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Abstract— Environmental Monitoring (EM) is typically per-
formed using sensor networks that collect measurements in pre-
defined static locations. The possibility of having one or more
autonomous robots to perform this task increases versatility
and reduces the number of necessary sensor nodes to cover the
same area. However, several problems arise when making use
of autonomous moving robots for EM. The main challenges
are how to build an accurate spatial-temporal model while
choosing locations for measuring the phenomenon. This paper
addresses the problem by using Bayesian Optimisation for
choosing sensing locations, and presents a new utility function
that takes into account the distance travelled by a moving robot.
The proposed methodology is tested in simulation and in a real
environment. Compared to existing strategies, our approach
exhibits slightly better accuracy in terms of RMSE error and
considerably reduces the total distance travelled by the robot.

I. INTRODUCTION

Environmental concerns have topped the agenda in the
past decades. Problems such as water and air pollution,
climate change and resource depletion are recognised by
the scientific community as major challenges. Meanwhile
machine learning and robotics research has seen significant
developments to take on problems with large quantities of
data, and allowing them to expand their potential to address
real-world problems. These create great opportunities to
tackle fundamental environmental issues [1].

A plausible long-term aspiration is having a group of
robots capable of monitoring the environment and executing
actions that maintain it suitable for humans. However, this
goal is far from being completed and the first challenge to
be solved is Intelligent Environmental Monitoring (IEM),
i.e. robots operating autonomously and deciding where to
gather samples from a natural phenomenon to best model it.
For instance, an environmental monitoring challenge would
be to supervise the quality of the water in a lake used
as water reservoir for a big city. This requires building a
model of the presence of pollutants over the whole lake
based on previously sampled areas. Measurements can be the
concentration of chemicals or other related variables such as
temperature or ambient light. Other examples are monitoring
air pollution in cities, tracking ozone concentration, studying
vegetation growth in problematic areas, among many others.
The technique presented in this paper can be applied to any
of these situations. Properly solving these problems requires
creating a reliable spatial-temporal model of a phenomenon
and, highly important, find the path that maximises the
robot’s understanding of the environment. Both areas have
received lots of attention over the years.
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This paper presents a novel approach for active sampling,
using Bayesian Optimisation (BO) [2–4]. The BO framework
allows a mobile robot to choose sensing locations taking
into account the uncertainty of the understanding of the
phenomenon, the expected value of the studied variable (e.g.
temperature, humidity, ambient light), and the cost to travel
to specific locations. This is achieved by using a Gaussian
Process (GP) [5] model for the phenomenon and choosing an
appropriate acquisition function that automatically deals with
the exploration-exploitation tradeoff. The main contributions
of this paper are the extension of the BO framework to
environmental monitoring with mobile robots and a new
acquisition function for the BO algorithm, that considers the
distance between sampling locations. This last innovation
is beneficial for robotic systems as it reflects the cost of
moving in the environment, mainly determined by the power
consumption.

The remainder of this paper is structured as follows.
Section II reviews the existing literature related to environ-
mental monitoring and spatial-temporal models. Section III
presents the theory behind GP regression for environmental
monitoring, while section IV details the proposed intelligent
sampling methodology using BO. Experimental setup, results
and analysis are shown in section V. Finally, section VI
draws some conclusions and suggests directions for future
work.

II. RELATED WORK

Environmental monitoring and informative path planning
have been studied by many researchers. Existing research
has focused mainly in two areas: modelling spatial-temporal
phenomena and choosing the most informative sampling
locations.

A. Spatial-Temporal Modelling

The idea of predicting the value of a process in space and
time, based on a set of samples, is not new and has been
widely studied. GP regression [5] has become popular in the
machine learning community due to its known good results
with spatially correlated data. For example, GP regression
has been used successfully for modelling the signal strength
of a wireless signal [6], or gas concentration in indoor and
outdoor environments [7].

Singh et al. [8] use GPs for spatial regression and address
the problem of defining appropriate covariance functions to
model spatial and temporal dependences for environmental
monitoring. They evaluate the performance of six different
classes of covariance functions combining stationarity, sep-
arability and temporal consideration. The main conclusion
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of their study was that separable, non-stationary covariance
functions give better results when modelling spatial temporal
dynamic variables.

