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1 Introduction

We present a novel approach for informative path planning applied to environmental monitoring
using Bayesian Optimisation (BO) [1]. Autonomous robots are able to traverse over a wide range
of environments and sense from several phenomena [2]. However, the problem of where and when
to gather the most informative samples in an efficient manner is still an open question. This paper
addresses the problem by finding informative paths in a continuous domain, solving not only the
question of where and when to sample, but how to get there.
The decisions are chosen using a multi-layered BO algorithm. The first layer optimises over the
environmental phenomenon to finds areas of interest (e.g. high pollution, high temperature). This
layer uses an incremental spatial–temporal model of the phenomenon, given by a Gaussian Process
(GP) [3–7] prior that takes into account the uncertainty and predicted values propagated in time. The
second layer of BO is used to find the best set of parameters that determine a continuous path where
the robot travels on.
This work builds on earlier work by the authors [8], and presents the following contributions:

1. Generalisation of the BO algorithm to optimise along continuous trajectories instead of
discrete locations;

2. A layered BO for informative path planning in spatial–temporal environmental monitoring.

The proposed method has the following advantages over the previous techniques [8–15]: i) It is not
a way-point greedy solution to acquiring new observations as it takes into account measurements
obtained along a path with predictions propagated over time; ii) It considers a continuous action
space; iii) It uses both the mean and the variance to define paths and addresses the exploration-
exploitation trade off in principled Bayesian framework.
We validate our algorithm on a large-scale environment for monitoring ozone concentration in the
US, and on a mobile robot that monitors the dynamics of luminosity changes.

2 Continuous Path Planning

A Bayesian Optimisation method is derived to estimate continuous paths for sampling an initially
unknown environmental phenomenon. In this section we describe the general BO algorithm, to later
present details on the specific algorithm for planning over continuous paths.

2.1 Bayesian Optimisation

BO is used for finding the optimal (maximum or minimum) of an unknown and costly to evaluate
function f , i.e. find x? = argmaxx f(x). To achieve this, it builds an statistical model of the un-
known function using samples from it and a GP prior. An acquisition function h is evaluated over the
statistical model and guides the search for the optimum. The procedure requires the maximisation
of h at each iteration which is usually a much simpler optimisation problem. The generic algorithm
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Algorithm 1 General BO (Discrete Locations)
1: function BO(f , h)
2: for t = 1, 2, 3, . . . do
3: Find xt = argmaxx h(x)
4: yt ← f(xt)
5: Augment training set with (xt, yt)
6: Update GP
7: end for
8: end function

Algorithm 2 Path BO (Continuous Paths)
1: function PATHBO(f , h, q)
2: for t = 1, 2, 3, . . . do
3: β? ← BO(r(h), q) . Algorithm 1
4: {x, y} ← Sample along C(u,β?)
5: Augment training set with {x, y}
6: Update GP
7: end for
8: end function

for BO is shown in Algorithm 1. Line 3 is the inner optimisation conducted within BO and can be
solved using deterministic gradient-free optimisers [1].
The most common acquisition functions are: Probability of Improvement [16], Expected Improve-
ment [16] and Upper Confidence Bound [17]. Dynamic allocation of these acquisition function have
also been studied by [18].
For space-time problems, inputs x = (s; t) transform an ordinary acquisition function into a space-
time acquisition function.

2.2 BO for Continuous Path Planning

Let C(u,β) be a curve with u a real number ∈ [0, 1] and parametrized by β ∈ Rm, such that
C : [0, 1] → RN , where m is the number of dimensions of the parameter space and N is the
dimensionality of the input space of f . To evaluate the score, r, of a path C, we integrate the
acquisition function h over it,

r(C(u,β)|h) =
∫
C(u,β)

h(v)dv. (1)

For example, lets consider h = UCB, N = 2

r(C(u,β)|h = UCB) =
∫
C(u,β)

UCB(v)dv (2)

r(C(β)|h = UCB) =
∫ 1

0

UCB(C(u,β))‖C′(u,β)‖du (3)

r(C(β)|h = UCB) =
∫ 1

0

[µ(C(u,β)) + κσ(C(u,β))] ‖C′(u,β)‖du. (4)

