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Abstract— A key challenge for long-term autonomy is to
enable a robot to automatically model properties of the environ-
ment while actively searching for better decisions to accomplish
its task. This amounts to the problem of exploration-exploitation
in the context of active perception. This paper addresses active
perception and presents a technique to incrementally model the
roughness of the terrain a robot navigates on while actively
searching for waypoints that reduce the overall vibration
experienced during travel. The approach employs Gaussian
processes in conjunction with Bayesian optimisation for decision
making. The algorithms are executed in real-time on the robot
while it explores the environment. We present experiments with
an outdoor vehicle navigating over several types of terrains
demonstrating the properties and effectiveness of the approach.

I. INTRODUCTION

Field robotics has seen significant progress over the last
decade. Today, autonomous mobile robots are successfully
employed in outdoor applications, such as mines, ports,
agriculture, among many others. In these situations, a robot
is expected to operate autonomously for long periods of time
while navigating through different types of terrains. Although
much has been done in designing autonomous robots that
operate on specific conditions, actively learning the charac-
teristics of the environment without human intervention can
significantly improve robustness and expand the applicability
of field robotics to many different areas.

In this paper we develop an active perception approach
to learn the roughness of the terrain a robot traverses on.
The harmful effect of vibration is an important problem for
terrain robots [1], [2]. Excessive shaking can cause hardware
damage, and it is well known to shorten the lifespan of an
unmanned ground vehicle. Furthermore, vibration affects the
quality of the information provided by the sensors. Undesi-
rable noise is introduced to images, laser scan measurements
and inertial measurement unit data, ultimately affecting the
reliability in accomplishing the goals due to poor accuracy
in localisation, mapping, and navigation.

Our goals are to achieve a good understanding of the
environment, while keeping the robot as safe as possible.
We propose an active learning approach to terrain roughness
estimation and develop a planning algorithm that automati-
cally trades off exploration and exploitation. The proposed
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methodology consists of three steps. First, acceleration data
acquired from an inertial measurement unit (IMU) is pre-
processed by a filtering stage. Secondly, the filtered data is
used to continuously learn and update a Gaussian Process
(GP) [3] model of the vibrations. Finally, new sampling
locations are selected using a Bayesian Optimisation (BO)
algorithm that trades off automatically between exploration
and exploitation.

The main contributions of this work are:
1) A terrain roughness estimation model from acceleration

data built using GP regression;
2) A planning algorithm based on BO that exploits and

improves the terrain roughness model.
The remainder of this paper is organised as follows.

Section II reviews the state of the art in terrain rough-
ness estimation, spatial modelling with GPs and informative
path planning algorithms. Section III presents the proposed
methodology, detailing the principles behind GP regression
applied to vibration estimation, providing a brief overview of
the BO algorithm and describing the active learning approach
based on BO for informative planning. The experimental
setup, results and analysis are shown in section IV. Finally,
section V provides conclusions and suggests directions for
future works.

II. RELATED WORK

A. Terrain Roughness Estimation

In [4], explored areas of the terrain are classified based
on vibration. Features from the data are obtained using
combinations of Power Spectral Density and Fast Fourier
Transform, which are used to classify terrain using a support
vector machine. In [5], a vision and vibration-based approach
fuses terrain predictions from image data and vibration. The
robot uses images to classify the terrain, and vibration data
to verify its prediction. Classification is performed using
SVMs and results show 87% of correct classification. The
main drawback of this approach is that it only classifies
different terrains in a discrete manner, whereas in this work
we are able to predict the amount of vibration expected in a
continuous domain, with an associated level of uncertainty.

B. GPs in Spatial Modelling

GP regression [3], initially developed in geostatistics and
known as Kriging, has been used widely for modelling
spatially correlated data. GPs have been used for various
robotic applications, such as the estimation of a wireless
signal strength in an indoor environment [6], modelling gas
distribution across space [7], [8], building a solar map [9],



learning occupancy maps of an outdoor environment with
integral kernels [10] and modelling large-scale terrain using
point-cloud information [11]. To the best of our knowledge,
GPs have never been used to estimate the roughness of terrain
from acceleration data.