Other strategies for learning spatial models have been
studied, such as Gaussian Process Mixtures [7, 9], Space-
Time Process Convolutions [10, 11] or Kernel DM+V/W
algorithm [12]. As this paper focuses on an efficient sampling
algorithm, we use a standard GP modelling approach where
time is considered as an additional dimension in the input
space.

B. Informative Sensing Locations

Initial solutions for informative sampling of environmental
phenomena were based on a fixed sensing network [13]. This
approach evolved rapidly into the use of sensing robots,
especially in large open environments, where one or more
mobile robots can access larger areas using less sensing
equipment.

The most popular approach to choose sampling locations
is based on Information Theory principles [14]. Sampling in
higher entropy locations [13, 15] or sampling in locations
with higher information gain [8, 16–18] are the known
strategies for choosing key points as sampling locations.
Krause and Guestrin [16] use a greedy algorithm for walk
selection maximising sub-modular functions to generate a
sequential path plan for each moving robot.

These approaches chose the path of one or more robots
based only on the existing uncertainty of the expected value
over the whole domain. However, in most environmental
monitoring applications, the places of interest for sampling
are associated with extreme values of the sampled variable.
For example, areas of high ozone concentration at lower
altitude, or areas of high pollutant concentration. There-
fore, the use of the BO framework fits logically because
it prioritises higher or lower values of the prediction in
the unsampled space. The theory behind this approach is
explained in section IV.

III. ENVIRONMENT MODEL USING GAUSSIAN PROCESS
REGRESSION

A mathematical model of a phenomenon is very im-
portant for making correct decisions using a quantitative
analysis. Scientists have established physical and chemical
laws that describe how environment phenomena behave and
how relevant variables relate to each other. Although this
deterministic approach may be valid for controlled situa-
tions, it is not useful for most environmental monitoring
applications. For example, the spatial-temporal distribution
of air-pollutant concentration in a city depends on traffic,
temperature, humidity, wind speed, air pressure and building
configuration among many others. There is no exact model
that can capture the cross dependencies between all of these
variables and achieve an accurate prediction of what the
concentration will be in any given location.

GPs are an elegant solution to perform regression in
stochastic processes, as they are a powerful, non-parametric
tool for non-linear regression. This section reviews GP theory

for regression. For deeper insights and a more extensive
theoretical description, the reader can refer to [5].

Essentially, a GP places a multivariate Gaussian distri-
bution over the space of functions mapping the input to
the output. It is completely defined by a mean function
m(x) and a covariance function k(x,x′) i.e. f(x) ∼
GP(m(x), k(x,x′)).

Using supervised learning to build a GP model involves
gathering a set of observations S = {xi, yi}Ni=1, where xi ∈
RD are the N sampling locations (inputs) in a D dimensional
space and yi ∈ R are the corresponding noisy outputs.
The learnt GP model can be used to predict a Gaussian
distribution over f(x∗) at any new sampling location x∗.

Samples from the real process are assumed to be noisy, i.e.
y = f (x)+ε, where ε ∼ N

(
0, σ2

n

)
. The joint distribution of

the observed target values y = {yi}Ni=1 and the test locations
y∗ = {y∗i }

M
i=1 is given by

[
y
y∗

]
∼ N

(
0,

[
KX K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
, (1)

where K(X ′, X ′′) is the covariance matrix, defined in a
component-wise fashion as K(X ′, X ′′)(i,j) = k(x′i, x

′′
j ),

X , X∗ are the groups of training and testing locations
respectively, and KX = K(X,X) +σ2

nI . Given the training
locations, the predictive distribution over the test locations
is given by

y∗|X,y, X∗ ∼ N (µ∗,Σ∗) , (2)

µ∗ = K(X∗, X)K−1X y ,
Σ∗ = K(X∗, X∗)−K(X∗, X)K−1X K(X,X∗) .

In practice, each test location x∗ ∈ X∗ is evaluated
separately. Therefore, for the case of a unidimensional out-
put, each testing point generates a unidimensional mean and
variance values as an output

µ(x∗) = K(x∗, X)K−1X y ,
σ(x∗) = K(x∗,x∗)−K(x∗, X)K−1X K(X,x∗) .

