
Unsupervised Incremental Learning for Long-Term Autonomy

Lionel Ott and Fabio Ramos

Abstract— We present an approach to automatically learn
the visual appearance of an environment in terms of object
classes. The procedure is totally unsupervised, incremental, and
can be executed in real time. The traversability property of
an unseen object is also learnt without human supervision
by the interaction between the robot and the environment.
An incremental version of affinity propagation, a state-of-the-
art clustering procedure, is used to cluster image patches
into groups of similar visual appearance. For each of these
clusters, we obtain the probability of representing an obstacle
through the interaction of the robot with the environment. This
information then allows the robot to navigate safely through the
environment based solely on visual information. Experimental
results show that our method extracts meaningful clusters from
the images and learns the appearance of objects efficiently. We
show that the approach generalises well to both indoor and
outdoor environments and that the amount of learning reduces
as the robot explores the environment. This is a fundamental
property for autonomous adaptation and long-term autonomy.

I. INTRODUCTION

The ability to automatically build a representation of an
environment and to adapt to new, unseen scenarios without
human supervision is paramount for long-term autonomy
in mobile robotics. Additionally, to navigate safely a robot
needs to recognise particular properties of objects, the
most fundamental one being whether or not an object is
traversable. Often such representations and object properties
are carefully engineered by a human expert, for example by
providing a labelled dataset for learning a semantic map.
While this guarantees a representation suitable for the task
at hand it can be tedious to obtain and inflexible in case
of environment changes. Alternatively, methods that build a
model of the environment in an unsupervised fashion have
the advantage that they can adapt to changes easily. They also
make robots more accessible to non-experts as no special
setup is required and can operate in areas where no data is
available for prior training.

We propose a method to learn the visual appearance of
objects and whether or not they represent an obstacle. The
entire learning process runs in real time and without the need
for human supervision. We build the model using cluster-
ing, specifically, affinity propagation [5]. The advantage of
affinity propagation over other clustering methods, such as
k-means, is that it does not require the number of clusters
to be known a priori. Furthermore, affinity propagation finds
high quality clusters while being efficient to compute. An
extension of affinity propagation called streaming affinity
propagation [21] allows us to cluster data streams in real

Lionel Ott and Fabio Ramos are with the Australian Centre for Field
Robotics, School of Information Technologies, The University of Sydney,
Australia.

Fig. 1: Examples of the visual appearance of object parts
detected by our method. From top to bottom: seat of a chair,
a tree trunk and a car tire (best viewed in colour).

time. The visual appearance of the environment is encoded
by colour histograms and local binary patterns [15]. These
features are clustered to generate groups of similar appear-
ance. Interactions of the robot with the environment provides
us with information on whether or not an object represents
an obstacle. The model built from this information is then
used to build a k-nearest neighbour classifier which allows us
to label new images into parts that are traversable and non-
traversable. Based on the labels obtained from the classifier
learnt through self-supervision, a simple decision making
procedure can determine safe motion commands for the
robot.

Unsupervised learning for robot navigation has received
increasing attention in recent years. The methods developed
within the DARPA program Learning Applied to Ground
Vehicles (LAGR) were concerned with learning to predict
terrain traversability from images only. Clustering is often
employed in these cases particularly methods that do not
require the number of clusters to be defined a priori such as
spectral clustering [14] and latent Dirichlet allocation [2].

This paper follows the same ideas but it is the first
to apply an online version of affinity propagation to the
problem. Experiments carried out with a real robot show
that the clusters obtained by the proposed method capture the
different objects in the environment accurately. We demon-
strate that the proposed method improves the recognition of
the different objects in the environment as time progresses.
Finally, we show that this representation can be used to
successfully detect and avoid obstacles in both indoor and
outdoor environments.

The main contributions of this work are:

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 4022

• a real-time system that learns a model of the appear-
ance of objects in a totally unsupervised manner with
streaming affinity propagation;

• a simple and efficient set of visual features to obtain
meaningful clusters;

• experimental evidence in both indoor and outdoor envi-
ronments demonstrating that the robot learns to recog-
nise obstacles in the environment through interaction.

