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Abstract— We present a novel estimation algorithm for filter-
ing and regression with a number of advantages over existing
methods. The algorithm has wide application in robotics as no
assumptions are made about the underlying distributions, it
can represent non-Gaussian multi-modal posteriors, and learn
arbitrary non-linear models from noisy data. Our method is a
generalisation of the Kernel Bayes’ Rule that produces multi-
modal posterior estimates represented as Gaussian mixtures.
The algorithm learns non-linear state transition and observation
models from data and represents all distributions internally
as elements in a reproducing kernel Hilbert space. Inference
occurs in the Hilbert space and can be performed recursively.
When an estimate of the posterior distribution is required,
we apply a quadratic programming pre-image method to
determine the Gaussian mixture components of the posterior
representation.

We demonstrate our algorithm with two filtering experiments
and one regression experiment; a multi-modal tracking simula-
tion, a real tracking problem involving a miniature slot-car with
an attached inertial measurement unit, and a regression prob-
lem of estimating the velocity field of a set of pedestrian paths
for robot path-planning. Our algorithm compares favourably
with the Gaussian process in the regression case, and a particle
filter with learned process and observation models (the “GP-
BayesFilter” particle filter).

I. INTRODUCTION

Bayesian inference is the foundation of statistical esti-
mation in robotics. It is also increasingly relied upon in
fields such as geology, astrophysics and bio-informatics.
The central challenge in applying Bayesian inference is that
Bayes’ theorem admits analytical solutions in only a few
special cases, and otherwise requires computationally costly
numerical integration. A large body of work is hence devoted
to solving restricted cases exactly or to approximating a full
solution. Some of the most popular solutions in the domain
of robotics are the ubiquitous Kalman filter [1] which is
restricted to linear models and normally-distributed variables,
the extended and unscented Kalman filters [2], [3] which ad-
mit non-linear models, and the particle filter [4] which admits
both non-linear models and non-Gaussian distributions.

Kernel-based inference schemes are a non-parametric ap-
proximation to full Bayesian inference which represent prob-
ability distributions as elements in a Hilbert space of func-
tions, defined through a chosen kernel. One such algorithm,
the kernel Bayes’ rule (KBR) [5], provides a converging
kernel-based approximation to full Bayesian inference and
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has a number of advantages over comparable methods. The
prior and likelihood distributions are learned from samples,
no assumptions are made about the shape of the underlying
distributions, and the algorithm scales well with dimension.
The KBR can also be applied recursively and so is applicable
as a Bayesian filter capable of modelling non-linear dynamics
and multi-modal distributions. The main difficulty of the
method lies in recovering the posterior distribution. For
point estimates, current methods compute the maximum a-
posteriori solution which can be found by standard pre-
image methods [6]. However, for KBR filters to be widely
applicable to robotics problems, point estimates are not
sufficient; the method also needs to quantify uncertainty and
present the underlying shape of the distribution.

The paper has three main contributions; 1) the application
of a Gaussian mixture pre-image algorithm to obtain an
estimate of the full posterior distribution from the posterior
embeddings produced by the KBR algorithm; 2) A new
training scheme necessary for automatic parameter estima-
tion. 3) A novel application of multi-modal regression for
the problem of estimating viable motion paths from tracks
of pedestrians that illustrates the problem with unimodal
posteriors [7].

We denote the combination of the Kernel Bayes’ Rule
and the Gaussian mixture pre-image recovery method as the
KBR-GM algorithm.

Overall, the KBR-GM algorithm relaxes many of the
restrictions of other estimators: it requires no transition
or observation models, being able to learn these directly
from noisy training data, the models learned can be non-
linear, it can represent non-Gaussian, multi-modal posteriors,
and is scalable to high-dimensional problems, both in the
observation space and the state space.

These properties are particularly desirable in filtering
applications where complex, multi-modal distributions arise
such as bearing-only tracking, multi-hypothesis tracking, or
in cases of poorly known dynamics. They also lend the
algorithm to highly-unconstrained non-parametric regression
problems where little prior information is known about the
distributions of the states and observation.