(3)

Choosing an appropriate covariance function is important,
as it influences the GP’s output directly. Several covariance
functions have been studied throughout the literature, such
as the Neural Network, Squared Exponential and Matern
covariance functions. In this work, we use the Squared
Exponential covariance function with automatic relevance
determination,

k(x′,x′′) = σ2
f exp

(
−1

2
(x′ − x′′)TM(x′ − x′′)

)
, (4)

where M is a square matrix of size D, with each element
defined as:

Mi,j =

{
`i if i = j
0 ∼ (5)

The parameter σf is called signal variance and the vector
` = {`i} contains a length scale parameter for each dimen-
sion.
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Although, this covariance function may be considered as
simple, the proposed methodology is capable of using a more
complex, non-stationary and/or non separable covariance
functions, as described in [8].

The optimal set of parameters θ∗ = {σf , `, σn} is found
by maximising the log marginal likelihood (LML) goal
function,

θ∗ = maxθ LML(y,X,θ) , (6)

with,

LML(y,X,θ) = −1

2
yTK−1X y− 1

2
log|KX |−

n

2
log2π . (7)

By finding the optimal hyper-parameters, the structure of
the covariance function is adapted to achieve an optimal
representation of the sampled data.

IV. INTELLIGENT ENVIRONMENT MONITORING

Using a GP model by itself is not enough for creating a
system for intelligent environmental monitoring. As it was
stated earlier, it is necessary to choose sensing locations
wisely to build a high quality model from the phenomenon
in each time step.

The goal of environmental monitoring is to detect abnor-
mal or extreme values of interesting variables. Therefore, it
can be addressed as an optimisation problem. However, not
every optimisation strategy is useful, as the goal is not only
trying to find the extreme values (maximum and minimum),
but also understand what happens across the studied area.
This is a non trivial problem considering that we are dealing
with an unknown and complex function modelling a time
dependent process.

An increasingly popular tool in machine learning that
helps solving all of the above stated problems is BO. This
section gives a short description of BO, as well as the benefits
and challenges of applying it to IEM. A complete and
extensive theoretical treatment of the general BO algorithm
can be found in Brochu et al. [2].

A. Bayesian Optimisation

The goal of BO is to find the maximum of an unknown
function g. This is equivalent to finding x? = arg maxx g(x).
If a particular problem requires finding the minimum, BO can
maximise the negative of the original function.

The only assumption over g is that it is Lipschitz-
continuous, i.e.

∃ C ∈ R | ‖g(x1)− g(x2)‖ ≤ C‖x1 − x2‖ ∀x1,x2 ∈ D.

BO is an iterative algorithm that makes use of Bayes’ the-
orem to combine prior knowledge with evidence to produce
a new estimation of the statistical model of g. The prior
is a GP model of the phenomena, whose mean captures
the estimated value of the function, and whose variance
determines the level of uncertainty of the prediction in that
particular location, as described by 3. Evidence are the noisy
samples from g. A clever use of this information may result

Algorithm 1 Bayesian Optimisation
1: Let xt be the chosen sampling point at iteration t.
2: Let s be an acquisition function.
3: for t = 1, 2, 3, . . . do
4: Evaluate s(x) over the sampling domain.
5: Find xt = arg maxx s(x)
6: Sample of the unknown process.
7: Update the GP model with the new sample.
8: end for

in a quantitative estimation of the most probable location of
the optimum.

The BO algorithm pseudo code is shown in Algorithm
1. In each iteration the BO algorithm must maximise the
expected utility, i.e. a function that quantifies the benefit of
choosing a specific location to be sampled. This function
is called acquisition function, s, and its general form will
be discussed in section IV-B. In brief, BO uses a quanti-
tative measure given by the acquisition function for taking
informed decisions and choose the most convenient locations
to sample the unknown function over its domain.

It can be noted that the problem of maximising g has now
been moved to finding the maximum of s in each iteration,
another non-convex optimisation. However, considering an
appropriate acquisition function, optimising in the domain of
the acquisition function is easier than the original problem.

There are several characteristics that make BO a powerful
algorithm for efficiently finding the maximum of a function,
particularly in IEM:

1) It considers a completely unknown function, where
no information about the explicit expression of the
function or its derivatives is present. Extremely helpful
for environmental applications where no closed form is
present for the phenomena.

