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Abstract— We propose a novel pervasive system to recognise
human daily activities from a wearable device. The system is
designed in a form of reading glasses, named ‘Smart Glasses’,
integrating a 3-axis accelerometer and a first-person view cam-
era. Our aim is to classify user’s activities of daily living (ADLs)
based on both vision and head motion data. This ego-activity
recognition system not only allows caretakers to track on a
specific person (such as patient or elderly people), but also has
the potential to remind/warn people with cognitive impairments
of hazardous situations. We present the following contributions
in this paper: a feature extraction method from accelerometer
and video; a classification algorithm integrating both locomotive
(body motions) and stationary activities (without or with
small motions); a novel multi-scale dynamic graphical model
structure for structured classification over time. We collect,
train and validate our system on a large dataset containing
20 hours of ADLs data, including 12 daily activities under
different environmental settings. Our method improves the
classification performance (F-Score) of conventional approaches
from 43.32%(video features) and 66.02%(acceleration features)
by an average of 20-40% to 84.45%, with an overall accuracy
of 90.04% in realistic ADLs.

I. INTRODUCTION

The challenges associated with population ageing and

nurse shortages are opening unprecedented opportunities for

pervasive computing. Such systems can dramatically impact

the quality of life of the ageing population by helping people

through their daily living activities. A central requirement of

pervasive systems is to automatically recognise human ac-

tivities over time, instructing patients in hazardous situations

or reminding them of important needs. For example, patients

with memory loss or cognitive disorders can be reminded to

take pills after having meals or bring along the walking stick

while going outside. Additionally, they can provide online

monitoring interfaces for nurses and caretakers to remotely

access the patient’s status to derive better treatments.

Daily activities can be categorised into two major groups

in terms of the motion magnitudes, locomotive and stationary

activities. A locomotive activity can be defined as an activity

involving high energy, with specific body movements, such

as walking. A stationary activity involves less or no motion,

such as reading a book or watching TV. Due to the complex-

ity and variety of daily activities, researchers have explored

different approaches in activity recognition mostly based on

acceleration and visual observations. Wearable accelerome-

ters are often used to classify activities of daily living (ADLs)

[1], [2], [3], [4], or to recognise occasional events, such

as falls [5] or stumbles [6]. Other approaches integrate ac-

celerometers with additional sensors to improve the system’s

performance, such as gyroscopes [7], microphones [8], and

floor sensors [9]. Despite major achievements in automatic

classification of activities from accelerometer data containing

high motion magnitudes, classifying stationary activities,

especially in identical static postures, still remains a key

challenge, due to the similarity of the acceleration signals.

For example, sitting still, reading a book or watching TV, all

have the same sitting body posture but are different activities.

Visual information is an alternative method to recognise

human activities. The idea is to use a single or a sequence of

images containing parts or the entire human body in order

to estimate the subject’s posture or motion information to

predict activities. Notable approaches using external cameras

are described in [10], [11], [12]. These methods are mostly

applied to surveillance purposes, and are often constrained

to particular regions of the field of view. Recently, first-

person view methods were introduced [13], [14], [15]. In

these approaches, cameras are embedded into a wearable

device to capture a similar field of view as the person’s eyes.

Image features are then extracted from objects or motion

flow information. Object-oriented approaches rely on object

recognition techniques and are useful to classify stationary

activities involving specific objects from the video [15],

[16]. However, these methods have limitations to recognise

activities without clear foreground objects, for example,

when the user is looking down while walking. Motion-

oriented methods have reasonable performance in identifying

activities using optical flow features such as those involved

in sports [17].

In this paper, we introduce an automatic activity recog-

nition system integrating both accelerometers and a first-

person view camera in conventional glasses, called “Smart

Glasses”. As a prototype, we use a smart phone (Android

OS) attached on top of safety goggles as shown in Figure

1. The device collects videos and 3-axis acceleration data.

Both are synchronised and collected in parallel. We aim to

develop a model able to recognise a wider range of human



Fig. 1. Our senior patients wearing Smart-Glasses prototype.

activities including dynamic and stationary. There are three

contributions presented in this paper:

Feature Extraction: We carefully select a number of

activities following healthcare professionals’ directives in

this study. Some of these activities have identical static

postures. This makes features from the accelerometer less

important. Among of static/stationary activities, a method

that’s able to correctly recognise if the subject is reading

a book or watching a TV becomes our major concern.