C. Informative Path Planning

In [12], a greedy algorithm for sequential path planning
was developed by exploiting the sub modularity of Mutual
Information (MI). [13] selected sensing locations for temper-
ature measurement using entropy reduction and MI. These
approaches do not consider the expected value of the studied
phenomenon, and are active in the sense of uncertainty
reduction. Recently, [7] developed a BO algorithm [14] for
choosing informative sensing locations that take the expected
value of the phenomenon into account. A specific acquisition
function that includes a penalty on the distance travelled to
acquire consecutive observations was developed and applied
to real robotics problems.

III. METHODOLOGY

Our main goal is to reduce the amount of vibration experi-
enced by the robot while navigating on different terrains. To
achieve this, we propose a method to learn a representation
of the terrain roughness, ultimately favouring movement
through traversable areas that generate lower vibration levels.

The method, shown in Fig. 1 consists of four steps:
• Preprocessing: Filters are applied to noisy measure-

ments provided by an IMU to smooth the data as
described in section III-A.

• Vibration modelling: GP regression is used to create a
statistical model of vibration when traversing a terrain
and to predict the vibration levels across space in un-
sampled areas. Details are presented in section III-B.

• Planning: Bayesian optimisation is employed to select
locations to be visited, depending on the expected level
of vibration and the uncertainty in the prediction. This
is described in section III-D.

• Localisation and Mapping: Localises the robot in an
unknown environment and creates a map of the area.
Localisation is used by the vibration modelling step to
assign vibration measurements to different parts of the
terrain. We used a SLAM package built in ROS1 named
Gmapping2.

A. Preprocessing

To prevent an excessive amount of noise being transferred
to the vibration modelling module, we propose a prepro-
cessing, filtering stage. Given the original signal w(t), we
evaluated the performance of two different strategies for
filtering unwanted noise, producing a filtered signal wf (t).
a Wavelet Filter: Discrete wavelet transform (DWT) [15]

provides a continuous multi-resolution version of the
original signal. By retaining only the fourth level of

1Robot Operating System http://wiki.ros.org/
2Gmapping http://wiki.ros.org/gmapping
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Fig. 1. Block diagram of the proposed system. Data flow is represented
by arrows.
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Fig. 2. Application of two digital filters on raw IMU data.

the Daubechies DWT transform coefficients, we obtain a
filtered approximation of the original signal in which high
frequency noise is no longer present.

b Low Pass Filter: A simple non-recursive digital low pass
filter [16] is implemented to smooth the original signal.
The output signal is given by the following expression:

wf (t) =

N∑
j=0

w(t− j)
N

. (1)

Depending on the bandwidth (directly related to N ) of
the low pass filter, a lag or delay is observed in the output
signal. By setting N = 100 we fix a filtering bandwidth
that removes noise and keeps an upper bound on the lag.
Fig. 2 shows both filters applied to real data acquired with

an accelerometer. From this plot alone, it is difficult to decide
which is more effective. We return to this discussion in the
experimental section and evaluate the performance of the
filters in the context of the whole system to select the filtering
strategy that delivers the best results.



B. GP for Vibration Model

GP regression is an effective technique for modelling
complex spatial processes, such as the terrain roughness in
an outdoor environment. By using a set of training points, a
GP can provide a prediction of the unknown function with
an associated uncertainty over a continuous domain.

Formally, a GP is completely defined by a mean function
m(x) and a covariance function k(x,x′). It learns the repre-
sentation of an unknown function f in a supervised learning
set up using a set S of known observations, S = {xi, yi}Ni=1,
with xi ∈ RD being an input in a D dimensional space and
yi ∈ R the correspondent noisy output. Given a test point
x∗ (unsampled location), the GP returns a prediction of the
value of f(x∗) with the corresponding uncertainty. Noisy
observations of the underlying function f(x) are modelled
as Gaussian distributed, y = f (x)+ε, where ε ∼ N

(
0, σ2

n

)
.

