
Automatic Detection of Ceratocystis Wilt in
Eucalyptus Crops from Aerial Images

Jefferson R. Souza1, Caio C. T. Mendes2, Vitor Guizilini3, Kelen C. T. Vivaldini2,
Adimara Colturato4, Fabio Ramos3 and Denis F. Wolf2

Abstract— One of the challenges in precision agriculture is
the detection of diseased crops in agricultural environments.
This paper presents a methodology to detect the Ceratocystis
wilt disease in Eucalyptus crops. An unmanned aerial vehicle is
used to obtain high-resolution RGB images of a predefined area.
The methodology enables the extraction of visual features from
image regions and uses several supervised machine learning
(ML) techniques to classify regions into three classes: ground,
healthy and diseased plants. Several learning techniques were
compared using data obtained from a commercial Eucalyptus
plantation. Experimental results show that the GP learning
model is more reliable than the other learning methods for
accurately identifying diseased trees.

I. INTRODUCTION

In Brazil, Eucalyptus is the main forest species and its
planted area comprises approximately 4.9 million hectares
[1]. The harmful effect of diseased crop areas is a known
problem and its damage to eucalypt plantations represents an
estimated loss of $400 million per year, totaling $2.8 billion
dollars in seven years [2]. Diseases can occur in all stages
of the eucalyptus development and can attack and kill most
of the crops in several locations and times of the year.

One of these diseases is Ceratocystis fimbriata [3], a fast
spreading fungus that affects plants and is difficult to control.
Its symptoms arise as a consequence of vessel blockage
through mycelial growth, which prevents the water absorbed
by the root system from appropriately supplementing the
aerial part of the plant. Most of the current methods for
detecting diseased areas are inefficient. Typically, humans
must physically traverse large areas of the agricultural en-
vironment to inspect tree foliage, therefore, leaf inspection
can be very time consuming and costly.

Plenty of research has been devoted to the development
of applications for detection and classification of images
captured by UAVs (Unmanned Aerial Vehicles).

Reid et al. [4] classified the vegetation of natural environ-
ments for geostatistical studies. Color and texture features
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were acquired from an image to generate the feature vectors
used to classify vegetation by a multi-class generalization of
the Gaussian Process (GP). In the identication of trees, the
test data showed accuracies of up to 88% among four classes
of trees. The GP framework was successfully applied for the
learning of a non-parametric image-vegetation model.

Hung et al. [5] shows an algorithm to detect and classify
tree crown species. An image is segmented using color and
texture information, which is grouped into a feature vector
of three colour channels and thirty texture channels. SVM is
used to predict the labels of each feature vector. The classifi-
cation stage uses supervised learning in the feature collection
from the regions of interest. For each class (object, shadow
and background), 100 training instances were collected and
95.6% accuracy was obtained in the optimized segmentation.
In comparison with the tree crown hand labelled in each
ground truth image, the accuracy was 80%.

Ghiasi and Amirfattahi [6] proposed a segmentation
framework to provide a safe landing using an aerial image.
They manually extracted color and texture features from
images, labeled each area semantically and employed two
K-NN classifiers. Local Binary Pattern histogram Fourier
[7] and RGB color histograms were used to represent the
texture and color features. The images were segmented into
superpixels, and for each superpixel features were computed
separately and then classified by KNN. The combined classi-
fiers were applied to a large set of aerial images and resulted
in an acurracy rate above 95%.

Moranduzzo and Melgani [8] developed a method to detect
cars using high resolution images (2 cm/pixel) and applied a
screening step of asphalted zones obtained from road maps
of a Geographic Information System. Feature extraction
was performed based on Scalar Invariant Feature Transform
to identify a set of consistent keypoints. Keypoints were
classified between the points that belonged to the same car
and all the others using SVM. Data were used in the grouping
of keypoints belonging to the same car. The efficiency of the
method was confirmed by accuracy results of above 65%.