II. RELATED WORK

In the context of the LAGR program interesting meth-
ods have been developed that learn to extract traversability
information from images observed by a robot. Happold
et al. [6] predict the 3D terrain traversability from images
based on data obtained from a stereo camera and a neural
network classifier. Colour features are linked to geometry
and used to predict traversability with a histogram repre-
sentation. The approach by Howard et al. [7] uses support
vector machines to learn the mapping between geometrical
features and traversability. This mapping is then used to
assign traversability information to clusters of colour features
obtained through k-means clustering. The work by Kim et al.
[9] uses the experience of the robot as it drives over parts of
the environment to train a traversability classifier. A simple
incremental clustering method is used to associate the terrain
appearance with traversability information by driving over
the observed area. Similar to our method these approaches
use a combination of colour and texture features to represent
the appearance of the environment. However, all but the
work by Kim et al. [9] require a supervised classifier to
predict traversability, which requires data being labelled by
a human expert. The main difference though lies in the way
visual appearance is related to the traversability information.
Whereas our method uses affinity propagation and thus can
infer the number of clusters to use, previous methods either
define the number of clusters “a priori” or use simple ad hoc
rules for clustering.

Training a classifier with the information gathered by
a robot while driving can be used not only to determine
traversability, but also for terrain roughness estimation, as
shown in the work by Stavens and Thrun [18]. The roughness
of the terrain is measured by an inertial measurement unit
as the vehicle drives over it. This estimate is then associated
with terrain discontinuities extracted from a 3D laser point
cloud, thus allowing the vehicle to predict terrain roughness
before driving over it; such that it can slow the vehicle
down if needed. A similar approach was taken by Ulrich and
Nourbakhsh [19] to detect obstacles using only monocular
vision. Their method uses the terrain appearance of past
trajectories to learn the general appearance of the ground
plane. Obstacles are subsequently defined as parts in the
image that differ significantly in appearance from the ground
plane. The obvious drawback of this method is that it only
learns a single model for the ground plane which requires
the environment to be uniform. Secondly, training has to
be performed by a human driving the robot through the
environment, as opposed to our method where the robot

learns the model on its own. In a similar spirit Maier et al.
[11] use the information of calibrated 3D laser scan and
monocular vision to train a ground classifier which is then
used to avoid obstacles in absence of continuous 3D data.
The work by Modayil and Kuipers [13] is similar to ours
in that it collects features from the robot’s sensors, a laser
scanner in this case, and builds a model of them. While their
approach mainly concentrates on the feature extraction and
we focus more on the model building.

A method to learn and classify dynamic obstacles in an
unsupervised fashion was proposed by Katz et al. [8]. The
method uses affinity propagation to cluster laser stamps and
visual stamps into groups of detected objects. These are
then used in conjunction to classify dynamic objects in the
observed scene. As with our approach, affinity propagation
would be too slow for the task. They therefore propose a
method to incrementally update affinity propagation. The
basic idea of their approach is to replace the single exemplar
used in affinity propagation with a collection of data points
to represent the data set. This effectively reduces the number
of points involved in the clustering process.

In the computer vision community, the topic of object de-
tection has been extensively studied and has produced some
interesting results. For example, the parts based methods by
Weber et al. [20], Agarwal and Roth [1], and Fergus et al. [4]
represent an object by a collection of parts from a vocabulary.
While these methods successfully learn to detect objects in
images it is unclear whether such methods are suitable for
robotic applications as the scenes are sterile in comparison to
those found in robotic applications. Furthermore the training
phase in all the mentioned approaches is too expensive to be
performed in real-time.