Given a covariance function k(x,x′), the covariance ma-
trix K(X,X) can be computed by evaluating the covariance
function for all observations. The predictive distribution for
test locations X∗ is given by

y∗|X,y, X∗ ∼ N (µ∗,Σ∗) ,

where,

µ∗ = K(X∗, X)K−1X y, (2)
Σ∗ = K(X∗, X∗)−K(X∗, X)K−1X K(X,X∗), (3)

with KX = K(X,X) + σ2
nI .

By selecting different covariance functions, our GP vi-
bration model can adapt more easily to complex vibration
models. The particular covariance functions considered in
this paper are Linear, Exponential, Squared Exponential,
Matérn 3 and Matérn 5, their respective equations are given
by:

kLI(x,x
′) = σ2

fxx
′, (4)

kEXP(x,x′) = σ2
f exp

(
−
√
r
)
, (5)

kSQEXP(x,x′) = σ2
f exp

(
−r

2

)
, (6)

kMAT3(x,x′) = σ2
f

(
1 +
√

3r
)

exp
(
−
√

3r
)
, (7)

kMAT5(x,x′) = σ2
f

(
1 +
√

5r +
5r

3

)
exp

(
−
√

5r
)
,(8)

where r = (x−x′)L(x−x′)T , L is a diagonal matrix of size
D, whose elements are Lii = 1/l2i , a length-scale parameter
associated to each dimension of the input space. The matrix
L and the factor σf , or signal variance, are hyper-parameters
of these covariance functions. Therefore, the set of hyper-
parameters that fully determine the GP is given by:

θ = {σf , l1, l2, . . . , lD, σn} (9)

By tuning these hyper-parameters, the behaviour of the
GP regression is adapted to achieve a good representation of
the unknown function. The optimal set of hyper-parameters

Algorithm 1 Bayesian Optimisation
1: xi: chosen sampling point at iteration i.
2: s: acquisition function.
3: f : unknown function. (terrain roughness)
4: for i = 1, 2, 3, . . . do
5: Find xi = arg maxx s(x)
6: Acquire a sample from f at location xi.
7: Update the GP model of f with the new sample.
8: end for

θ∗ can be found by maximising the log marginal likelihood
(LML),

θ∗ = arg max
θ

LML(y,X,θ) , (10)

with,

LML(y,X,θ) = −1

2
yTK−1X y−1

2
log|KX |−

n

2
log2π. (11)

We also combine Covariance Functions (CFs) to obtain
new functions. The sum and product of two CFs are valid
CFs [17][18]:

kSUM(x,x′) =

M∑
i=1

ki(x,x
′) (12)

kPROD(x,x′) =

M∏
i=1

ki(x,x
′) (13)

Depending on the number of covariance functions M , the di-
mensionality of the hyper-parameter vector can grow quickly,
making the optimisation on this high dimensional space more
costly.

C. Bayesian Optimisation
The Bayesian Optimisation algorithm (Algorithm 1) [14],

was designed to find the extreme of an unknown, noisy, and
costly to evaluate function f , i.e. to find the maximum

x? = arg max
x

f(x) (14)

or minimum

x? = arg min
x

f(x) = arg max
x

(−f(x)) . (15)

BO is completely defined by two elements, the prior
and the acquisition function. We use a GP prior as the
statistical model of the unknown function. This model uses
acquired samples xi to build a representation of the unknown
function and perform regression over the un-sampled space.
Equations 2 and 3 detail the predicted mean µ and variance
Σ respectively. The second fundamental element in BO is the
acquisition function, which encodes the utility of sampling
at location x. The combination of these two elements (GP
prior and acquisition function) can provide a smart trade off
between exploration and exploitation.

At each iteration, a new sampling location is selected by
reasoning over previously acquired information. By maximi-
sing the acquisition function s, we select the best location
to sample the unknown function of the terrain roughness.