2) It is aims to keep the number of samples to a minimum,
acknowledging a costly-to-evaluate function. Specifi-
cally useful for the application of IEM using mobile
robots, were saving energy is imperative.

3) Lastly, it makes use of a GP model to handle the
prior and posterior probability density functions over
the function space, using the uncertainty and expected
value to choose sampling locations.

B. Acquisition Function for IEM

The key for success of the BO approach for optimisation is
the acquisition function. The combination of an appropriate
acquisition function and a GP allows an elegant trade off
between exploration and exploitation while searching for the
optimum.

An often used approach is to sample in areas where the
robot does not have a good understanding of the phenomenon
by maximising the Information Gain (IG). The IG is defined
as the difference in entropy when adding a new point to the
training set,

IG(x) , H[X]−H[X ∪ x], (8)
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where H[X] is the entropy over the entire domain, using
X as training set. IG is a monotonic function that has its
maximum located where the variance is highest. The IG
approach would then correspond to an acquisition function
that is equivalent to the variance of the prediction over the
domain. Although this is a popular approach, we believe that
in most applications of environmental monitoring it is also
important to sample in areas where the studied phenomenon
may reach extreme values. This is because relevant informa-
tion is associated with data away from the norm, as it may
potentially cause problems to the environment.

The BO literature proposes several functions that make use
of the mean and variance, such as the probability of improve-
ment, the expected improvement and the Upper Confidence
Bound (UCB). We choose the UCB acquisition function
because it will not completely discard previously sampled
locations. The UCB acquisition function evaluated at location
x with uni-dimensional mean value for the prediction µ(x)
and variance σ(x) takes the form

UCB(x) , µ(x) + κ · σ(x) . (9)

The parameter κ is related to the exploration-exploitation
trade off. While high values of κ lead to an explorative
behaviour of the algorithm, lower values of κ favour ex-
ploitation near known sampled locations.

The approach studied in this paper uses BO to choose
sampling locations, by using the analogy that the costly-to-
evaluate function is the dynamic phenomenon present in the
environment. From the robotics point of view, it is useful to
get as much information as possible from the environment
while sampling in a small number of locations. If these
locations are placed and ordered smartly, the robot will save
energy while constructing a reliable spatial-temporal model
of the phenomenon.

All of the above is achieved by using an acquisition
function that takes into account the mean of the prediction,
the variance and the distance to the last sampled location in
the domain. We call this acquisition function Distance-based
Upper Confidence Bound (DUCB), due to its similarities
with UCB. Its expression is given by

DUCB(x|x−) , µ(x) + κ · σ(x) + γ · d(x,x−), (10)

where the term d(x,x−) is the euclidian distance between
the last sampled location x− and the candidate location x.

In the existing literature the acquisition function is eval-
uated over the whole domain of each dimension of x.
However, for the IEM application, the acquisition function
is evaluated over spatial dimensions of x, disregarding the
time dimension and setting it to a fixed value. This means
that for every iteration, the next sampling location is chosen
over the spatial domain for that particular instant of time.

A one dimensional example of the BO algorithm using
DUCB acquisition function, with κ = 28.6 and γ = 0.72, is
illustrated in Figure 1. It is possible to see how the mean of
the GP regression model quickly converges to the unknown
function and the variance is reduced near sampling locations.
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Fig. 1. One dimension example of active sampling based on BO. The
continuous line and shade represent the GP mean an variance respectively.
The dashed line is the unknown function, and noisy samples from this
function are shown as crosses. The dotted line is the DUCB acquisition
function, with a circular mark on its maximum. This function is scaled
and with an offset for visualisation purposes. The last sampling locations is
shown with a vertical dash-dot line.

The behaviour of the acquisition function changes through
time1. Initially, when the variance is high, the sampled
locations are automatically chosen by the algorithm to get an
initial approximation of the unknown function. In the long
term, samples concentrate near higher values of the unknown
function. The effect of the distance-penalty in DUCB is clear,
as the next sampled location (circle) is chosen to be close to
the last sampled location (vertical line).