Evaluation of the KBR-GM posterior is via a Gaussian
mixture and is quite flexible. Choosing the number of
mixture components allows users to balance accuracy and
computational efficiency of the posterior estimate, without
affecting the underlying inference process. Indeed, areas of
greater interest can have a higher density of mixture com-
ponents, or only a sub-section of the posterior distribution
need be evaluated at all.



An estimation algorithm with these properties would be
useful in many robotics applications. Tracking targets where
the motion model is unknown and the observation model
non-linear. Multi-modal distributions allows for multiple
motion models to be considered simultaneously, but with a
fully Bayesian treatment of the resultant distribution. This
is in contrast to the filter-bank methods commonly used.
In principle, a SLAM implementation could be developed
which included probabilistic data association as an inherent
feature.

To demonstrate the usefulness of our algorithm we il-
lustrate its capabilities with three experiments: tracking a
simulated particle moving through a set of randomly chosen
trajectories, tracking a slot-car moving around a track from
inertial data taken from a small on-board inertial measure-
ment unit (IMU), and building a normalised probabilistic
velocity map for robot path planning based on the recorded
trajectories of pedestrians in the area.

II. PREVIOUS WORK

The journey towards a fully data-driven Bayesian esti-
mation and filtering with no assumptions on the model or
the type of distribution must begin at the other extreme;
the Kalman filter. This highly successful filter admits exact
solutions by assuming linear models with Gaussian prior and
posterior distributions. The extended (EKF) and unscented
(UKF) Kalman filters [8], [9] relax the restriction of linearity,
and have also been widely adopted when the Gaussian
assumption is valid.

Almost all Bayesian filters in the literature which are able
to represent non-Gaussian, multi-modal distributions require
analytical expressions for transition and observation mod-
els. These filters operate on representations of distributions
formed through the sum of simpler basis functions.

Parzen density and mixture model filters tile basis func-
tions such as Gaussians or sawteeth in order to represent
distributions [10], [11], but are limited to linear models and
suffer from poor dimensional scaling in practice.

Particle filters admit non-linear models using a Monte-
Carlo point sampling approximation for estimation. However,
in general these methods suffer from very poor dimensional
scaling and difficulties with sample degeneracy or impov-
erishment [12], [4]. Progress has been made to overcome
these problems beyond the standard sequential importance
sampling particle filters. EKF and UKF particle filters use
those filters to approximate the proposal distribution, re-
ducing sample impoverishment but introducing linearisation
errors [13], [14]. Rao-Blackwellised particle filters demon-
strate better dimensional scaling [15] but require structural
knowledge of posterior distributions. Gaussian particle filters
also scale more favourably with dimension but are restricted
to Gaussian posteriors [16]. Gaussian sum filters relax this
restriction to representation as a Gaussian sum [17] but suffer
from mixture component impoverishment. Both algorithms
are also sensitive to linearisation errors.

Some of these methods have been extended to enable
learning of prediction and observation models from data.

The noise parameters of the EKF were learned in [18].
The GP-BayesFilter particle filter use a standard sequential
importance re-sampling (SIR) particle filter but learns the
state transition and observation models from data using a set
of Gaussian processes [19].

Apart from their use in filtering, Gaussian Processes
(GPs) [20] themselves are a popular tool in robotics for
non-parametric regression when the assumptions of Gaussian
priors, likelihoods and posteriors are valid. GPs perform in-
ference over a space of smooth functions, any finite sampling
from which is Gaussian-distributed. As such they are capable
of modelling complex relationships between variables with
Gaussian marginals, and have been used for modelling terrain
and occupancy [21], [22], optimal control [23], and for
planning based on information gain [24].GP mixture models
relax the Gaussianity assumption of the posterior, but retain a
strong assumption of mixture component independence [25].