D. BO for Informative Planning

Choosing an appropriate model to represent the studied
phenomenon is necessary but not sufficient to achieve good
results. The location of the observations plays a fundamental
role in the quality of the resulting model and its prediction
accuracy. The most popular approach to choose sensing
locations is by maximising the mutual information between
the sampled and un-sampled domain [19]. However, [7] has
shown that BO can be used as a suitable alternative strategy
that not only considers the uncertainty in the model, but
also uses the predicted value to choose sampling locations,
automatically trading off between exploration and exploita-
tion. We use this strategy to learn the roughness of the
terrain, while at the same time using this roughness to select
waypoints for navigating in areas with less vibration.

We use an active sampling procedure based on BO (see
section III-C). By maximising the acquisition function s, we
select the best location to sample the unknown function.
For terrain roughness estimation we use Distance Upper
Confidence Bound (DUCB) as the acquisition function s
(Algorithm 1), given by

DUCB(x|x−) = µ(x) + κ · σ(x) + γ · d(x,x−), (16)

where d(x,x−) is the Euclidian distance between the last
sampled location x− and the candidate location x, and γ < 0
ensures that goal locations are close to each other, with the
purpose of reducing the cost of traversing the environment.

The predicted values µ(x) given by the GP model are large
for higher vibration levels, and by minimising f (Equation
15), we reduce the total vibration experienced by the robot
while traversing the environment. The term σ(x) represents
the variance of the GP model. When maximising Equation
16, note that the first term favours areas of lower vibration
and the second term favours areas with higher uncertainty.
In brief, the robot will tend to favour routes with lower
vibration while visiting areas that reduce the uncertainty in
its predictions.

Initially, the uncertainty will be high over the entire
domain, i.e. the second term of Equation 16 will prevail,
favouring the exploration of unknown terrain. As the robot
senses unknown locations the uncertainty reduces. After
some time, the predicted values of the phenomenon (first
term of Equation 16) become more important to plan sensing
locations, i.e. favouring exploitation. The smoothness of the
transition between exploration and exploitation depends on
the smoothness of the covariance function and the parameter
κ.

IV. EXPERIMENTAL RESULTS

To evaluate the capabilities and performance of the pro-
posed methodology, we implemented the described system
and tested its performance on a wheeled robot, Husky, by
Clearpath Robotics (Fig. 3). The vehicle is equipped with
a laser scanner, an inertial measurement unit and odometry,
and was deployed outdoors in an area with different terrain
characteristics. We assumed that vibration is independent of
the orientation of the vehicle during navigation, and speed

Fig. 3. Clearpath HUSKY robotic platform used in the experiments.

was kept constant throughout the entire trajectory. These
assumptions simplify the model significantly, as we can
now learn a mapping function from a spacial location to
vibration directly, at a small cost in accuracy for the testing
area – the GP automatically increases the noise level σ2

n to
accommodate these simplifications. Learning more complex
models that map from location, speed and orientation to
vibration is possible but require substantially longer ex-
ploration trajectories as the problem’s input dimensionality
increases.

Our proposed method runs in real-time on a standard
laptop and is implemented in C++. We use ROS to interface
with the robot and our method, and to provide localisation.

A. Model

In the first experiment, our focus is to find a suitable
model that can represent the environment properly. To this
end we need to choose a filtering strategy for preprocessing
the data and a covariance function that yields good prediction
results. We compare the predictive performance of our model
by combining a low pass filter or a wavelet filter with the
covariance functions detailed in section III-B.

The robot was driven randomly over the environment
shown in Fig. 5(a), only with the purpose of gathering
data. The linear acceleration data for the vertical axis of
the robot was collected at a frequency of 10Hz and each
measurement was spatially referenced using the localisation
of the robot. This dataset, consisting of 1000 measurements,
was partitioned into 70% for training and 30% for testing
purposes. For each combination of filters and covariance
functions we ran the experiments 10 times, comparing their
performance using two indicators with their respective mean
and standard deviation: 1) the time required to learn the
representation in seconds and 2) Root Mean Squared Error
(RMSE) over the test set in m/s2. These results are shown
in Table I and Fig. 4.