As indicated by the publications from the LAGR project
clustering is an important technique in unsupervised learn-
ing. The desired features a clustering method should have
are, however, challenging. Most importantly the number of
clusters should not be required to be known a priori but
determined by the method from the data itself. The work by
Kim et al. [9] for example employs a heuristic based cluster-
ing method to achieve this. Other more theoretically princi-
pled methods include latent Dirichlet allocation [2], spectral
clustering [14], DBSCAN [3] and affinity propagation [5].
All of the above methods make different assumptions when
modelling the clusters and in the way the clustering is
computed. In this work we use affinity propagation due to
its simplicity of implementation and flexibility.

III. UNSUPERVISED OBJECT DISCOVERY

In this section we describe our system which enables a
robot to explore the environment and build a representation
of it from visual features. The model represents objects
present in the environment and if they represent an obstacle.
The features are clustered with a combination of affinity
propagation and streaming affinity propagation which we
review in Section IV. Streaming affinity propagation is
responsible for the long-term model of the environment while
affinity propagation captures the short-term model. With two

4023

Model learning Bumper Properties Clusters (AP) Classifier

Feature extraction Camera Patches Features

Decision making Classifier Objects Movement

Fig. 2: Overview of the processes of our method. Common to all operations is the division of the image into patches and the
extraction of features from those. The learning of a model then proceeds by attaching the obstacle property captured by the
bumper to these features. Next the features are clustered using affinity propagation and the result is used to build a classifier.
When using an existing model for movement decisions a patch is classified according to its features and the assigned cluster
and traversability property is obtained. This information is then used to determine the best motion command for the robot.

separate instances for different time scales we can react
quickly to changes in the environment while maintaining
a stable long-term model. By continuously adding new
observations into the clustering system the model adapts to
changes in the environment and improves over time. The
labels required for the classification of objects into obstacle
and non-obstacle classes are obtained by the robot through
collisions, or lack thereof, with the environment. We provide
a short overview of the processes involved in the system next.

A. Overview
A schematic overview of the processing pipeline is shown

in Figure 2. As a first step our method extracts features from
raw images in the following manner (centre row in Figure 2):

1) divide the original image into smaller patches in order
to roughly capture a single object per patch;

2) compute colour histograms and histograms of local
binary patterns for each of the patches to capture colour
and texture information.

Once the features are extracted we can use them to learn a
model of the environment as follows (top row in Figure 2):

1) assign each patch a traversability property obtained
from the bumper for object classification;

2) add the new features to the clustering system and
recompute the clusters to update the model of the
environment;

3) use the clustering results to build a k-nearest neigh-
bour classifier to classify new observations as either
traversable or non-traversable. A k-nearest neighbour
classifier is used as it can be trained quickly from the
available data.

With a model of the environment at hand we can make deci-
sions about the motion commands the robot should execute
using the following approach (bottom row in Figure 2):

1) obtain the object class for the features extracted from
the image patches by classifying them using the k-
nearest neighbour classifier;

2) obtain the traversability property associated with each
object class;

3) make movement decisions based on the arrangement
of traversable and non-traversable parts of the envi-
ronment.

The steps outlined above will be described in greater detail
in the following. We start with the extraction of features and
traversability labels. Thereafter, we describe how the model
of the environment is built using affinity propagation and
how the traversability information is processed. Finally, we
show how the learned model can be used determine to motion
commands for the robot.

B. Feature Extraction

Images are likely to contain multiple objects with very
distinct visual appearances, such as ground, chairs, trees,
cars etc. Ideally we would like to compute the features
for parts of the image that represent a distinct object. The
difficulty is how to select parts of the image that are likely
to only contain a single object. We choose the widely used
approach of segmenting the image into equally sized rectan-
gular patches. For our application we segment a 320 × 240
image into 32 rectangular patches of identical size. This
has the advantage that it does not require any additional
computations while providing a reasonable approximation
if the individual patches are small enough. More elaborate
approaches, such as watershed based methods [12], might
provide better approximations but are also computationally
more expensive. From each of the patches we compute
two different features: The colour distribution in the HSV
colour space and the distribution of local binary patterns [15].
These features allow us to consider both colour and texture
when comparing image patches. As we represent the features
using histograms, the similarity values needed for affinity
propagation are obtained using the Bhattacharyya distance
between the colour and texture histograms of pairs of image
patches, which is computed as follows:

d(H1, H2) =

√√√√√1−
N∑
i=1

√
H1(i)H2(i)√∑N

j=1H1(j)
∑N

j=1H2(j)
, (1)

4024

where N is the number of histogram bins, and H1, H2 are
the two histograms to be compared.