One class of filtering and regression techniques which
relax the Gaussianity assumption, but retain non-parametric
representations and high-dimensional scaling, are those based
on representing distributions as elements of a Hilbert space
of functions. These methods have shown a number of advan-
tages over traditional estimation techniques, especially with
complex, high-dimensional distributions when very little
prior information is known. Methods based on orthogonal
function bases and have good sparsity and scaling properties
in theory, but the filtering equations are generally insolu-
ble [26], [27]. Methods using reproducing kernel Hilbert
spaces have had more success, initially with a Bayesian filter
approximated heuristically [28], assuming additive contribu-
tions from the observation and state transition models. An
estimate to the filtering problem posed in the form of a
hidden Markov model was recently developed [29] that can
learn complex non-linear models, but is limited to producing
a maximum a-posteriori estimate.

The kernel Bayes’ rule algorithm (KBR), used as the basis
for our approach to regression and filtering [5], provides
a converging estimate to full Bayesian inference. It learns
non-linear models from training data, has no restrictions on
the shape of prior or posterior distributions, and has demon-
strated scalability to high dimension. Its main limitation is
that it recovers only a maximum a-posteriori estimate at each
time-step. There is no estimation of the uncertainty in the
result. Our contribution is to rectify this limitation, allowing
for recovery of the full posterior distribution by formulating
the pre-image problem as a convex quadratic optimisation.

III. KERNEL BAYES’ RULE

We will give a brief introduction to the KBR algorithm,
asking the reader to refer to [5] for a more complete
treatment, or [28] for an introduction to reproducing kernel
Hilbert spaces.

The KBR works by representing probability distributions
as functions, manipulating those functions to produce the
desired result, and then finding an inverse mapping to convert
the result function back to a distribution. Mathematically,



the functions are considered elements in a space called a
reproducing kernel Hilbert space (RKHS).

A. Reproducing Kernel Hilbert Spaces
Hilbert spaces are generalisations of vector spaces, and

like vector spaces have an inner product operation. This
inner product is implicitly defined by a positive-definite
kernel, similar to the case of a support vector machine. The
reproducing kernel refers to Hilbert spaces defined through
kernels which act to evaluate functions in the space through
a dot product. More precisely, they satisfy the following
“reproducing property”:

〈f,k(·, x)〉 = f(x) ∀f ∈ Hx. (1)

To evaluate a function f in H at a point x, simply take the
dot product of a kernel centred at x with the function f
(remembering that the dot-product here is defined to act on
two functions).

In order to map a probability distribution P (X) into the
corresponding RKHS Hx, we use the mean map µ[·], defined
by taking the expectation of the kernel centred at a point t
over the random variable X:

µ[P (X)](t) = E[k(X, t)]. (2)

One requirement for the mean map is that different distribu-
tions will never map to the same function in H. The class
of kernels for which the mean map satisfies this property
are known as characteristic kernels. Examples include the
Gaussian and Laplacian kernels. We restrict ourselves to the
Gaussian kernel in this paper for reasons of computational
efficiency.

Given only N samples {xi}Ni=1 from X , rather than P (X)
itself requires an estimation of the mean map

µ[P (X)] ≈
N∑

ı=1

k(xi, ·). (3)

This approximation converges to the true embedding with
O(N1/2). Other distributions can be represented in the same
space by weighting the kernel terms so that a distribution
µ[Q(X)] ≈

∑N
ı=1 αik(xi, ·), where αi is in R.

B. RKHS and Bayes’ Theorem
The Kernel Bayes’ Rule algorithm uses approximate

mean mappings of the prior µ[P (X)] and the likelihood
µ[P (Y |X)] derived from samples {ui}Mi=1 from X and
{(xj , yj)}Nj=1 from (X,Y ) to estimate the posterior em-
bedding µ[P (X|Y = y)] for an observation y. In practical
terms, the output the output of the KBR is a weight vector
α, representing the embedding of the posterior distribution
by

µ[P (X|Y =y)] =

N∑
ı=1

αikx(xi, ·). (4)

Critically, the posterior embedding can be used as the prior
embedding for a subsequent observation. As a result, filtering
sequential observations can occur entirely in the Hilbert
space. The resultant distribution need only be recovered
when required.