The integral in equation 1 does not always have an analytical solution, depending on the definition
of the acquisition and covariance functions. In this paper we use a rectangle rule quadrature-based
approximation [19], which generally results in accurate approximations for the one dimensional case
(since the integral is over a 1-D variable, u).
To use BO for finding continuous paths a modification to Algorithm 1 is required: Instead of finding
a discrete location for taking the next sample from f (Line 3 of Algorithm 1), we find the parameters
β? that define a continuous path over space and time that cumulatively delivers the best return by
integrating over the acquisition function. To find the best set of parameters β? that defines the curve
that maximises the integral over h, the following optimisation problem has to be solved:

β? = argmax
β

r(C(u,β)|h). (5)

In section 2.1, the optimisation required to find the highest value of the acquisition was performed
using a deterministic, derivative–free optimiser. Alternatively, equation 5 can be solved using an-
other layer of BO as it is shown in Algorithm 2, Line 3. Since the action space β is five dimensional
(for 2D cubic splines) and the function r is highly non-convex and expensive to evaluate, BO pro-
vides a natural solution. This second layer of BO uses a GP prior over r and a second acquisition
function q to decide which path parameters to evaluate over r. This second layer of BO is over dis-
crete locations and uses the original Algorithm 1. Note that Algorithm 2 is fast to evaluate because
it does not require the robot to move and gather training samples as it uses the existing GP model of
the phenomenon.

2



2 4 6 8

36

38

40

42

44

(a) RD
2 4 6 8

36

38

40

42

44

(b) ED
2 4 6 8

36

38

40

42

44

(c) UCBD
2 4 6 8

36

38

40

42

44

(d) RC
2 4 6 8

36

38

40

42

44

(e) EC
2 4 6 8

36

38

40

42

44

(f) UCBC

Figure 1: Paths for different methods.

2.3 Path Parametrisation

In this paper we use cubic splines restricted to a two dimensional plane (N = 2). Therefore, the
curve C = (Cx(u,β), Cy(u,β)) is defined as:

Cx(u,β) = axu
3 + bxu

2 + cxu+ dx (6)

Cy(u,β) = ayu
3 + byu

2 + cyu+ dy (7)

with β = {ax, bx, cx, dx, ay, by, cy, dy}. When estimating a path to follow, the current state of the
robot x = (px, py, α) is assumed known. This defines the boundary condition reducing the action
space to five free parameters, β = {ax, ay, bx, by, cx}, only. To take into account the temporal
dimension over the curve we assume that the robot travels at a constant speed. Note that our method
accepts modifications to the curve parametrisation and is not strongly linked to this particular spline
model.

3 Experiments

3.1 Large-scale pollution monitoring

The first experiment simulates an Unmanned Air Vehicle (UAV) monitoring ozone concentration;
considered a pollutant at ground level. To simulate the environment we use a GP regression over
ozone concentration measurements dating back to 1987 provided by the US Environment Protection
Agency1. It can be noted that two peaks appear around mid-day with values that can reach up to
100ppb for the studied area. We compare six different techniques for planning the motion of the
UAV while monitoring the environment: a) Random Discrete Sampling (RD); b) Entropy Discrete
Sampling (ED); c) UCB Discrete Sampling (UCBD); d) Random Continuous Sampling (RC); e)
Entropy Continuous Sampling (EC); f) UCB Continuous Sampling (UCBC) (Our method).
For UCB κ = 0.1 was tuned manually to balance the exploration-exploitation trade off. All strate-
gies collect the same number of samples, therefore the differences in error will only depend on the
locations where the samples were acquired. The inner optimisation for maximising among paths
(Line 3 of Algorithm 2) uses q = UCB as acquisition function for strategies EC and UCBC. The
GP model of the inner optimisation uses a Matern3 covariance function whose hyper-parameters are
optimised on each iteration using gradient decent.
Figure 1 shows the paths travelled by the robot for each case. A quick visual inspection shows that
all methods were able to cover the region of interest and explore the entire environment. Entropy
based techniques (ED and EC) cover the region uniformly, reducing the uncertainty of the whole
area. Finally, UCBD and UCBC concentrate their samples towards the areas of higher pollution.
A very important difference is the shape of paths for discrete and continuous sampling strategies.
Even though κ has the same value for the acquisition function of UCBC and UCBD, the trajecto-
ries are much more concentrated over the high pollution areas for the continuous optimisation case
(UCBC). The main reason is that this method takes into account the value of the acquisition function
over the entire path that is being traversed. One way of seeing this is that if a method only takes
into account a discrete goal location it will not necessarily collect useful information on its way to
the target location. However, if the method does take into account the information gathered while
reaching the target location, then the informativeness of gathered samples will increase noticeably.
Table 1 shows the error for each method evaluated w.r.t. the ground truth on a grid over space and
time for the entire duration of the experiment. It can be seen that the proposed method (UCBC)