Therefore, in this paper, we use the video motion feature as

a complementary element. This allows the system to track

motion flow from consequent egocentric images in order to

improve the system performance. We design separate feature

extraction algorithms for both accelerometer and video data,

detailed in Section II-A and II-B.

Feature Integration: From extensive experiments, we

select the best classifier and settings for each set of features,

and separate the local classification task into two categories,

each assigned with weighting parameters obtained during the

training process. This allows the model to choose the suitable

set of feature for different activities.

Multi-Scale Graphical Model: We develop a Conditional

Random Field (CRF) to capture the multi-scale context in

a sequence of activities. This model can help to predict

user’s activities at different temporal scales even when the

local classification is significantly noisy or ambiguous. For

example, when sitting, reading or drinking, there is a period

without any motion features detected from both accelerom-

eter and video features but the activity can be recognised

from the context.

In Section II, we present an overview of the system pro-

cessing pipeline, followed by the details of feature extraction,

feature classification and the proposed probabilistic graphical

model. We evaluate the performance of each individual step

of our system, and present results on real deployments in

Section III. Topics for future work and conclusions are in

Section IV.

II. SYSTEM OVERVIEW

The model can be described as a pipeline with three major

steps: video and acceleration feature extraction, classification

and structure prediction. As shown in Figure 2, both video

and accelerometer data are collected and processed in par-

allel, feeding features into separate classifiers. The classifier

result is then transformed into a class probability vector. In

the final step, these vectors are associated with a unary fea-

ture function which is then combined with pairwise functions

in a graphical model to perform structured prediction. The

final prediction is obtained after an inference procedure on

the graphical model that takes temporal relationships into

account, where the relative weights of unary and pairwise

features are obtained through a learning procedure. We detail

these steps below.
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Fig. 2. System Overview.

A. Acceleration features

Head acceleration is relatively complex because it is the

result of a concatenation of motions of several body parts.

However, this type of signal is very valuable, providing

information about the subject’s body motion in addition to

information from the head acceleration. For example, drink-

ing water often results in head raising, hand-washing usually

requires a head bowing. Here, we consider a wide range

of activities covering various types of motions, including:

locomotive or stationary, periodic or infrequent, body or

hand activities. Generally, acceleration can be represented

in both time and frequency domains. In this work we extract

features from a sliding window containing a short period of

time. To cover the different types of activities, we conduct a

comprehensive analysis of 13 and 20 features in both time

and frequency domains from 3-axis accelerometer data. Time

domain features include a number of basic features such as

mean, standard deviations, signal magnitude, local maxima,

threshold-crossing rate, etc, both extracted directly from

raw sensor data. Frequency domain features are extracted

with Fast Fourier Transform (FFT). We divide each feature

window into 10 sub-bands. For each band, we obtain the

magnitude and frequency of the peak value as our frequency

feature. The cut-off threshold is set to 5Hz since daily human

activities are unlikely to require higher frequencies based on

our ADLs database.

B. Video features

First-person video features work as a complement to the

body acceleration data. We aim to extract motion features

from egocentric images, such that the system can monitor

activities even when the subject is not moving. Our video

features are based on the Lucas-Kanade optical flow method

[18], which estimates the motion of objects across a series of

consecutive image frames, such as hands or objects. Between

every pair of frames, as defined in [19], we firstly average



dense optical flow within the set of non-overlapping patches

(each with m pixels) and each frame is partitioned into i
rows and j columns. Then, we conduct an average pooling

process over n consecutive patches from all corresponding

positions to obtain a 1 × 2ij vector, containing horizontal

and vertical motion information for the period covering n
frames, written as

[uij , vij ] =
1

MN

N∑
n=1

M∑
m=1

[um,n
ij , vm,n

ij ], (1)

where uij and vij are the motion feature for patchij in both

horizontal and vertical directions.

C. Classification

There are two levels of classification in our approach:

local (i.i.d) and structured. The former uses features directly

extracted from raw sensor data and provides predictions

independently of time. The later depends on the graph

structure and takes into account temporal dependencies. In

this section, we focus on local classification. As shown in

Figure 2 and in the previous section, our system extracts local

features from 3-axis head accelerometers and an egocentric

camera. These features can differ drastically in terms of the

magnitude and frequency of the measurements. In this work

we consider two popular off-the-shelf classifiers and compare

them for the two sets of features obtained before. Our choice

for the classifiers is based on their computational costs and

scalability to handle high-dimensional data.