C. Kernel Bayes Rule Equations

Let {(xi, yi)}ni=1 be a set of n i.i.d samples from the
joint distribution P (X,Y ), and let {(βj , uj)}mi=1 be a set
of weighted prior samples from P (X). The weights could
represent frequency counts for the samples or a prior belief
over their likelihood. Let GXX , GY Y and GXU be associated
Gram matrices with (GXU )ij = kx(xi, uj), (GXX)ij =
kx(xi, xj) and (GY Y )ij = ky(yi, yj). Given an observation
y, the weights α representing the posterior embedding are

α = RX|Y kY (y), (5)

RX|Y = ΛGY Y ((ΛGY Y )2 + δnI)−1Λ (6)

Λ = diag((GXX + εnI)−1GXUβ), (7)

where kY (y)i = ky(yi, y), and ε and δ are regularisation
parameters.

D. KBR Filtering

Bayesian filtering is a special case of the inference prob-
lem in which, given a dynamic state {Xt} : t = 0, 1, 2, ...
and noisy measurements of that state {Yt} : t = 0, 1, 2, ...,
we wish to determine P (Xt|Yt). This is traditionally com-
puted in two steps; first by calculating the prediction step
P (Xt|Y1:t−1) and then the observation update P (Xt|Y1:t).

The KBR can perform Bayesian filtering given a se-
quential set of state-observation pairs as training samples
{(xt, yt)}nt=0, and an embedded estimate αt−1 of the state
at some time t− 1. For the initial time-step, this embedding
is computed with Equation 5, using the prior samples and
an initial observation y0. The prediction step yields a vector
αP

t representing µ[P (Xt|Y1:t−1)] as

αP
t = (GX + εnI)−1Gi,i+1

XX (GXX + εnI)−1GXXαt−1,
(8)

where Gi,i+1
XX is the transition Gram matrix with Gij =

kx(xt+1
i , xtj). The observation update then gives the weights

αt for the posterior µ[P (Xt|Y1:t)]:

αt = ΛGY Y ((ΛGY Y )2 + δnI)−1ΛkY (y), (9)

where δy is a regularisation parameter, Λ = diag(αP
t ), and

kY (y)i = ky(Yi, yt).

IV. POSTERIOR RECOVERY

Recovering an estimate of the posterior distribution after
(possible repeated) application of the KBR requires deter-
mining the inverse kernel mapping; mapping a point in the
RKHS back into a distribution. This is known as the pre-
image problem. Unfortunately, the pre-image mapping is not
one-to-one, and in-fact may not even exist for all points in
the Hilbert space [30].

Note that in the filtering case, both the input and output
of the algorithm are embeddings, meaning that it runs
independently of if or how we choose to recover estimates.
We could, for instance, only recover an estimate when a user
queries, or when a particular condition is met. This would
have no effect on the results of the filter.



A. Fixed Gaussian Mixture Pre-image Method

The method we employ for posterior recovery involves
assuming a particular parametric form which facilitates the
inverse mapping (in this case a Gaussian mixture), and then
finding an instance of that form closest to the true posterior in
the Hilbert space metric. This is generalisation of the method
in [6], [31] to include weighted embeddings.

Let P be the true posterior, and P̂ our recoverable es-
timate. The problem is to determine the P̂ which has an
embedding closest to the embedding of P :

P̂ ∗ = argmin
P̂

∣∣∣∣∣∣µ[P̂ ]− µ[P ]
∣∣∣∣∣∣2 (10)

= argmin
P̂

1

2
〈µ[P̂ ],µ[P̂ ]〉 − 〈µ[P̂ ],µ[P ]〉, (11)

where 〈·,·〉 is the dot product. A judicious choice for the form
of P̂ is a mixture of fixed mean and covariance distributions
weighted by a vector θ, which makes the above optimisation
convex;

P̂θ =

M∑
i=0

θiP̂i, s.t
M∑
i=0

θi = 1, θi > 0 ∀i. (12)

The addition of a regularising term λ allows us to cast the
optimisation as a standard quadratic programming problem.
For a posterior embedding with weights α,