Overall, the low pass filter has smaller error than the
wavelet filter for every covariance function. There is clear
evidence that sums or products of covariance functions take
much longer to train than individual covariance functions,



TABLE I
RESULTS FOR PREPROCESSING FILTERS AND COVARIANCE FUNCTION. RMSE OBTAINED FROM 30% OF THE TEST DATA, AND TRAINING TIME FOR

MAXIMISING LML WITH 700 OBSERVATIONS.

Low Pass Filter Wavelet Filter
Index Covariance function RMSE

(
10−2m/s2

)
Time (s) RMSE

(
10−2m/s2

)
Time (s)

1 Linear (LI) 6.8836± 0.5393 3.2836± 0.3272 9.7869± 0.7096 3.1382± 0.4614
2 Exponential (EP) 5.4013± 0.4583 5.1260± 0.7097 7.4870± 0.4479 4.3600± 0.7276
3 Squared EP (SE) 5.5994± 0.4510 5.1191± 0.5014 7.7127± 0.7563 5.6706± 0.5639
4 Matérn 3 (M3) 5.2796± 0.5485 5.0507± 0.5947 8.1409± 1.0812 5.3240± 0.6323
5 Matérn 5 (M5) 5.2741± 0.4984 4.9580± 0.6434 8.0989± 0.7176 5.5355± 0.6924

6 Sum (SE, M3, M5) 5.2848± 0.3319 70.806± 10.283 7.5104± 0.7193 67.500± 14.940
7 Prod (SE, M3, M5) 5.2042± 0.5799 47.945± 19.168 8.0247± 0.9952 27.813± 5.0636

8 Sum (LI, EP, SE, M3, M5) 5.1685± 0.4569 107.84± 26.586 8.0398± 0.7777 123.64± 12.516
9 Prod (LI, EP, SE, M3, M5) 5.4207± 0.3824 80.988± 50.401 9.1381± 1.6532 37.976± 14.008
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Fig. 4. Results for preprocessing filters and Covariance Functions (CFs).
RMSE obtained from 30% of the test data, and training time for maximising
LML with 700 observations. The index of the CFs are shown in Table I.

which is an expected result given the increase in the dimen-
sionality of the hyper-parameter search space. The Linear
covariance function presents the fastest training time, howe-
ver, the error is too large to be acceptable. Considering the
rest of the relatively fast covariance functions, Matérn 5 is the
one that produces the smallest error without compromising
training time.

The best set of hyper-parameters for Matérn 5, found by
maximising Equation 11, are:

{σf , lposx, lposy, σn} = {0.104, 1.016, 0.990, 0.028} (17)

Fig. 5(b) shows the mean and Fig. 5(c) the variance of
the learnt GP model using a low pass filter and Matérn 5
covariance function with optimal hyper parameters given by
Equation 17. The mean of the vibration estimate shows a
clear distinction between two explored terrains, grass and
asphalt.

B. Path Planning

The second experiment consists of autonomously selecting
sampling locations using the BO algorithm described in
section III-D. The selected covariance function (Matérn 5)
in section IV-A and the optimal hyper parameters were
determined from Equation 17. We use a low pass filter
to remove high-frequency noise from the IMU due to its
simplicity and good results obtained in the previous section.
The parameters of the acquisition function DUCB, {κ, γ},
are set to {1.25, 0.0125}. These were manually tuned result-
ing in the right amount of exploration (κ) while choosing
consecutive sensing locations near each other (γ). However,
a strategy such as [20] could be used for optimising these
parameters automatically.

First, we check the explorative behaviour of our method.
The robot is programmed to autonomously select sampling
locations using BO over the large environment shown in Fig.
5(a), with approximately 1000m2. The trajectory followed by
the robot (including waypoints) and the estimated vibration
across the domain are shown in Fig. 5(d). It can be seen
that the robot covers the whole area, and achieves this in
about 17 minutes. Over time, the robot will explore areas of
low vibration more often than areas with high vibration. As
a result, low vibration areas will be modelled with higher
accuracy. Note that this is not a problem, as the objective
is not only to learn the best model of vibration over the
entire region, but also to minimise excessive vibration during
navigation. The predicted values for vibration agree with the
expected results, considering that the locations with obstacles
are identified as peaks in Fig. 5(d) and the asphalt area has
a lower vibration level on average.