Support Vector Machine (SVM) is one of the most popular

approaches for human activity recognition, especially from

body acceleration [7], [20], [21], [22], [23]. SVMs are

large-margin classifiers with strong generalisation properties,

primarily designed for binary classification even though

extensions to multi class exist [24], [25]. We use a multi-

class SVM based on an “One-Versus-One(OVO)” technique

which fits binary sub-classifiers and obtain the final predic-

tion through a voting process. We also estimate the class

probabilities through a pairwise coupling method [26] for

the structure classification stage. Three popular kernels were

selected and compared: Linear, Polynomial and Gaussian

Radial Basis Function (RBF).

Boosting was first introduced by Schapire et al. [27] in

1990. The algorithm produces an ensemble model by greed-

ily adding weak learners trained on data points weighted

by their classification error from previous rounds. Boosting

significantly improves the accuracy of a base-level binary

classifier (weak learner) and can learn complex non-linear

decision boundaries. It has been widely and successfully

applied to many fields [28], [29], [30], [31]. Inspired by [32],

we implement a LogitBoost algorithm which provides prob-

ability distributions of multi-class problems with decision

stumps as the weak learner.

D. Structured Classification

1) Conditional Random Fields: One of the main draw-

backs in conventional i.i.d classification approaches is that

context is not taken into account – classification is performed

locally without considering any ‘neighbours’ in time or

space. This can lead to mistakes that could be avoided

otherwise. For example, a single sliding window might

wrongly predict hand-washing due to strong image motion

flow when the correct activity is walking. This could have

been fixed had context been considered since a single hand-

washing classification is unlikely to take place in a series

of walking frames. We develop a structure classification

approach for contextual activity recognition using conditional

random fields (CRFs). CRFs are undirected graphical models

designed for labelling sequences of data. It is a powerful tool

in structured learning that allows us to model the correlations

(through edges) between each defined pair of nodes in

a graphical model, specifying a conditional probabilistic

distribution over the query nodes given observed nodes [33].

For example, in the context of activity recognition, the

nodes can be seen as containing local information of each

time interval, while the edges are pairwise relations between

consecutive intervals. Therefore, the order of the nodes can

be explained as sequences of activities in time domain. A

key advantage of CRFs compared to a generative model is

that it models the conditional probability of hidden states

given observations directly. This provides more flexibility to

define potential functions into our system. The CRF contains

a normalising partition function that groups all potentials

into a general format. In activity recognition, it allows us

to integrate heterogeneous sensors into the graphical model

seamlessly.

Theoretically, CRFs are a special case of Markov Random

Fields (MRF). It models conditional distributions of the hid-

den nodes x given observations z, written as p(x|z). Within

the graph, the hidden nodes x are linked by edges following

a predefined graph structure. Each fully connected subset

of nodes (clique) cεC is described by a nonnegative clique

potential function φc(xc|z), which maps clique variables to

a positive real number. A CRF distribution over the cliques

can be written as,

p(x|z) = 1

Z(z)

∏
cεC

φc(xc|z), (2)

where the partition function Z(z) is expressed as

Z(z) =
∑
x

∏
cεC

φc(xc|z). (3)

The potentials φc(xc|z) are usually represented as log-linear

combinations of feature functions fc(xc|z) with a weight

factor wc, expressed as:

φc(xc|z) = exp(wT
c fc(xc|z)). (4)

Combining Equations 2 and 4 in the CRF, the conditional

distribution of the hidden nodes can be rewritten as

p(x|z) = 1

Z(z, w)
exp

{∑
cεC

wT
c fc(xc|z))

}
. (5)



2) Graph Structure: Since ADLs are sequential events,

we build a CRF model to capture temporal relationships. The

graph structure is shown in Figure 3. It contains sequences of

observations z from sensor features, hidden nodes x of class

probability assignments, and edges E representing pairwise

relations. Each node in the sequence contains information

from a short period, and connects to a number of nodes

at different distances. For example, in Figure 3, node xs

connects to 6 nodes in three different scales from shorter

(1 unit) to a longer (4 units). These connections allow for

contextual information to be incorporated into the entire

network. This graph contains two types of potentials, named

local and pairwise potentials. The local potential captures

local information within an interval, while the pairwise po-

tential explains how the nodes relate to each other. Including

both node and edge features, the overall clique potential can

be written as:

φc(xc|z) = exp(
∑
s∈V

wT
s fs(xs|z) +

∑
sd∈E

wT
sdfsd(xs,xd|z))

(6)
where fs is the local potential for a hidden node xs and

fsd is a pairwise potential connecting a node xs and xd.