C. Obstacle Label Extraction

In order to associate obstacle information with the learned
objects we need to know how the robot interacts with the
environment. Whenever the robot collides with obstacles
in the environment we assign an “obstacle” label to the
currently observed image patches. This information is then
transferred to the learned objects represented by clusters. As
the robot will never collide with the ground, image patches
representing the ground will not be labelled as obstacles,
while parts of the environment that represent obstacles, such
as walls, chairs, trees and cars will be labelled as obstacles.
In the next section we detail how the features and the obstacle
labels are used to learn object classes and their obstacle
property.

D. Building the Model

Features extracted from image patches are added sequen-
tially into the clustering system. The clustering is performed
by affinity propagation (AP) and streaming affinity propaga-
tion (STRAP) which are explained in detail in Section IV.

The pseudo code in Algorithm 1 shows the steps per-
formed for each observation we add. Each observation is
added to the long-term clustering instanceMlong (STRAP),
where it is either used to update an existing cluster or added
to the outlier reservoir, outliers. In the latter case, the data
point is additionally added to the short-term clustering in-
stanceMshort (AP), which is rebuilt thereafter. When merg-
ing the two clustering instances, MERGE(Mlong ,Mshort),
the information about clusters stored inMshort is integrated
into Mlong.

In order to decide if a specific cluster represents an
obstacle or not we keep count of how often members of a
cluster have been labelled as obstacle and non-obstacle. With
these two counts we can easily compute the probability of
each cluster representing an obstacle as follows:

p(obstaclei) =
#obstaclesi

#obstaclesi + #non-obstaclesi
, (2)

where p(obstaclei) is the probability of cluster i representing
an obstacle, #obstaclei and #non-obstaclei are the number of
image patches in the cluster that were labelled as an obstacle
and non-obstacle respectively. This additional information
about the clusters is never used in the clustering process
itself.

E. Building the Classifier

In order to use the model to predict where obstacles
are located in new images a classifier is trained on the
exemplars of the clustering. As the method has to run in real-
time and the model can change frequently methods that are
computationally expensive to train can not be used. For this
reason we use a k-nearest neighbour classifier which can be
efficiently trained from the clustering result. The training data
are the features of the exemplars identified by the clustering,
i.e. only a small portion of the original features are used to

ADD-OBSERVATION(z)

1 INSERT(Mlong , z)
2 if z ∈ outliers
3 INSERT(Mshort , z)
4 UPDATECLUSTERING(Mshort)
5 if |outliers| > θ
6 UPDATE-CLUSTERING(Mlong)
7 MERGE(Mlong ,Mshort)
8 CLEAR(Mshort)

Algorithm 1: Pseudo code detailing the steps performed
when a new observation z is added to the environment model.
Mlong is the long-term clustering instance, whileMshort is
the short-term one.

(a) move forward (b) stop and rotate left

(c) stop and rotate left (d) rotate until no longer stuck

Fig. 3: Exemplary classification results and movement deci-
sions. Obstacles are denoted by the shaded areas while the
command decision is listed below each image.

build the classifier which further reduces the computational
cost.

F. Decision Making

The first step of the decision making process is to obtain
the obstacle information for the patches of the current image,
obtained as described in Section III-B. This information
is obtained by classifying all patches using the previously
trained classifier. This yields an object class and the associ-
ated obstacle property for each patch. Using this information,
a simple decision making process based on the arrangement
of the traversable and non-traversable parts in the image de-
termines safe motion commands for the robot. The procedure
checks if there is enough free space in front of the robot to
warrant safe forwards movement. Should this be the case the
robot is allowed to move forward. Otherwise, the direction
which has the best chance to offer free space in front of the
robot is determined and an appropriate rotation is executed.