V. EXPERIMENTS

The proposed active sampling technique was evaluated
in two experiments. The first one is a simulated scenario
using a real dataset obtained across the entire US territory.
The second is a real-world experiment using an autonomous
mobile robot to model ambient conditions indoors.

A. Simulated Experiment

This experiment uses part of a real-world environment
dataset, made available by the United States Environmental
Protection Agency2. This is a considerably large dataset,
covering the U.S territory with hourly samples dating back

1A video showing all iterations is available at http://www.it.usyd.
edu.au/˜rmar5258/IROS2012/1d\_example.html

2Dataset web access: http://java.epa.gov/castnet/
reportPage.do
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(a) Ground Truth (b) Information Gain (c) BO with UCB (d) BO with DUCB

Fig. 2. Estimated mean of a GP model of ozone concentration [ppb]. Color-scale showed in (a) and instant of prediction (t = 0.62[day]) is the same for
all figures.

(a) Information Gain (b) BO with UCB (c) BO with DUCB

Fig. 3. Trajectories followed by robots, samples are only allowed inside the US territory.

to 1987, including meteorological variables such as tem-
perature, humidity, solar radiation and ozone concentration
among many others.

The environmental phenomenon to be monitored is the
ozone concentration in [ppb] with raw data provided by
N = 103 static monitoring stations across the US territory
for the 1st of August 2009. A spatial-temporal GP was
trained with the data, using the Squared Exponential with
automatic relevance determination covariance function (4),
whose optimal hyper-parameters were found by maximis-
ing the log marginal likelihood ({σf , `lat, `long, `t, σn} =
{14.02, 4.1, 4.1, 0.1336, 2.09}). A special restriction of hav-
ing the same value for both spatial length scales is en-
forced during the optimisation process, because of the known
isotropic behaviour of gas concentration in space. The mean
of this GP (µgt), shown in Figure 2a, is used as ground truth
for the entire continuous domain in space and time.

The sampling performed by a mobile robot is simulated
by noisy measurements from the ground-truth GP mean, with
σn = 2. Three different sampling algorithms are ran over the
entire temporal domain, i.e. 24 hours. The first algorithm
choses sensing locations based on IG criterium, the second
one picks sensing locations using the BO algorithm with
UCB as acquisition function (with κ = 8), and the third uses
the BO algorithm with our proposed DUCB as acquisition
function (with κ = 8 and γ = 7).

The same starting point x0 = (Long,Lat) = (−95, 40)
was selected for all three algorithms. The simulation process
considers a hypothetical UAV that travels at a speed of
600[km/h]. Given the short length scale in the time dimen-
sion, the high speed helps dealing with the large distances
that need to be covered by the robot in a small amount of
time. This may seem quite extraordinary, however, the results
are equally valid for lower scale problems if the size of the

domain and speed are reduced proportionally.
An iterative process is executed for the 24 hours of simu-

lated data3. In each iteration, a robot moves towards the last
selected goal. Each robot uses its own criteria for selecting a
new goal after reaching the previous one. The concentration
of ozone gas particles is sampled every 10[min] while the
robot moves towards the goal. This ensures that robots
take a similar number of samples over the experiment, the
sole difference being the places where measurements are
taken, allowing a proper comparison of the three different
algorithms. The estimated GP model of the phenomenon is
recalculated after a new sample is acquired. Figure 2 shows
the estimated mean of the GP model at an arbitrary time
step (t = 0.62[day]) of the simulation for the three sampling
strategies. The trajectories followed by each of the robots
during the 24 hours sampling window are shown in Figure
3.

A visual inspection over the IG strategy (Figure 2b) allows
stating that it fits the ground truth data poorly. The IG
strategy shows similar performance for the overall space, not
showing any preference for higher or lower ozone concen-
trations. The BO approach with UCB (Figure 2c) and the
strategy using BO with DUCB (Figure 2d) present a better
fit to the ground truth data. Both of them model correctly the
highest spike in ozone concentration on the west of the U.S.
However, using the DUCB seems to capture in a better way
the two high concentration areas on the west of the United
States of America.