Individual weights are also assigned to each of the functions.

They encode the relative importance of each potential. We

now describe in detail the local and pairwise potentials used.
Local potential - Represented by the observation nodes

z in Figure 3, they contain features extracted directly from

data and encode local information from an interval. In our

model, we have accelerometer and video features stored in

two observation nodes zA and zV . Each classifier uses the

features to predict a class-probability vector PA and PV in

the size of M, where M is the number of state (activity)

in this study. Interestingly, acceleration and video features

lead to very different performance on the classification

of separate activities (shown in the experiments section).

Acceleration generally has good accuracy on locomotive

activities, and video motion features are more accurate for

stationary activities, especially the static activities. For this

reason, the probabilistic vector P is divided into two class

categories: α (acceleration) and β (video). α contains the

activity classes where the acceleration feature is better suited

than video features. Conversely, β contains activities more

suited for video features. Note that, we keep classification

results the same for each category and set the rest to zero. For

example, assume there are two activities involved, let PA be a

normalised 1×2 vector from acceleration features, which has

walking and sitting probabilities expressed as [0.35, 0.65]. If

walking is registered as a dynamic activity, then PA−α and

PA−β become [0.35, 0] and [0, 0.65] respectively. In this way,

we can assign a separate weight vector to different activity

groups. More details are in section III-B.
Pairwise Feature - These are potentials defined over the

edges connecting each pair of hidden nodes. It specifies a

relationship from one state to another using a matrix of size

M × M. In this research we use a point-to-point weight

assignment method, this allows the model to define individ-

ual transition weights between different states. Therefore, a

4-activity model requires 42 (16) weights, which represent

the likelihood of transitioning between activities. Such as,

from sitting to drinking, walking to climbing stairs, or simply

walking to walking.

To capture multi-scale temporal correlations, we introduce

a distance-inference method into the model. The example

shown in Figure 3 has a number of edges on the top, where

the hidden node xs connects the third x(s±2) and fifth

x(s±4) neighbours. The transition matrices of Edge(s,s±1)

and Edge(s,s±4) can be very different; the former refers to

nodes from its immediate predecessor or successor, while the

latter links to the ancestor or descendant. In this case, the

node can be predicted using further contextual information

from a larger group of neighbours to improve the system

robustness.

E. Parameter Learning

The overall goal of parameter learning is to determine

the most suitable values for the weight vector ws and

wsd in the feature functions. It involves an optimisation

process to maximise the conditional likelihood of the training

set. However, directly maximising the conditional likelihood

can be extremely time consuming due to the need to per-

form inference in every step of the algorithm; the partition

function Z needs to be computed in every iteration. In

order to make learning tractable for these problems, we

maximise the pseudo-likelihood of the training data [34].

This approximates the conditional likelihood by a product

of conditional distributions over given immediate neighbours

(Markov Blanket) of xs. Let N be the total number of nodes

in our model, the pseudo-likelihood can be computed as,

p(x) =
N∏
s=1

p(xs|MB(xs)). (7)

For mathematical convenience, the optimisation on p(x)
can be achieved through a maximisation process in the log

domain. To prevent the weights from getting too large during

the optimisation process, the pseudo-log likelihood objective

is typically regularised with a quadratic term,

LR(w|D) = L(w|D)− (w − w̄)T (w − w̄)

2σ2
(8)

where D is the training set expressed as D = (Xs,Zs|s =
1, . . . , N), and L(w|D) is the pseudo-log likelihood written

as

L(w|D) =

N∑
s=1

M∑
m=1

{
wT

s fs(xs|zs) +
I∑

i=1

wT
sd(i)fsd(xs,m|zs)

− log
(
Zm(zs,MB(xs), ws, wsd)

)}
,

(9)

where the local feature function wT
s fs(xs|zs) is defined as

wT
s fs(xs|zs) = wT

1 facc.α+wT
2 facc.β+wT

3 fvid.α+wT
4 fvid.β .

(10)
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Fig. 3. Multi-scale CRF graph structure. The red edges represent the connection setting of ‘020305’ for node xs.