4025

... i k ...

r(i, k)

a(i, k)

a(i, k′) r(i′, k)

Fig. 4: This figure shows the interaction between the nodes
when exchanging messages. The availability messages of the
other nodes are used when sending a responsibility message
from node i to k. Similarly the responsibilities of all nodes is
considered when sending an availability message from node
k to i.

Figure 3 shows some images, with obstacles marked by the
shaded areas, and the action chosen by the decision making
process indicated below each image.

IV. AFFINITY PROPAGATION

In this section we give a short introduction to affinity
propagation [5] and streaming affinity propagation [21], the
clustering methods used in our approach. The main advan-
tage of affinity propagation over other popular clustering
methods such as k-means, is that it does not require the
number of clusters to be defined a priori. This is important
since we do not assume any knowledge about the number of
objects present in the environment.

A. Optimisation Problem Formulation

Affinity propagation considers the problem of identifying
clusters as the search for class label assignments c =
(c1, . . . , cN), called exemplars, that minimises the energy
function

E(c) = −
N∑
i=1

s(i, ci) , (3)

where N is the number of data points, ci is the label assigned
to the i-th data point, and s(i, ci) is the similarity between
two data points. The minimisation of the energy function
is then reformulated as a maximisation of the net similarity
S(c), which is the sum of the negative energy function and
a penalty term to enforce valid configurations:

S(c) = −E(c) +

N∑
k=1

δk(c) =

N∑
i=1

s(i, ci) +

N∑
k=1

δk(c) , (4)

where δk(c) has the form

δk(c) =

{
−∞ if ck 6= k but ∃i : ci = k

0 otherwise
, (5)

and penalises invalid configurations. An invalid configuration
is one where a point i chooses another point k as its exemplar
without k being labelled as an exemplar. Equation (4) can
be solved with loopy belief propagation [16] on the factor
graph [10] representation of Eq. (4). A detailed derivation of
the messages used in affinity propagation as shown next is
given in the supporting online material of [5].

B. Affinity Propagation

The affinity propagation algorithm requires as sole input
the similarity values between pairs of data points. From
this information a graph is constructed, where the nodes
represent the individual data points and edges represent the
similarity between pairs of points. The similarity values can,
for example, be the Euclidean distance between points or any
other similarity measure that is meaningful to the underlying
data. While affinity propagation does not require the number
of clusters to be defined a priori, it uses the self-similarity
values s(i, i) to influence the amount of clusters found.

The computations performed by affinity propagation con-
sist of exchanging two types of messages between connected
nodes in the graph. Each of these two message types mea-
sures a different property:
• responsibility r(i, k), sent from data point i to the

candidate exemplar k measures how well-suited data
point k is as an exemplar for data point i. This value
considers the other potential exemplars for point i as
well.

• availability a(i, k), sent from the candidate exemplar k
to data point i measures how advantageous it would be
for point i to choose data point k as its exemplar. This
value takes into account the evidence obtained from
other data points about the suitability of point k as an
exemplar.

These two messages are computed as follows:

r(i, k) = s(i, k)− max
k′s.t.k′ 6=k

(
a(i, k′) + s(i, k′)

)
(6)

a(i, k) = min
(

0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max
(
0, r(i′, k)

))
,

(7)

where s(i, k) is the similarity score between point i and
k. The so called self-availability a(k, k) is computed dif-
ferently:

a(k, k) =
∑

i′s.t.i′ 6=k

max
(
0, r(i′, k)

)
. (8)

The interaction of these two messages is shown graphically
in Figure 4. From this it is visible how sending a responsi-
bility message uses all the current availability messages and
vice versa.

