autonomous drill
rig. We proposed a method to map the geology in 3D by
combining an undirected graphical model, CRFs, with a ro-
bust classifier, LogitBoost. The combined approach is able
to reason about the spatial dependencies while performing
nonlinear, multiclass classification. By modeling the spatial
relationships we are able to exploit the physical assumption
that, locally, the rock types are homogeneous. Performing in-
ference on graphical models for this problem turned out to
be very difficult since it contains a large number of nodes,
edges and loops. Our results reveal that sophisticated infer-
ence methods are essential for exploring the modeling capa-
bilities of more complex graph structures. This fact highlights
the need to consider both the inference method and the graph
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Figure 6: Classification comparison for 180 blast-holes classified into three rock types. The CRF predictions presented are
results of the best performing inference method (MPLP).

complexity jointly when addressing difficult problems.
The CRF-based approach presents a smoothing effect

which correlates better with the known geology of the area.
The results presented a marked increase, about 8%, in over-
all performance provided by the CRF approach over the base
classifier, used as benchmark. In the particular data set tested,
LBP inference had convergence issues and did not perform
well. TRW-S was the most efficient method, fast and accu-
rate for most of the graph configurations, but had difficulty
with the three-dimensional graph structure. Finally, MPLP
converged to the most probable distribution in all cases, al-
though much slower. In particular for the 2D and 3D graphs,
MPLP provided the best results with much lower standard de-
viations in all metrics. Nevertheless, in regards to computa-
tional time, when considering each algorithm independently
using the chain CRF (1D) as baseline, both MPLP and TRW-
S scaled similarly to the increase in complexity in the graph
structure. It is worth noting that if MPLP were not used, the
three-dimensional CRF would be considered a bad idea, since
the other inference methods failed to improve classification
performance.

Determining the detailed geology in terms of lithology,
mineralogy and rock strength is a complex task and requires
interpretation of the available data. The resulting classifica-
tion was more consistent with the labeling scheme used for
training, which considered each hole as belonging to one cat-
egory. While this is evidently not the “true” down-hole ge-
ology, it is an approximation that seems to provide enough
spatial resolution in this case—with steeply dipping rock lay-
ers and relatively shallow holes. The CRF was able to learn
a trade-off between biasing the classification towards single-
labeled holes and retaining the level of detail about rock
types, especially in the boundaries between different zones.

Given the complex analysis required to provide ground-
reference labels, possible future directions are investigating
how to explore the large volume of unlabeled data and how

to handle the uncertainty in the training labels. Another nat-
ural research direction from this paper is to study alternative
methods to obtain the CRF graph structure. The problem of
learning the structure of the graph based on real data and tak-
ing into account previous knowledge about the lithology dis-
tribution seems challenging.
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