P̂ ∗ = argmin
θ

1

2
θT (A+ 1λ)θ −αTBθ

s.t θ ≥ 0, 1Tθ = 1 (13)

where λ > 0 is a regularisation constant, and

Aij = 〈µ[P̂i],µ[P̂j ]〉, Bij = 〈µ[P̂i],kx(xj , ·)〉. (14)

As A is symmetric by construction, this is a convex quadratic
program. If we assume a Gaussian radial basis function ker-
nel and Gaussian mixtures for P̂i, the matrices A and B have
an analytic form. Assume kx(x, x′) = 2π

k
2 σkN (x;x′, σ2)

and P̂i(x) = N (x;µi,Σi). The terms of A and B are then

〈µ[P̂i],µ[P̂j ]〉 = N (µi;µj , σ
2
x + Σi + Σj), (15)

〈µ[P ′i ],kx(Xj , ·)〉 = N (Xj ;µi, σ
2
x + Σi). (16)

See [6] for a proof that the error in this approximation
is bounded. In practice, fast convergence can be achieved
by seeding the initial value of the optimisation of the
posterior at time t with the result for time t − 1. For a
complete description of the (filtering version of the) KBR-
GM algorithm in pseudo-code, See Figure 1.

B. Choice of Mixture Components

In our experiments we fixed the location of the mix-
ture components a-priori. Placing the components over a
uniform grid or centering them at the location of training
points have both performed well experimentally. As with
any mixture model, high-dimensional problems will require
many components to represent, but multi-scale methods or
partial evaluation strategies could be employed to mitigate

this. It would also be possible to add the mixture means and
covariances as parameters in the training. Even the number
of components could be optimised with a suitable term to
bound complexity added to the cost function. This might
give better results, but would be computationally expensive.

As with any non-parametric method, the KBR algorithm
will perform poorly in regions away from training data.
However, it is worth emphasising that the choice of mixture
components in no way affects the underlying inference
process, and merely corresponds to different approximations
of the embedded posterior.

C. Parameter Learning

The unknown parameters for the KBR are the regular-
isation terms ε, δ and the kernel widths σx and σy . For
the pre-image method, assuming spherical Gaussian mixture
components and a uniform component variance, we must
learn a single mixture width Σ and the regulariser λ.

To learn these parameters for regression, we perform k-
fold cross-validation in two stages. First on σx, σy , ε and
δ whilst holding Σ and λ constant, and then on Σ and λ,
holding the other parameters constant. These two procedures
are then alternated for a fixed number of iterations, or until
convergence.

For filtering, we apply the same procedure but instead of
k folds we split the training data in two and use the first
half for training and second half for validation. This is to
preserve the temporal relationship between adjacent points,
and of course requires that the first half of the training data
is reasonably spread over the state space.

The optimiser is a conjugate gradient descent algorithm
with multiple random restarts and numerical derivatives. The
cost function used for the optimisation is described below.
We also rescale all input data to be mean zero and standard
deviation one along all dimensions, simplifying the choice
of starting parameters for the optimisation.

D. Cost function

Evaluating the KBR-GM posterior distributions against a
set of test data requires a measure which can account for
multi-modality. Mean-squared-error for instance is unsuit-
able, because the mean may be a poor statistic to represent
the distribution. The KL-divergence requires knowing the
true underlying distribution rather than just the true state,
and so is also unsuitable. For our experiments we chose to
use the (mean) negative log-likelihood of test data evaluated
on the posterior;

C(x, φ, {xi}, {yi}) =
−1

T

T∑
k=1

log
(
P̂k(xk|φ)

)
, (17)

where φ is the vector of parameters, {xi} and {yi} the sets
of training points, xkT is the set of T testing points, and
P̂k(xk|φ) is the k-th posterior estimation of the KBR-GM
evaluated at xk. Taking the mean over the testing points
accounts for the possibility of different sized folds in the
cross-validation. Optimising this cost function corresponds



Algorithm 1: The KBR-GM Filter
Input: training set (Xi, Yi),
weighted prior samples {βj , uj},
initial observation y0,
parameters {ε, δ, λ},
mixture components {µk,Σ}
Output: posterior mixture weights θt

Calculate prediction αP
t (Eq. 8);

Calculate pre-image matrices A, B (Eq. 14);
Calculate initial embedding α0 (Eq. 5);
while running do

Calculate prediction αP
t+1 ;

if new observation yt then
Calculate Λ = diag(αP

t+1);
Embed observation kY (y)i = ky(Yi, yt);
Calculate posterior αt+1 (Eq. 9);

end
if estimate then

Find mixture weights θt (Eq, 13);
end

end

to maximising the probability that the test points were drawn
from the posterior distribution.