As shown in Equation 10, the 4 local potentials, as previous

explained in Section II-D.2, includes 2 acceleration and

2 video feature functions for two sensor sources, where

facc.α represents a vector predicted from acceleration data

for activities α, and fvid.β is the video vector for the group

β.

Equation 9 contains three components: local, pairwise

and partition functions. The partition function Zm is a

local ”committee” (comparing with a global network), where

Markov blanket dramatically reduces the computational cost

from the original partition function. To elaborate it, we

assume there are N nodes with M states each, in this case,

Zm sums M states from the local Markov blanket of xs.

Therefore, computation is repeated M × N times for the

entire space. comparing to the general form of Equation 3,

where Z(z) has to evaluate MN values. Since LR(w|D)
is a convex function, the local maximum can be achieved

by a gradient descent algorithm. In this research we use the

unconstrained L-BFGS method [35] on the negative version

of LR(w|D).

F. Probabilistic Inference

The inference procedure computes statistics for the hidden

nodes x given the graph structure, and the observations z.

There are two basic operations, the computation of Marginal
Distributions– the posterior distribution p for each of the

variables x, and Maximum A Posteriori Configuration – the

most likely assignment of x. Both the marginals and MAP

configuration can be computed using belief propagation

(BP) [36]. In particular, the sum-product version of BP

performs marginalisation and the max-product version of BP

computes the MAP configuration. Conventional BP when

applied to tree graphs provides an exact answer. Messages

are propagated from the leaves to the root node and back

again. For arbitrary graphs with loops, there is another pop-

ular variation called Loopy Belief Propagation (LBP) [37]

which provides approximate answers. It updates messages

in every iteration until converge (which is not guaranteed

but typically happens). Another variation with stronger con-

vergence properties is Tree-Reweighted BP (TRBP) [38]. It

provides a guaranteed bound on the log partition function. It

decomposes the original graph into a convex combination of

tree-structured graphs allowing efficient computations, while

the convex combination allow the computation of an upper

bound on the optimal solution. In our model, as shown in

Figure 3, we will compare the performance of these three

approaches: BP on a chain model (CBP), LBP and TRBP to

select the best approach for the problem.

III. EXPERIMENTS

We validate our model on 40 independent datasets, equally

split from 5 senior volunteers, with age over 55. Each

dataset contains an average of 30-minute sensors recording

on realistic sequential ADLs from separated days, as detailed

in Table I. Note that some actions are repeated multiple

times in each video. To best represent realistic situations,

the subjects are not asked to perform specific sequences

of activities or detailed motions. They simply follow their

normal ADLs sequences on their own preferences.

TABLE I

A LIST OF ACTIVITY DISPLAYS THE AVERAGE DURATION FOR EACH

ACTIONS CONTAINED IN OUR DATASET.

ID Activity Average Duration
1 Walking 154.99 sec
2 Going Upstairs 59.05 sec
3 Going Downstairs 55.14 sec
4 Drinking 15.72 sec
5 Stand Up 1.71 sec
6 Sit Down 2.32 sec
7 Sitting 46.08 sec
8 Reading 45.21 sec
9 Watching TV/monitor 253.58 sec
10 Writing 112.78 sec
11 Switch Water-Tap 1.67 sec
12 Hand-Washing 10.39 sec

In the experiment, we use a ‘Sony Ericsson Xperia mini’

mobile phone as our online processing unit. The first-person

viewing angle is approximately 90 degree, and video is

recorded at 15Hz with 144 × 176 resolution, synchronised

with a 80Hz 3-axis acceleration readings based on the

android system timestamps. As a summary, we totally collect

1.08 million frames and 17.3 millions of sensor sampling

points from 5 subjects. As noticed earlier, each dataset covers

few activities following user’s own preferred sequence. We

manually label all the data based on the videos, therefore

the synchronised acceleration data can be automatically

annotated from video labels.



In the next section, we detailed the parametrisation, feature

window size, classifier settings and multi-scale graph design.

Then, we categorise the activities for both sensors followed

by the inference method comparison and experimental re-

sults.

A. Parametrisation

1) Window Size: The window size defines how much

information (duration) is required to classify an activity.