The trajectories followed by each robot during the 24
hours sampling window are shown in Figure 3. It can be
seen that the IG sampling strategy picks locations far away

3A video showing the ground truth, mean estimation, the acquisition
function and the trajectory for each approach can be found at http://
www.it.usyd.edu.au/˜rmar5258/IROS2012/results.html
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TABLE I
RESULTS FOR SIMULATED EXPERIMENT, MEAN AND STD ARE IN [PPM]

Indicator Method Mean Std Distance 103[km]

RMSE IG 13.78 2.31 717.38

RMSE UCB 13.04 2.26 718.25

RMSE DUCB 12.33 3.47 639.06

WRMSE IG 8.21 1.78 717.38

WRMSE UCB 7.10 1.65 718.25

WRMSE DUCB 6.51 1.21 639.06

from each other and usually the extremes of the territory. A
similar behaviour is observed for the BO with UCB strategy,
although the sampling locations tend to concentrate on the
south west of the U.S. territory. This is because the mean of
the ozone concentration is higher in that area over the whole
day. Finally the approach using BO with DUCB presents a
more elegant solution, where each sampling point is near to
the last one. This strategy distributes measurements over the
whole domain, and at the same time presents dense sampling
in high ozone concentration areas.

The three different algorithms are quantitatively evaluated
using two different performance indicators, depending on the
error between the ground truth and the model after each
time step. The performance indicators are calculated over the
whole domain, using a fine grid resolution with M samples.
The first one is the Root Mean Squared Error (RMSE), that
reflects the error in estimation independent of the predicted
value. This means that RMSE indicator gives the same
importance to the error where the ozone concentration is low,
than where the ozone concentration is high. Therefore, we
believe RSME is not the best indicator for EM applications.
The second performance indicator is the Weighted Root Mean
Squared Error (WRMSE),

WRMSE =

√√√√∑M
i=1

[
(µ(x∗)−µgt(x∗))(µgt(x∗)−minµgt(x∗))

maxµgt(x∗)−minµgt(x∗)

]
M

.

(11)
WRMSE is essentially identical to RMSE but the error

is multiplied by a factor that depends on the mean of the
predicted value, normalised between the minimum and the
maximum over the entire domain. This performance indicator
gives more importance to the error in areas with higher
values of the studied phenomenon, a logical assumption if
we are interested in potentially dangerous areas for humans.
We believe that WRMSE is a suitable performance indicator
for this particular application, considering that ozone is a
pollutant at ground level.

Table I presents the results for each sampling method using
the two different indicators. For each method, we calculate
the mean and standard deviation of the indicator through
time, and the total distance the robot travelled.

Overall, it can be seen that the DUCB based method has
the smallest error in RMSE and in WRMSE. The standard
deviation of DUCB for the RMSE indicator is higher than

Fig. 4. Mobile robot used for indoor experiment.

the other strategies because DUCB avoids sampling in areas
where the ozone concentration is known to be low. Therefore,
it presents small error in high ozone concentration areas and
bigger error in lower ozone concentration areas, increasing
total standard deviation. The IG approach has the bigger
error but smaller standard deviation because it distributes
measurements uniformly over the entire domain. Regarding
WRMSE, the DUCB method has the best results in terms
of mean and standard deviation, because the error in lower
ozone concentration areas is less relevant (11). The distance
travelled by the DUCB sampling strategy is 11% smaller
than the other approaches, due to the distance penalty in the
acquisition function. This means that our proposed DUCB
acquisition function results in lower error and at the same
time reduces energy consumption.

B. Real World Experiment

The studied approach for IEM was tested in a real envi-
ronment using an autonomous robot (Figure 4). The robot is
equipped with a laser scanner, odometry, and an ambient light
sensor. It uses a laptop running ROS4 as main processing
unit. The built-in packages in ROS deal with localisation and
mapping using the laser scanner and odometry. Therefore, the
robot is assumed to be properly localised during the whole
measurement process.

The monitored phenomenon is the ambient light distribu-
tion in an indoor office environment. Figure 6a shows the
map built autonomously by the robot, where the shaded
area represents the selected area for modelling the phe-
nomenon. To create the ground truth of the intensity of
light, the robot was driven manually over the whole domain
taking a considerable amount of measurements. These were
used to train a GP as the ground truth (shown in Figure
5a), with optimal hyper-parameters ({σf , `lat, `long, σn} =
{40.01, 0.7, 0.7, 6.02}).