E. Algorithm Overview

Algorithm 1 gives an overview of our filtering algorithm
in pseudo-code. The computational complexity of this algo-
rithm is dominated by the observation update step, which
is O(N3) in the number of training points. As suggested
in [5], we use a Nyström method for generating low-rank
approximations to the Gram matrix [32], which can then be
inverted in O(N2) cost using the Woodbury identity. The
prediction step is a single matrix multiplication, and the
Gaussian mixture estimation is a convex quadratic program
of dimension equal to the number of mixture components,
which need only be calculated when the estimate is required.
By way of comparison, the particle filter is a linear algorithm
in the number of particles, but the particle count required
for a given accuracy scales exponentially with dimension.
The GP-BayesFilter particle filter is dominated by (P +Q)
Gaussian process evaluations for every time-step, which are
each O(N3) in the number of training points if attempted
naively, though it is possible to achieve O(N2) through
sequential updating.

V. EXPERIMENTS

A. Multi-modal Tracking Simulation

This experiment simulated a body moving around two
concentric loops. At the intersections of these two loops,
the body randomly chooses to follow one loop or the other.

We compared our KBR-GM filter with a standard particle
filter and GP-BayesFilter particle filter, where the process
and noise models are modelled by a trained Gaussian pro-
cess [19]. In the case of the standard particle filter it was
necessary to provide analytical process and noise models.

Noisy observations of the body were taken every five time-
steps. The equations of motion of the particle were x =

(cos(2π/20t), (0.5 + 1.5η) sin(2π/20t)) + Zt, where η is a
boolean-valued random variable that was re-drawn at t =
0, 10, 20, . . . and Zt is zero-mean Gaussian process noise
with σp = 0.05. Observation noise is similarly distributed
with σo = 0.02.

As this experiment was a simulation we had access to
the true posterior distribution, and so could use the KL-
divergence to compare posteriors obtained by the algorithms
to the true (simulated) posterior. We evaluated the KL-
divergence by discretising the space into voxels around the
body’s location, then used these voxels as bins in the particle
filter case, and assigned probabilites to the voxels based on
values at the bin centres for the KBR-GM and for the true
posterior.

Our filter was given 600 training points, a number chosen
to keep running times fairly short on a desktop PC. Mixture
centres corresponded to the locations of these points. Our
implementation is written in Python, utilising the SciPy1 and
CVXOpt2 libraries.

The GPPF was also given 600 training points, and hyper-
parameters were trained with the standard marginal like-
lihood method. We used Python implementations of the
Gaussian process [33] and the SIR particle filter3.

For the standard particle filter, we examined two variations
in the process model. The first simply gave the state transition
probability with the boolean variable η unknown. In other
words, the hidden state was not known to the filter, so a
measurement of the particle in one track did not collapse
future predictions to only that track. The second prediction
model was extended to include knowledge of η; the algorithm
knew that once the particle is observed in one track, it would
stay in this track. Note that our filter learned this behaviour
implicitly from the training data.

The particle filter was tested with 500, 1000 and 10,000
particles, whilst the GPPF with 500. As each particle requires
a separate evaluation of 2n Gaussian processes where n is
the dimensionality of the problem, this was as many particles
as we could use and still keep run times reasonable. Our tests
indicate that the filter was not limited by this choice.

The results of this simulation are plotted in Figure 1. Our
algorithm and the particle filter with the extended transition
model (EPF) were the only two able to properly estimate
the behaviour of the particle. The KBR-GM demonstrated
a lower error than the EPF with 500 and 1000 particles,
but was edged out when the particle count is increased to
a very large value of 10,000 particles. The particle filter
without knowledge of the hidden variable η (denoted PF)
was overperformed in both 2D and 3D. The GPPF performed
poorly, given it is unable to represent the multi-modal
distributions inherent in this simulation.