Therefore, each window should contain just sufficient data

to describe the subject’s current status. The overlapping

percentage is another concern during data collection, it helps

the classifier distinguish the contents between consequent

windows with a transition period. It also helps to recognise

the feature from a wider context in order to compensate the

possible errors from the window itself. We run cross valida-

tion over 10 ADLs videos to determine a suitable windows

size and overlap portion chosen from 9 different settings:

2, 3, 5 seconds of window length with 25%, 50% and 75%

overlapping portion. After a number of cross validations from

our independent training database, we estimate the 3-second

window with 50% overlap has the best performance over all

settings.

2) Local Classifiers: In this research, we use two classi-

fiers: LogitBoost and SVM. LogitBoost requires the number

of Weak Learners (WLs) to be specified for both features

and is usually resilient to over-fitting. We take 5 independent

video segments for each activity and each segment contains

5 minutes. We firstly extract video and acceleration features

into windows and re-arrange them in a random order. Then

we conduct a 10-fold cross validation on both features, and

test LogitBoost with 10 different weak learners settings,

from 50 to 500. Our results show that 150-WLs is the

most reliable for the video features and 50-WLs for the

acceleration features. Selecting a suitable kernel for SVM

can be difficult. We run the same validation process on three

popular kernels: Linear, Polynomial and Gaussian Radial

Basis Function (RBF). The averaged precision and recall

results for both classifiers are shown in Table II.

TABLE II

CLASSIFIER ACCURACY ON ACCELERATION AND VIDEO FEATURES

Classifier LogitBoost SVM
Acceleration 50-WLs Linear Polynomial RBF

Averaged Precision 68.99% 69.39% 43.6% 37.01%
Average Recall 61.01% 62.96% 34.98% 34.89%

Overall Accuracy 77.40% 78.07% 60.51% 66.92%
Video 150-WLs Linear Polynomial RBF

Averaged Precision 53.12% 37.58% 35.19% 43.86%
Average Recall 44.76% 30.11% 26.39% 42.78%

Overall Accuracy 68.91% 56.39% 44.63% 61.68%

As can be seen, SVMs with linear kernel has the best

performance for the acceleration features. LogitBoost does

better on video optical flow features. Note that our dataset is

quite realistic including various ADLs; the activities include

both dynamic and static actions. Some of the static activities,

such as watching or sitting might not contain any acceleration

signals. Conversely, motions such as walking and climbing

stairs would create significant noise in the egocentric vision.

For this reason the local classifiers in isolation generally do

not achieve a very high accuracy.

3) Graph structure: In Section II-D.2, we introduce the

multi-scale graphical model. Each node connects to multiple

neighbours to create a more powerful inference network. In

this section, we validate 8 different settings from 5 different

scales: 2nd neighbour (chain model), 3rd neighbour, 5th

neighbour, 10th neighbour and 20th neighbour. The number

indicates the distance before/after a particular node in time.

It represents the number of time steps between a pair of

connected nodes. In the last section, we had selected the

time window interval as 3 seconds with 50% overlapping.

This means a 5th neighbour is 4 × 1.5 = 6s away from

the current node, 10th neighbours is 13.5s away and 20th is

28.5s apart.

To obtain an optimal graph setting, we take 10 datasets

from our database, train on 8 datasets, and test on 2 using

a sum-product TRBP inference method. For each dataset,

we set 8 edge configurations: ‘02’(chain graph), ‘0203’,

‘0205’, ‘0210’, ‘0220’, ‘020305’, ‘020510’ and ‘02051020’,

and use LogicBoost as our feature classifier on acceleration

features. The settings, for example, ‘020305’ means each

node connects to 2nd nodes (immediate nodes), 3rd nodes

and 5th nodes. An example is shown in Figure 3. In the

example §s is with the ‘020305’ setting. Note that the

edge distance impacts on the updating frequency and the

contextual information. Graphs with longer edges generally

require more memory and result in lower updating frequency.

e.g. 20th neighbour requires to store at least 28.5s of data,

and 100th neighbour would need 142.5s of data. Therefore,

by balancing these factors, we choose up to 20th neighbour

as our maximum inference distance. To compare these edge

settings, we use the averaged precision value as our evalu-

ation preferences. The results of selected configurations are

illustrated in Figure 4, plotted in the form of error-bars. The

first term is the precision of the local classification result

before applying the graphical model.
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Fig. 4. Overview of model accuracy when using different graph settings

In Figure 4, the graph setting ‘02051020’ shows the

highest precision, outperforming the local feature classifier

by 11% achieving 82.3%, followed by ‘0210’ at 78.5% and

‘0220’ at 77.9%, where ‘020305’ and ‘02’ have the worst



performance with accuracy of 73.4% and 73.5% respectively,

but still better than the local classifiers. Therefore, we suggest

the graph ‘02051020’ as the best setting, thus to be applied

in the next set of experiments.