1http://java.epa.gov/castnet/reportPage.do
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Method RMSE WRMSE LogLoss WLogLoss

RD 7.3574 2.2324 3.4149 0.0956

ED 7.5225 2.2570 3.4332 0.0957

UCBD 7.1579 1.9764 3.3999 0.0937

RC 7.2238 2.0698 3.3951 0.0935

EC 7.1103 2.2958 3.3907 0.0956

UCBC 6.7971 1.4981 3.3537 0.0863

Method RMSE WRMSE LogLoss WLogLoss

RD 39.598 28.061 8.949 2.327

ED 38.389 25.106 10.013 2.779

UCBD 38.210 23.715 9.685 2.672

RC 43.390 27.045 10.197 2.754

EC 48.873 38.433 11.980 3.443

UCBC 30.121 21.422 8.098 2.145

Table 1: Results for US Ozone Monitoring (Left)
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Figure 2: Resulting paths for six different path planning techniques, axis in meters.

delivers the best performance for all indicators. The difference in performance between strategies is
remarkable for the weighted errors WRMSE and WLogLoss. The main reason for this is the extra
importance to model areas with high pollution (exploitative behaviour). It is also noticeable the
difference between continuous and discrete sampling strategies. An improvement is revealed for all
strategies as we are optimising over continuous paths rather than choosing discrete locations.

3.2 Luminosity monitoring

A small mobile robot was used to monitor dynamic illumination changes in an indoor environ-
ment. Two light sources with variable intensity are dimmed electronically to expose patterns with
a periodic component and amplitude changes through time. The robot is gathers samples from the
phenomenon every one second. Ground truth is obtained by placing static sensor boards in five lo-
cations. The same path-planning strategies from section 3.1 are compared in experimental trials that
last for ten minutes.
Figure 2 shows the paths travelled by the robot using each technique. Results are similar to the
experiment in the previous section. While random sampling strategies, RD and RC, derive paths
mostly concentrated at the centre of the studied region, paths for entropy based strategies, ED and
EC, are distributed more homogeneously over space. In constrast, UCB paths focus on areas with
high luminosity while at the same time exploring the environment for unknown sources of light.
Table 1 shows numerical results. UCBC delivers the lowest error and weighted error for all the
indicators. It is also shown that planning over continuous domains results in smaller error for the
case of UCB acquisition function. UCB strategies have the smallest error, demonstrating a central
advantage in monitoring dynamic phenomena: monitoring areas of higher pollution more intensively
results on lower overall error.
The developed method takes 4.8s in each iteration, close to real-time in a standard cpu (i5 processor).

4 Discussion

This paper proposed a new technique for informative path planning over continuous paths for envi-
ronmental monitoring. The main contribution is the derivation of a continuous action space strategy
by integrating over an acquisition function in a principled Bayesian optimisation framework. We
model space-time phenomena using Gaussian processes which enables a robot to learn periodic
patterns while preserving spatial correlations between observations. A first layer of BO is used to
predict regions of high concentration. Then, a second layer of BO is used to estimate the curve
parameters defining the best path to collect new observations. We believe that optimising over
curves for path planning can produce more informative decisions achieving longer term rewards.
The method explained in this paper can significantly improve the decision making process for effi-
ciently monitoring a wide variety of environmental phenomena.
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