To obtain the clustering result the algorithm first initialises
all messages to 0 and then iterates the following two steps
until convergence (1) update responsibilities (2) update avail-
abilities. Convergence is measured through the net-similarity
score of the current clustering which is computed from
the responsibility and availability values. Figure 5 shows
a sequence of clustering states of a typical clustering run.
Starting out with no clear preference until at the end the set
of exemplars is found.

C. Streaming Affinity Propagation

While affinity propagation converges reasonably fast, it is
not fast enough for use in real-time robotics applications with

4026

(a) State 1 (b) State 2 (c) State 3 (d) State 4 (e) State 5

Fig. 5: Different states in an exemplary run of affinity propagation. The arrows indicate the responsibility message sent from
one point to another. Darker arrows indicate a higher message value. At the beginning no point is better suited to be an
exemplar then any other, then over time by passing messages the most appropriate exemplars emerge which are marked in
red.

a large number of observations. However, there are methods
which extend affinity propagation to handle data streams in
real time, such as streaming affinity propagation by Zhang
et al. [21]. The naı̈ve approach to use affinity propagation
for data streaming would be to recompute the clustering
for every newly observed data point. This obviously does
not work when real-time performance is required. Streaming
affinity propagation solves this problem with the following
two ideas:

1) reduce the number of data points involved in the
affinity propagation computation;

2) limit the number of times affinity propagation needs to
be executed.

These two goals are achieved by treating data points as one
of two types, those that are similar to existing clusters and
those that are dissimilar from the existing clusters. Points
that are similar to an existing cluster are used to update
the most similar cluster. Points that are dissimilar are added
to an outlier reservoir which stores the data points that
currently cannot be represented by the clusters. Each cluster
is described by a 4-tuple (ei, ni,Σi, ti) where ei is the
exemplar associated with the cluster, ni is the number of data
points represented by the cluster, Σi is the distortion of the
cluster, and ti is the last time a point has been added to the
cluster. Once the outlier reservoir is full, affinity propagation
is used to recompute the clustering. The similarity values
in this case take the information stored in the 4-tuples
into account. Once affinity propagation converges, the tuples
representing the clusters are recomputed. The net result of
this approach is that the affinity propagation algorithm is
executed less often and when it runs, the number of data
points involved is small.

V. EXPERIMENTS

In this section we present experimental evaluation results
of our method in indoor and outdoor environments. We show
results of the clustering quality as well as the learning per-
formance of our system. All the experiments were performed
with a Pioneer-AT robot, equipped with a SICK laser scanner
and a Point Grey Firewire camera. We used the laser scanner
to detect obstacles in close proximity to the robot instead of
a bumper in order to avoid damage to both the robot and the
environment. The camera on the robot is angled downwards
such that obstacles on the floor are visible at a distance

of 1.2 m. The images were subdivided into 36 equal sized
patches of 52× 40 pixels. Other subdivisions were tried but
provided similar results.

Our method is implemented in C++ using the Robot Op-
erating System (ROS). All the computations were performed
on a Pentium M with 1.7 GHz at a rate of 5 Hz. The entire
process is CPU dependent and only minimal memory is
required as only the patches of the exemplars need to be
stored for the clustering and classifier.

A. Clustering Quality

We present exemplary results of the cluster centres de-
termined by streaming affinity propagation in Figure 1 and
Figure 6. As can be seen the clusters found can be easily
distinguished from each other. The exemplars represent the
different types of objects found in the environment, i.e.
floors, pavement, walls, and predominant obstacles. Ideally
clusters should be distinct from each other, i.e. far apart
in the feature space. However, clusters should also contain
a reasonable amount of data points, i.e. a certain amount
of variability within a cluster is required. The examples of
cluster members shown in Figure 8 demonstrate that the
clusters obtained exhibit this property. Each row in Figure 8
contains members of a single cluster. As can be seen their
appearance is sometimes considerably different from each
other. Nonetheless they are assigned to the same cluster even
though they appear blurred, were observed at a different
viewing angle, had different lighting conditions, or were
only partially visible. This ability to group similar objects
even with diverse appearance allows the overall number of
clusters to be kept small and thus more representative of the
environment.