B. Activity Categorisation

In Section II-D.2, we introduce the local features integra-

tion method, which requires to separate the activities into

two categories. However, our ultimate goal is to let the

model determine which feature is better for each activity,

such that the CRF is able to train and assign appropriate

weights for both vision and acceleration features. In order

to achieve this, a direct approach is used to inspect their

current classification performance, and to find the prediction

accuracy of each activity using both features. From Section

III-A.2, we learned that SVM (linear kernel) has the best

performance on acceleration features, and LogitBoost is good

on video feature classification. Therefore, we run a 20-fold

cross validation over 10 datasets using both classifiers. All

activities are evaluated using precision and recall [39]. The

classification results are shown in Table III.

TABLE III

RESULTS FROM ACCELERATION AND VIDEO FEATURES WITH ACTIVITIES

FOLLOWING THE ORDER IN TABLE I.

Acceleration Video Differences
Act. ID Pre. Rec. Pre. Rec. Pre. Rec.
1 0.936 0.961 0.422 0.384 0.514 0.577
2 0.878 0.879 0.305 0.305 0.573 0.575
3 0.868 0.868 0.212 0.200 0.656 0.668
4 0.670 0.584 0.523 0.375 0.147 0.209
5 0.754 0.679 0.238 0.227 0.516 0.451
6 0.771 0.521 0.207 0.229 0.564 0.293
7 0.250 0.418 0.350 0.333 -0.100 0.086
8 0.503 0.624 0.682 0.749 -0.178 -0.124
9 0.581 0.505 0.722 0.684 -0.141 -0.178
10 0.762 0.759 0.828 0.753 -0.067 0.006
11 0.429 0.375 0.438 0.475 -0.009 -0.100
12 0.375 0.136 0.577 0.482 -0.202 -0.345
Ave. 0.648 0.609 0.459 0.433 0.189 0.176

From the table, it is interesting to note that classification

from acceleration features has good precision on most of the

dynamic motion against the statics ones, while the video fea-

tures have better prediction on stationary activities (Sitting,

Reading, Watching TV/monitor, Writing, Switching Water-

Tap and Hand-Washing) than locomotive activities (Walking,

Going Upstairs, Going Downstairs, Drinking, Stand Up and

Sit Down). A reason that may explain this phenomenon is:

locomotive activity usually involves a number of periodic

motions or infrequent motion with high magnitude, which

can be easily captured from an accelerometer. On the other

hand, activities involving less mobility such as sitting or read-

ing can be better classified with optical flow features because

the user is in a stationary position, but the motions can be

captured from the egocentric video. Figure 5 demonstrates

three examples for both acceleration and vision features:

Walk, Drink and Write. Note that in the Drink window,

the signal change at the beginning represents a head-lifting

motion. Writing involves only a small motion compared to

the others.
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Fig. 5. Examples of optical flow features (1st row) and corresponding
3-axis acceleration window from three typical activities: Walking, Drinking
and Writing.

C. Inference Approaches

In this section, we compare 3 BP inference approaches

with leave-one-out cross validation, using the same training

datasets from Section III-B. We train and test them on both

vision and acceleration features, and evaluate the model

performance in terms of the classification accuracy and

processing speed. The average performance is detailed in

Figure 6.
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Fig. 6. Comparison of different inference methods.

The chart displays the comparisons of 3 BP approaches,

TRBP has the best performance with an averaged precision

of 80.4%, follow by LBP at 78.9% and then CBP at 73.1%.

We also test the processing speed by conducting all three

approaches on one 30-minute dataset. The average running

times are: CBP-15.19s, LBP-30.20s, TRBP-5.17s. The result

shows that both TRBP and LBP have a higher accuracy com-

pare to CBP, but TRBP is faster than the others. We conclude,

the TRBP is the most appropriate inference algorithm from

our validation.

D. Results

In this experiment, we run leave-one-out cross validation

on 40 independent datasets using the optimal settings deter-

mined from previous sections. We run experiments to observe



the results among several different approaches. The averaged

precision, recall and overall accuracy are then compared.