Diaz-Varela et al. [9] proposed a method for the automatic
identification of terraces. The authors used computer vision
techniques to generate orthoimagery and digital surface mod-
els (DSMs) with low-user intervention. A multi-scale object-
oriented classification method was used to identify the ter-
races. The results showed a root mean square error lower than
0.5 when the height of the terraces was evaluated in relation
to GPS data by DSM. The automated terrace classification
achieved 90% of accuracy. The authors concluded that the



use of UAVs to verify areas of several hectares is quick,
efficient and lowers costs for remote sensing in vegetation.

We propose a detection approach to identify three different
features, namely: (1) the ground; (2) healthy plants (euca-
lyptus trees); and (3) diseased plants, using UAV images.
The proposed methodology consists of three steps: feature
extraction, training and testing set generation and supervised
learning. First, using a block-based approach, features are
extracted from an aerial image dataset. These images are
hand-labeled and partitioned into training and testing sets.
Finally, four ML methods are trained using the training set
and evaluated using the testing set.

The main contributions of this research are:
1) A block-based approach, including the use and evalua-

tion of a ”contextual block” to extract visual features;
2) A Ceratocystis wilt detection model from aerial im-

ages, which was selected based on performance-wise
evaluation of four distinct ML methods.

The remainder of this paper is organized as follows:
Section II presents the proposed methodology, detailing the
feature extraction and ML techniques used for the Cera-
tocystis wilt detection; the experimental setup, results and
analysis are shown in Section III; finally, section IV draws
the conclusions and suggests directions for future work.

II. PROPOSED METHODOLOGY

This paper proposes a method for distinguishing and iden-
tifying the ground, healthy plants and diseased plants. Fig.
1 shows the methodology divided into three sub-sections.

(a) Training step

(b) Detection step

Fig. 1. Diagram of the methodology. Data flow is represented by arrows.

A block-based approach is used in which features are
extracted from square areas (e.g. 10×10) and fed into a
model. The result is used for the classification of square areas
(ground, healthy or diseased). The images were captured in
4cm/pixel using the UAV. Therefore, the area covered by a
10×10 block is 0.16m2. Instead of one block, we apply a
pair of blocks of different sizes: a smaller non-overlapping
classification block (ClaB), whose area is classified by the
model, and a larger contextual block (ConB), whose features
are expected to yield contextual cues. The same features are
extracted from both blocks and concatenated as the input to
a model. The step is defined by the size of the classification
block (if its size is 10×10, the step is 10 for each dimension).
Since the contextual blocks are larger and the classification
block is at their center, they will overlap (Fig. 2). The ClaB is
defined as 10 and the ConB is modified on the results section.
To find better classification results for the three classes.

Fig. 2. Block-based approach: the features are extracted from square areas.

A. Feature Extraction

In terms of features, the RGB color space is converted into
CIELab and gray-scale, therefore each pixel yields a four-
element vector pu,v = {cl, ca, cb, g}T , where (u, v) are the
coordinate indexes. The mean and variance of each element
are used. Formally, for a block B, the mean (M ) and variance
(V ) are defined according to

M =
1

|B|
∑

(u,v)∈B

eu,v (1)

V =
1

|B|
∑

(u,v)∈B

(eu,v −M)2 (2)

where |B| is the number of pixels belonging to a block and
eu,v is an element value of the p vector.

The standard Local Binary Patterns (LBP) [10] is em-
ployed to encode texture features in the gray-scale image
pu,v = {g}. An LBP image is created according to

LBPP
u,v =

P−1∑
n=0

s(np − pu,v)2
p (3)

where P is the number of neighbors, n0,n1, ...,nP−1 is the
neighbour set (their gray-scale value) of pixel pu,v and s is
given by Eq. 4.

s(x) =

{
1 if x ≥ 0
0 otherwise (4)

We use four neighbors, i.e. the four connected pixels,
and one pixel distance. The histogram of each block in the
LBP image is also used as features, and in the case of four
neighbors it can be defined as

Hi =
∑

(u,v)∈B

δ(LBPu,v = i) , i = 0, 1, . . . , 15 (5)

where Hi is the i-th bin of the histogram and

δ(x) =

{
1 if x is true
0 if x is false. (6)

LBP was employed as a general texture descriptor, and
although the fine details are not present in the images, the



LBP is able to generate distinguishable features on different
illuminations situations as the road and trees regions.