For a more accurate evaluation of the clustering qual-
ity we compare the clustering results of streaming affinity
propagation and k-means using the V-Measure [17]. V-
Measure considers the homogeneity and completeness in the
computation of the final score. The score is in the range
[0, 1] where 1 is the best value. A factor β is used to weight
the two measures against each other. In our experiments β
was always set to 1, i.e. equal importance is given to ho-
mogeneity and completeness. Reference cluster assignments
were obtained by labelling multiple sets of image patches
by hand. These reference assignments were then used to
obtain the V-Measure score for the clustering results of these
image sets with streaming affinity propagation and k-means.

4027

Method V-Measure

Streaming Affinity Propagation 0.763± 0.023
k-means 0.726± 0.017

TABLE I: Quality of the clustering methods with regards to
human reference assignments evaluated using the V-Measure.
The mean score of the V-Measure of multiple clusterings as
well as the standard deviation is given.

Fig. 6: Examples of the exemplars as determined by stream-
ing affinity propagation. Results from indoor experiments are
shown on the left while on the right exemplars obtained in
outdoor experiments are shown.

The number of clusters used by k-means clustering was
set to the number obtained from affinity propagation. The
results in Table I shows that streaming affinity propagation
produces higher quality clusters then k-means. A t-test with a
significance level of 5% allows us to reject the hypothesis of
equal means and thus shows that the increase in V-Measure
score of affinity propagation is significant. While this is only
a slight increase in accuracy, streaming affinity propagation
solves a much harder problem then k-means as it has to
determine the number of clusters from the data.

B. Learning Visual Appearance over Time

Our method learns the appearance of objects in the en-
vironment by observing them with a camera and labelling
them as obstacles when they are very close to the robot (a
simulated bump). When the robot starts its exploration there
is obviously no information about the environment available.
But as time progresses previously unobserved parts of the
environment are encountered and their appearance is added
to the model.

During this experiment the robot moved in the same
area for a period of 15 minutes. The plots in Figure 7
show the percentage of observations made that generate new
knowledge as time progresses. This figure shows that the
majority of new observations are made early on and that
at later stages the number of new discoveries decreases.
There are a few instances where the approach perceives
previously unseen objects. This can be explained by the
robot making a genuinely new observation or observing
a previously seen object whose visual appearance is too
different to be associated with an existing cluster.

C. Obstacle Avoidance Performance

In order to test the capability of our method to detect and
avoid obstacles we placed obstacles in the environment for

0 120 240 360 480 600 720 840
0

10

20

30

40

50

60

Time (s)

Pe
rc

en
t

New Knowledge

Indoor 1
Indoor 2
Outdoor

Fig. 7: The plot shows the percentage of all observations
made during a 60 s window that add new information to the
environment model. It is clearly visible that the majority of
observations which lead to new knowledge are observed in
the beginning.

the robot to detect. The system was allowed to automatically
learn the appearance of these obstacles before the test started.
Whenever our method detected an obstacle in front of the
robot, the robot stopped and the distance to the nearest
obstacle was recorded. This experiment was carried out in
different environments. Overall our method recognised and
stopped at a distance of 0.94 m ± 0.23 m. This experiment
shows that the environment model learned by our approach
can be used to detect obstacles well before a collision can
occur. This leaves enough time and distance to execute
actions to avoid the detected obstacle.

VI. CONCLUSION

We presented an online method to discover objects in the
environment without the need for human supervision. This
is achieved by clustering the visual appearance of image
patches observed by a robot. Additionally the information
obtained by the interaction of the robot with the environment
is used to assign the discovered objects with an obstacle
property.

Experimental evaluation shows that the proposed system
learns and recognises objects which are representative of the
environment. Additionally, the obstacle property associated
with the objects permit the robot to stop before a collision
occurs.