4Robot Operating System http://www.ros.org
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(a) Selected Area for Experiment

(b) Information Gain

(c) BO with UCB

(d) BO with DUCB

Fig. 5. Estimated mean of a GP fitted to training data of each sensing
strategy. Light intensity with no SI units. Axis show distance in meters.

The three different approaches tested in V-A are now
run in the described real environment using the autonomous
robot. The intensity of the ambient light was kept constant
during the execution of the experiment to allow repeatability
(no variation of the process with time). Each sensing strategy
was tested for 10 minutes, acquiring one measurement per
second. The final model built by each policy is displayed
in Figure 5, where higher light intensity is equivalent with
high values in the plot (no known scale of luminosity can be
provided due to the nature of the sensor). The three models
are very similar because for this experiment the process does
not vary with time, i.e. it is expected that all policies produce
an accurate model if they have visited the entire domain.

Figure 6 shows the trajectories followed by the robot using
the three sampling strategies. It can be seen that the resulting
trajectories of the IG and UCB approaches are spread over
the whole domain. This is because after reaching a goal
the next selected sensing location is very far from the last
one. A slight difference can be observed when using the
UCB strategy (Figure 6b), because sensing locations are
more concentrated in areas with higher luminosity values.
The trajectory followed by the robot using our proposed
acquisition function DUCB (Figure 6d) is clearly more
concentrated in areas of higher ambient light. In contrast,
areas of lower ambient light are only visited once during
the experiment, which is enough for the underlying process
in this experiment. Comparing against a distance penalised

(a) Selected Area for Experiment

(b) Information Gain

(c) BO with UCB

(d) BO with DUCB

Fig. 6. The trajectories followed by the robot. Samples are only taken
inside the allowed area defined by (a). Axis show distance in meters.

TABLE II
RESULTS FOR REAL EXPERIMENT

Indicator Method Value Distance [m]

RMSE IG 16.44 157.01

RMSE UCB 17.16 217.45

RMSE DUCB 16.91 98.08

WRMSE IG 5.41 157.01

WRMSE UCB 4.60 217.45

WRMSE DUCB 4.70 98.086

information gain criterium (DIG) may be possible; however,
we believe this acquisition function is not suitable as it does
not consider the mean of predictions.

Table II details the error of prediction for each sensing
method, using the RMSE and WRMSE over the whole spatial
domain (No mean and standard deviation of the indicators
provided as the process does not vary with time). It can be
seen that the RMSE is similar for all three different strategies
and that no relevant differences are present. However, our
proposed policy using distance penalty reduces the travelled
distance almost to half of the other strategies, while building
a similar model. Having said that, it is clear that our sensing
strategy exposes a more efficient way of sampling.
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VI. CONCLUSION

This paper proposes a new planning strategy for environ-
mental monitoring. The main contributions are:

1) Extending the BO framework to choosing sensing lo-
cations in environmental monitoring applications. This
allows mobile robots to take informed decisions based
on the spatial-temporal GP model of the phenomena,
getting as much relevant information as possible.

2) Presenting a new acquisition function, called Distance
based Upper Confidence Bound. This acquisition func-
tion addresses indirectly the exploration-exploitation
tradeoff. In addition, it is energy efficient since it
reduces the total distance travelled by the robot.

The proposed methodology was evaluated using simula-
tion and a real experiment. The results show a notable im-
provement in terms of error when monitoring extreme areas
of time varying processes (ozone concentration experiment).
A considerably important result is that our proposed acqui-
sition function helps reducing travel distances to achieve
comparable results to other methods. This can be appreciated
in the simulated and in the real experiments, where the
travelled distance was reduced by 40%.

The contributions made in this paper enable an intelligent
autonomous robot to efficiently monitor the state of an
environmental phenomenon. We believe that using BO and
designing new acquisition functions can help dealing with
the difficulties when sampling complicated environmental
processes.

As future work, we expect to include experiments using
non-stationary covariance functions for dynamic processes.
Admitting a variation in time dependancy over space can
lead to interesting behaviour of autonomous robots, such as
sampling more frequently in highly dynamic areas. Finally,
we plan to study the maximisation of the acquisition function
in a parametrized trajectory space, finding a continuos path
that provides the highest information content for various
types of acquisition functions.
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