It is worth noting that all particles filters see a large
decrease in performance between 2D and 3D. Generally
speaking particle filters require exponentially more particles
to maintain the same accuracy as dimension increases.

1SciPy version 0.8, http://www.scipy.org
2CVXOPT version 1.13, http://abel.ee.ucla.edu/cvxopt/
3ProbRob version 28, http://launchpad.net/probrob



Fig. 1: Results for the multi-modal particle simulation. In order to
beat the KBR-GM, the particle filter required 1000 particles in 2D,
and 10,000 particles in 3D. Note that the EPF had access to the
exact transition and observation models. The simpler particle filter
(PF) and the GPPF could not compete.

B. Inertial Slot-car

The second experiment involved a miniature slot-car
moving around an 11-metre track with loops and banked
curves [29]. Inertial data was taken with a small IMU
attached to the car. An overhead camera provided ground
truth for the position of the car, which was interpreted as
a scalar quantity equivalent to (un-normalised) proportion of
the track complete. The derivative of this quantity is the norm
of the car’s velocity vector, or its velocity in the direction
of motion. The goal of the experiment was to predict the
track velocity of the car, using the 6-dimensional IMU data
as observations.

The relationship between the IMU and the forward veloc-
ity of the car is complicated by the track; the car changes
speed depending on the banking and slope of the track. Given
the variability of these features in the track, the resulting
likelihoods are non-trivial functions of the IMU variables.

We compared performance of our algorithm with the
GP-BayesFilter particle filter [19], both estimating a full
posterior over the car’s position. Though there are many
possible filters with which to compare, we are choosing to
focus on two filter properties: The ability to learn observation
and transition models from data, and the ability to represent
arbitrary posterior distributions. Standard filters such as the
EKF are ruled out on both counts, and have previously been
compared with the original KBR in [5].

The filters were both given 600 data points for training
corresponding to approximately 5 loops around the track.
The GPPF used 1000 particles. The ground truth for the
experiment was given as a 1D filtered track velocity from
the overhead camera. Measurements from the IMU were six
dimensional vectors of pitch, yaw, roll, and x, y, z acceler-
ations. We tested on 400 data points. Posterior distributions
for the GPPF were obtained from the particles via a Parzen
estimator with bandwidth set via the Normal approximation.
For our algorithm, the mixture means were centred at the
training points.

TABLE I: Results for the slot-car dataset

Algorithm Mean log-likelihood
GPPF -5.083

KBR-GM -1.332

TABLE II: The results of the pedestrian dataset.

Algorithm Mean log-likelihood
GP 2.052

KBR-GM 2.903

The GP implementation used for the GPPF utilised the
maximum marginal likelihood estimation method for learn-
ing GP hyperparameters following [20].

To compare performance of the algorithms we used the
likelihood of the true state in the filter’s posterior estimate
which properly accounts for the generality of the distri-
butions output by our filter. Table I lists the results. The
KBR-GM outperforms the GPPF in this measure. Running
times excluding training were approximately 1 minute for
the KBR-GM filter and 2.5 minutes for the GPPF.

The higher accuracy of the KBR-GM can be intuitively ex-
plained by the flexibility of representation of the observation
and transition models. For a given current state, the GPPF
must approximate this distribution of accelerations with a
single Gaussian, essentially blurring out useful information.
By representing the full prediction distribution in the RKHS,
our algorithm is able to use this additional information to
make a more accurate hypothesis about the car’s state. A
similar argument applies for the relationship between the
observed IMU data and the ground truth. Additionally, the
restriction of GPs to a single-dimensional output means that
the observation model learned with the GPPF is actually 6
separate models (one for each dimension of the IMU data),
requiring separate GPs to be trained and evaluated for each
one. This further reduces the information available to the
GPPF relative to our algorithm.