Finally, we compare our sampling method to an entropy
based planner [21], where sampling locations are selected
based only on entropy reduction. The comparison is con-
ducted in two smaller scenarios where the robot is forced to
stay in a restricted area (Fig. 6(a) and Fig. 6(f)). These scenes
contain obstacles that produce sharp changes in vibration
levels. Fig. 6 shows the path followed by the robot, the
selected sampling locations, and the vibration prediction over
the domain for each scenario.

In terms of the quality of the model produced by each



(a) Map matching (b) Mean (c) Variance (d) Predicted mean after autonomous
navigation

Fig. 5. (a) The scenario used for the first experiment bounded by the map generated by the robot. (b) Mean of the predicted vibration. (c) Variance for
the prediction. (d) Predicted mean after autonomous navigation. Distance is in metres and prediction is in m/s2.

(a) Grass Scene (b) Vibration Map and Path BO (c) Vibration Map and Path En-
tropy

(d) Position Heatmap BO (e) Position Heatmap En-
tropy

(f) Asphalt Scene (g) Asphalt BO (h) Asphalt Entropy (i) Position Heatmap BO (j) Position Heatmap En-
tropy

Fig. 6. Comparison between BO and Entropy planning strategies. (a) and (f) show experiment area as a rectangle and obstacles that generate vibration
are marked with circles. (b),(c),(g) and (h) show a surface for the prediction of vertical acceleration in m/s2 and axis in metres. (d), (e), (i) and (j) show
a heat map representing the time spent at each location by the robot for the duration of the experiment.

strategy, both show correctly the area(s) of high vibration.
However, the most interesting and expected result is that the
BO algorithm avoids areas of high vibration after identifying
them during exploration whereas the entropy based planner
chooses sampling locations only based on uncertainty, dis-
regarding the amount of expected vibration. Position-based
heat-maps are generated for the path followed by each robot.
It can be seen that for BO the robot covers the whole area but
concentrates in locations with lower vibration (Fig. 6(d) and
Fig. 6(i)). In contrast, the entropy based sampling approach
(Fig. 6(e) and Fig. 6(j)) is spread over the whole sampling
domain homogeneously.

Table II shows a numeric comparison between the total

vertical acceleration (vibration) experienced by the robot on
each scenario and presents a quantitative indicator. The BO
planner clearly results in less vibration over the trajectory,
in terms of mean and standard deviation, but achieves an
equally accurate model of the environment.

V. CONCLUSIONS

We propose a simple yet effective active learning method
to learn the characteristics of the terrain in outdoor environ-
ments. Particularly, we model terrain roughness using a GP
trained with acceleration measurements on the vertical axis
of the robot. To do this efficiently and maintain the robot
as safe as possible at the same time, we use a BO approach
for choosing sampling locations, automatically trading off



TABLE II
AVERAGE ACCELERATION IN [m/s2] FOR BO AND ENTROPY PLANNERS.

Scenario Method Mean Std

Grass BO 0.096 0.068
Grass Entropy 0.154 0.148

Asphalt BO 0.103 0.122
Asphalt Entropy 0.127 0.256

between exploration and exploitation. A representation of the
roughness was learnt by selecting a covariance function and
hyper parameters that best predict the vibration phenomenon
across space. Additionally, we evaluated the BO method
and compared it against an entropy reduction strategy. Here
the robot learns a model of the terrain roughness, while at
the same time reducing unnecessary exposure to excessive
vibration.

We believe the contributions made in this paper are an
important step towards long-term autonomy for outdoor
robotics. The roughness of the terrain can now be quickly
modelled while reducing the risk of potential damages to
the robot in an efficient manner. The algorithms were imple-
mented and executed in a real robot while navigating in an
unstructured environment, demonstrating empirical evidence
of their effectiveness for real-time applications.

As future work, we will consider more input dimensions
beyond the vibration model, such as the speed, the travel
direction, and features from a visual perception system.
These can help building a more complete representation and
understanding of the environment.
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