Only 4 instead of 8 (the usual number) neighbors were
used, because they yield a 16-bin histogram instead of 256.
The use of 4 neighbors avoids a high dimensional feature
vector, which may imply a large Vapnik Chervonenkis (VC)
[11] dimension, as the case of Neural Networks. A low VC-
dimension is important when a small number of samples are
used, as in diseased plants. Further, as we are dealing with
high-resolution images, a low dimensional feature vector
allows for faster training and evaluation times. We also in-
cluded an additional feature that is the difference between the
full gray-scale image mean and the block mean, this should
create illumination invariance between images. Therefore, we
have a total of 50 features, 25 features for each block.

B. Training and Testing Set

To create a sample database, we manually classify the
images and only features of the pairs of blocks in which
all pixels of the classification block belong to the same
class (i.e. using a 10×10 classification block, all of the
100 pixels should be equally classified). The training and
testing division is performed based on image indexes: a
set of images is used for training and another for testing
purposes. Such a scheme reinforces a significant difference
between training and testing sets. All samples are feature-
wise normalized according to

fnorm =
f −m(f)

std(f)
(7)

where fnorm was the normalized value, f is the feature
value, f is the vector containing all training values of a
certain feature and m and std return the mean and stan-
dard deviation of a vector, respectively. The testing set is
normalized by the same parameters m and std calculated in
the training set.

C. Supervised Learning

The normalized vector is used to train ML methods. Clas-
sification methods were selected based on their well-known
accurate generalization performances: K-Nearest Neighbors
(K-NN) [12], Random Forest (RF) [13], Artificial Neural
Networks (ANN) [14] and Gaussian Processes (GP) [15].

KNN is an instance-based classification method; it classi-
fies a test sample according to the class of its K nearest train-
ing samples (Fig. 3), where K nearest is defined according
to a distance metric (in our case, the Euclidean distance).

?

Fig. 3. K-NN with two classes, square and star. The red circle is a new
query, which is classified as a square with K = 3 and a star with K = 5.

RF is a method that combines the prediction of multiple
decision trees. Each tree is trained by a random subset of all
available data and the output is the combination of the results
of all trees. Fig. 4 shows the RF for multi-class classification.

Tree Tree Tree

Data

Random subset Random subset Random subset

Output

Fig. 4. RF method. A decision tree is created, for each random subset of
features, and the result is the combination of the outputs of all trees.

ANN is a biologically inspired method, whose model can
be viewed as a graph where each node is called “neuron”.
We use the Multilayer Perceptron (MLP) ANN, that has
multiple layers of neurons. Its connections do not form
a directed cycle and the information flows in only one
direction (i.e. from input to output layers, Fig. 5). We use the
backpropagation [16] algorithm to estimate the connection
weights, a sigmoidal activation function and one hidden
layer.

Input layer

Hidden layer Output layer

Fig. 5. MLP architecture with three layers: input, hidden and output layers.

GP is a Bayesian nonparametric tool that learns the input-
output transformation function based on training data. A co-
variance function k(x, x′) is defined as distance (correlation)
between points in the input space and the training informa-
tion is extrapolated to estimate the output of new unobserved
data (Fig. 6). A sigmoid function siglogit(x) = 1/(1 + e−x)

(a) Untrained model (b) Trained model

Fig. 6. Priori and posteriori examples of a GP function. In (a) there is still
no information about the underlying phenomenon, so the space function
is large (as is the variance, given by the grey area). In (b), as data is
incorporated into the model, this function space shrinks to accomodate only
those that correspond to the observations (black dots).



is used to squeeze the regression values between [0, 1],
forming a binary classifier. Because this is a probabilistic
framework, a measure of variance is provided and indicates
the accuracy of each estimate. Due to the large number of
training points, we chose to use a sparse GP, known as FITC
(Fully-Independent Training Conditional) [17]. A number of
support points is selected. The training data is projected
into this small space during matrix inversion. This helps to
decrease the computational cost of the GP, which is cubic to
the number of training points.