Our method is one of the first attempts to address the
problems of long-term autonomy and object discovery with
an unsupervised, incremental learning technique. We believe
this topic has a lot of potential for future work both algo-
rithmically and experimentally.

4028

Indoor

Outdoor

Fig. 8: Examples of cluster members from both indoor and
outdoor experiments. Each row contains image patches that
are assigned to the same cluster. The examples show that
even if the appearance changes significantly between images,
the clustering procedure is still able to assign them to the
appropriate cluster. The rows from top to bottom represent
a cardboard box, a piece of structured room divider, carpet,
wood chips, brick wall and asphalt (best viewed in colour).

REFERENCES

[1] S. Agarwal and D. Roth. Learning a Sparse Represen-
tation for Object Detection. In Proc. of the European
Conference on Computer Vision (ECCV), 2002.

[2] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,
2003.

[3] M. Ester, H. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proc. of the
International Conference on Knowldge Discovery and
Data Mining, 1996.

[4] R. Fergus, P. Perona, and A. Zisserman. Object Class
Recognition by Unsupervised Scale-Invariant Learning.
In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2003.

[5] B.J. Frey and D. Dueck. Clustering by Passing Mes-
sages Between Data Points. Science, 2007.

[6] M. Happold, M. Ollis, and N. Johnson. Enhancing
Supervised Terrain Classification with Predictive Un-
supervised Learning. In Proc. of Robotics: Science and
Systems (RSS), 2006.

[7] A. Howard, M. Turmon, L. Matthies, B. Tang, A. An-
gelova, and E. Mjolsness. Towards Learned Traversabil-

ity for Robot Navigation: From Underfoot to the Far
Field. Journal of Field Robotics, 2006.

[8] R. Katz, J. Nieto, and E. Nebot. Unsupervised Classi-
fication of Dynamic Obstacles in Urban Environments.
Journal of Field Robotics, 2010.

[9] D. Kim, J. Sun, J.M. Rehg, and A.F. Bobick.
Traversability Classification using Unsupervised On-
line Visual Learning for Outdoor Robot Navigation. In
Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2006.

[10] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor
Graphs and the Sum-Product Algorithm. IEEE Trans-
actions on Information Theory, 2001.

[11] D. Maier, M. Bennewitz, and C. Stachniss. Self-
supervised Obstacle Detection for Humanoid Naviga-
tion Using Monocular Vision and Sparse Laser Data. In
Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

[12] F. Meyer and S. Beucher. Morphological Segmentation.
Journal of Visual Communication and Image Represen-
tation, 1990.

[13] J. Modayil and B. Kuipers. Bootstrap Learning for
Object Discovery. 2004.

[14] A. Ng, M. Jordan, and Y. Weiss. On Spectral Cluster-
ing: Analysis and an algorithm. In Proc. of Advances
in Neural Information Processing Systems, 2001.

[15] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolu-
tion Gray-Scale and Rotation Invariant Texture Classi-
fication with Local Binary Patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2002.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. 1988.

[17] A. Rosenberg and J. Hirschberg. V-Measure: A con-
ditional entropy-based external cluster evaluation mea-
sure. In Proc. of the Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning, 2007.

[18] D. Stavens and S. Thrun. A Self-Supervised Terrain
Roughness Estimator for Off-Road Autonomous Driv-
ing. In Proc. of the Conference on Uncertainty in AI,
2006.

[19] I. Ulrich and I. Nourbakhsh. Appearance-Based Ob-
stacle Detection with Monocular Color Vision. In
Proc. of the National Conference on Artificial Intel-
ligence, 2000.

[20] M. Weber, M. Welling, and P. Perona. Unsupervised
Learning of Models for Recognition. In Proc. of the
European Conference on Computer Vision (ECCV),
2000.

[21] X. Zhang, C. Furtlehner, and M. Sebag. Data Streaming
with Affinity Propagation. In Proc. of the European
Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, 2008.

4029