C. Pedestrian Velocity Field

The third experiment involved generating a normalised
velocity field for the purposes of indoor robot navigation [7].
Pedestrians moving around an indoor office space were
tracked using a SICK laser. From this data, tracks of their
position as a function of time were computed. At each point
on the track, the direction of motion of the pedestrian can
be estimated. Building up this velocity information for many
pedestrians provides data about common paths through the
area. These paths are useful for robots later navigating in
the area, as it allows them to take advantage not only of a
human’s avoidance of obstacles which might be difficult to
detect, but also because it gives the robot information about
social boundaries such as office cubicles which might not
normally be used as a thoroughfare. The data for this exper-
iment were taken from the UTS RobotAssist project [34].

We compared our KBR-GM algorithm to the original
implementation in [7] which used a Gaussian process to



(a) The training data derived from SICK laser scans of pedes-
trian pose

(b) (Top) mixture components are plotted as arrows. The
distribution is bimodal left and right. (Bottom) The GP must
average the tracks going left and right, with erroneous result

Fig. 2: Training data and posterior inset.

(a) Using the KBR-GM direction map the robots successfully
navigate to the finishing area

(b) The unimodality of the GP direction map causes some
robots to collide with the kitchen bench.

Fig. 3: Robot navigation from direction maps

model the direction field as a deviation from some prior
model. In their experiment, the prior was a normalised
velocity, which at every point, was aligned towards a single
destination point. We have elected to make the destination an
area rather than a point which corresponds to the yellow box
in figure 3. As a result, the prior velocity field pointed straight
down everywhere in the test area. For the GP, this involved
setting the prior mean to −π/2, and for the KBR-GM, we
created an embedded prior distribution from Gaussian sam-
ples centred around −π/2. 600 training points were given
to both algorithms, which were randomly sampled from all
available tracks which ended in the area of interest. The
tracks were smoothed using a 11-point Hamming window
before calculating velocity. To allow for meaningful interpo-
lation, the angles were expressed in quaternions before being
given to the algorithms. Note that this mean that two GPs
were required, as in the original implementation. 4000 other

points were sampled from the smoothed tracks for testing.
The GP hyper-parameters were trained using the maxi-

mum marginal likelihood, with a convex optimiser follow-
ing [20]. The KBR-GM used 40 mixture components for the
pre-image, evenly distributed over (−π, π). The results of
the experiment appear on table II.

The KBR-GM algorithm outperforms the GP, primarily
because of its ability to represent multi-modal distributions.
The corridor at the top of the image in Figure 2 a) had people
walking in both directions to reach the same destination. As
the GP is only able to learn a uni-modal posterior, the result
is a weighted average of the two directions, which in this
case points straight down. On the other hand, the KBR-GM
is able to learn a bimodal distribution which points both left
and right. See Figure 2 b) for close ups of this behaviour on
the testing data.

To illustrate how this result would be useful to a real



robot, we performed a simulation of a simple indoor robot
using the posterior direction field learned by the algorithms
to navigate from a starting position to the goal area. The
robot first evaluated the posterior at its location. The robot
then moved in the resulting direction for about 0.2 metres,
and re-evaluated the posterior. In the case of a multi-modal
posterior, the robot used the mode which was within π of its
current orientation.

Figure 3 depicts these robots navigating from various
starting locations and orientations. Notice that in the KBR-
GM case, robots are able to move down the top corridor in
opposite directions, whilst the robots using the GP are caught
by the averaging of the two directions and as a result hit the
wall.

VI. CONCLUSION

In this paper we have demonstrated a new filtering and
regression technique based on embedding distributions in
a Hilbert space, and recovering posterior estimates in the
form of a mixture of Gaussians. We have demonstrated
the algorithm’s utility with two experiments in robot mo-
tion modelling. There are many possible extensions to this
work; A more sophisticated choice of mixture components
could decrease the cost of evaluating posterior estimates.
The algorithm is kernel agnostic, and other choices of
kernel/mixture pairs are worth investigating. Finally, and
perhaps most importantly, a more efficient training scheme
could be developed. This is the subject of ongoing work.
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