III. EXPERIMENTAL RESULTS

We implemented the described system and tested its per-
formance using aerial images from an eBee robot, SenseFly1

to evaluate the capabilities and performance of the method-
ology. The robot is a small fixed-wing UAV equipped with
an RGB camera and an onboard GPS and powered by a
lithium polymer battery. It has an embedded system for nav-
igation control, flight maneuvers, sensor activaction, actuator
controls and critical situation management (for example, the
eBee alerts the base station when the battery is too low to
perform a specific route).

Aerial images were captured by an IXUS 127 HS Canon
camera of 4608×3456 pixel resolution flying at an average
altitude of 890 meters. The frame rate was approximately one
image per six seconds. For the image acquisition, the eBee
software can be used to upload a map with a predefined route
that must be covered by the UAV. The eBee flies over the
route and takes pictures, which are uploaded to a computer
after the flight and merged into an image containing the
whole area observed (Fig. 7).

A. Training and Model Selection

The UAV followed a predefined route on a farm containing
eucalyptus (Fig. 7) to collect data. The dataset consists
of 154 images, from which we used only 15 due to the
presence of diseased plants. In theory, each classification
block produces a sample, however, a classification block
may contain pixels with different classes. When that is the
case, we ignore the block and do not produce a sample. The
dataset was partitioned into 10 images for training (6442
unambiguous samples, where all pixels belong to the same

Fig. 7. The red line shows a predefined route performed by a UAV (eBee).
The aerial images were captured for each GPS position (yellow circles).

1www.sensefly.com

class). For testing, 5 images are employed, where features
are extracted from every possible block, each sample is
classified according a given classifier and the results are used
to generate a classified image. The evaluation is performed
pixel-wise using the classified image and the ground truth.
Sample training and testing databases were also generated for
each combination of block size. Several ML algorithms were
then applied. Experiments with the same random seeds were
conducted for a comparison among the results regarding the
F-Measure of the diseased plants.

The first experiment focused on finding a suitable model
to represent the diseased, healthy and ground areas. The
predictive performances of the models (Section II-C) were
compared and results are shown in Tables I, II, III and IV.

Table I refers to the K-NN for each K neighbor according
to the block size. Hyperparameters K = 9 and 90×10 block
size provided the best F-Measure result over the testing set.

TABLE I
F-MEASURE OF K-NN FOR EACH BLOCK SIZE (BS).

K neighbors
BS 1 3 5 7 9

30×10 0.3019 0.4281 0.4667 0.4849 0.4957
50×10 0.3775 0.5246 0.5787 0.5999 0.6190
70×10 0.4139 0.5748 0.6429 0.6661 0.6780
90×10 0.4580 0.6143 0.6638 0.6862 0.6865

Table II shows the RF results for each number of trees
according to the BS. Hyperparameters NT = 25 and 30×10
BS provided the best F-Measure result in the testing set.

TABLE II
F-MEASURE OF RANDOM FOREST FOR EACH BLOCK SIZE (BS).

Number of Trees (NT)
BS 5 10 25 50 100

30×10 0.3160 0.3835 0.6875 0.6523 0.6721
50×10 0.5447 0.5185 0.6811 0.5903 0.4451
70×10 0.5247 0.4336 0.4404 0.5696 0.4506
90×10 0.4040 0.6652 0.6588 0.5723 0.5544

Table III provides the ANN results for each number of HN
according to the block size. Hyperparameters HN = 50 and
30×10 BS achieved the best F-Measure in the testing set.

TABLE III
F-MEASURE OF ANN FOR EACH BLOCK SIZE (BS).

ANN - Hidden Neurons (HN)
BS 50x200x3 50x100x3 50x50x3 50x25x3 50x12x3

30×10 0.6151 0.7582 0.7940 0.6772 0.7505
50×10 0.6662 0.6932 0.6238 0.6201 0.7180
70×10 0.7156 0.6543 0.6333 0.6018 0.6721
90×10 0.7124 0.6987 0.6964 0.6249 0.6514

Table IV shows the GP results for each kernel function
according to the block size. In all experiments, 200 input
coordinates were selected as support points according to the
k-means algorithm (the dense GP implementation was unable
to cope with this amount of training data). The Rational
Quadratic covariance function with 70×10 BS as contextual
block achieved the best F-Measure over the testing set.