Our evaluation focuses on the performance of structure

classification, as well as the benefits of local-pairwise feature

combined method. In this section, we observe the system per-

formance from 7 settings: 1) VID: video feature (classified

LogitBoost) only. 2) ACC: acceleration feature (SVM) only.

3) LBAV: LogitBoost Classifier on one combined feature

vector of acceleration and vision. 4) CRFV: Apply CRF

MODEL on top of setting 1. (5) CRFA: Use of CRF on

setting 2. 6) CRFLB: CRF on setting 3. 7) CRFAV: Integrates

both feature classifiers with a CRF, as explained in Equation

9 and 10. We plot the error-bar for all configurations in

Figure 7. This includes the average Precision, Recall and

F-Score [39] of all 12 activities. We also plot the overall

accuracy over the datasets. Note that the overall accuracy is

generally higher than others. This is due to the unbalanced

distribution of different activities. e.g. video contains more

‘Walking’ than ‘Hand-Washing’.
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Fig. 7. System performance from 7 model configurations, the darker the
diagonal line, the better the system performance.

This plot shows the benefits when the model is integrated

with the CRF. Settings 1-3 use local classifier only, and 4-

6 are with an additional CRF structural learning process.

It increases the system overall accuracy by an average of

10.5% AND improves the F-Score by 7.6%. Notably, the

CRFAV algorithm achieves the best result with an accuracy

of 90.38% and F-Score of 84.45%. It also indicates that video

features are not as good as acceleration features when used

on ADLs. This might be caused by the unbalanced distri-

bution between locomotive motions and stationary activities

from our ADLs database. To be more specific, we include 4

confusion matrices in Figure 8.

The top two matrices show the local classifier results.

The dynamic activities are misclassified with video features

only, including climbing stairs, sit-down and stand-up. The

acceleration feature classifier has relatively poor results in

hand activities. Mistakes occur among sitting, watching and

reading. The ‘CRFLB’ matrix removes most of the incorrect

predictions, has fewer outliers between stationary activities,

as well as between switching water-tap and hand-washing.

Overall, ‘CRFAV’ is the best option. It removes most of
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Fig. 8. Confusion matrices for 4 settings: ‘VID’, ‘ACC’, ‘CRFLB’ and
‘CRFAV’ (see Section III D for details). The colour intensity represents the
magnitude of the predicted and correct assignment.

the outliers, and it only has minor errors between up and

downstairs, sitting and reading.

E. Discussion

In this study, we explore the use of context learning in the

area of ADLs. In real life, recognising varied and realistic

human activities is a challenge in terms of reliability. We

address the problem for ADLs recognition, and our experi-

mental results confirm the benefits of multi-scale CRFs com-

pared to traditional classification approaches. This involves

a distance inference method in the graphical model, and

a feature function integration method. Multi-scale context

improves the performance by learning the subject’s ADLs

sequence with temporal correlations. The feature integration

method allows the system to learn the relative weights among

different sources, as well as linking local features into a

global network. The model boosts the local classification by

an average of 10%-20%, and improves the accuracy to nearly

90%. Note that our model can now be implemented from the

Smart-Glasses prototype with a 1GHz CPU processor and

512MB RAM memory. The tasks, such as ‘video/sensor data

collection’, ‘video/sensor features extraction’ and ‘local fea-

ture classifications’ can be executed almost instantaneously.

However, the TRBP inference procedure generally requires

an average of 2-3 seconds delay from a 30-second updating

block, which is equivalent to 20 window slides.

IV. CONCLUSION AND FUTURE WORK

This work presented a novel activity recognition approach

from first person perspective. The algorithm is developed

using a CRF model, which exploits two important factors

for ADLs recognition, feature interpretation and contex-

tual structure, in order to cover a wide range of human

activities. We utilise the head acceleration and egocentric

vision as our primary sources of information, which have

great potential to capture general body motion and hand

activities. Embedding the sensors into glasses makes the

system simple and of easy adoption for elderly populations.



In this research, we annotate, train, and validate our method

using a large realistic ADL dataset covering several motion

types, different environmental settings and various locations.

Results demonstrate the model outperforms a number of

existing methods, and the system is tested and proved reliable

in both indoor and outdoor environments. In future work,

we will investigate the robustness of our model in more

challenging activities of disable and elder patients, most of

them receiving rehabilitation treatment following illness or

injury. We will validate our model through a cross-person

patient platform from different illness/injury categories.
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