Table V shows a comparison of the best models with
their respective optimized hyperparameters. The GP showed



TABLE IV
F-MEASURE OF GP FOR EACH BLOCK SIZE (BS).

GP - Kernel Function (KF)
BS Squared Linear Exp. Matern Matern Rational

Exp. 3/2 5/2 Quadratic
30×10 0.7741 0.7034 0.7460 0.7802 0.7626 0.7543
50×10 0.7289 0.6726 0.7292 0.7662 0.7408 0.7412
70×10 0.7491 0.6679 0.7333 0.7488 0.5703 0.8040
90×10 0.7279 0.6763 0.7308 0.7513 0.7496 0.7056

higher F-Measure than the K-NN, RF and ANN methods.
The hyperparameters of the best methods found are K-NN
(K = 9), RF (NT = 25), ANN (HN = 50) and GP
(Rational Quadratic kernel).

TABLE V
RESULTS OF THE BEST SUPERVISED ML MODELS.

Best ML Models F-Measure
K-Nearest Neighbors 0.6865

Random Forest 0.6875
Artificial Neural Networks 0.7940

Gaussian Processes 0.8040

B. Validating the Two Best Models

In the second experiment, our goal was to validate the
two best ML methods. We sought a model to detect samples
of ground, healthy and diseased plants using the best ML
methods (Table V), since they provided similar performance
levels. Results of ANN and GP for the second experiment
are depicted in Figs. 8(a) and 8(b)). The road was quite well
segmented, therefore most of the diseased trees are presented
in the image. The noise in the classification was due to the
presence of ambiguous areas that did not belong to a single
class and generated mixed feature vectors.

The predictive performances of the two best ML models
were also numerically compared in the second experiment.
The GP (Table VI) achieved higher F-measure scores than
the ANN model. Ground, healthy and diseased plants were
identified by GP with a larger amount of correctly classified
pixels, especially in relation to road/tree segmentation.

TABLE VI
CONFUSION MATRIX OF THE BEST ML MODELS PERFORMED IN ONE

TEST IMAGE, WHERE G - GROUND, H - HEALTHY AND D - DISEASED.

(a) ANN (Precision = 0.8827, Recall = 0.8825
and F-Measure = 0.8826) for the diseased plants.

Ground truth
Predicted G H D

G 137251 2000 88
H 3298 7258572 2916
D 2498 500 22573

(b) GP (Precision = 0.9178, Recall = 0.9184 and
F-Measure = 0.9181) for the diseased plants.

Ground truth
Predicted G H D

G 140917 0 247
H 1316 7259783 1841
D 814 1289 23489

(a) ANN

(b) GP

Fig. 8. Classification results of the two best models. Red areas show
diseased plants and blue areas show roads.

C. Validating the Block-Based and Without Block Approach

The third experiment was to validate the block-based and
without block approach for the best ML method. We sought
an approach that achieves an improvement in the results of
the detection of samples for classes: ground, healthy and
diseased. We can see that the Table VII shows a higher
F-measure for the diseased plants using the block-based
approach. Three classes were identified with a larger amount
of correctly classified pixels using the block-based approach.

TABLE VII
CONFUSION MATRIX OF THE GP MODEL, WITH AND WITHOUT

CONTEXTUAL BLOCK FOR ONE TEST IMAGE (P - PRECISION, R -
RECALL AND F - F-MEASURE).

(a) GP without block (P = 0.7888, R = 0.9193
and F = 0.8490) for the diseased plants.

Ground truth
Predicted G H D

G 135367 100 223
H 2572 7259783 1841
D 5108 1189 23513

(b) GP with block (P = 0.9178, R = 0.9184 and
F = 0.9181) for the diseased plants.

Ground truth
Predicted G H D

G 140917 0 247
H 1316 7259783 1841
D 814 1289 23489



D. Analysing the Best Model

Here, the focuses is on the analysis of the best model
selected in the previous sections: the GP framework with
70×10 contextual blocks and a rational quadratic covariance
function. Initially, we observe the length-scales obtained dur-
ing the hyperparameter optimization stage for each feature
dimension (Fig. 9). These length-scales essentially determine
how sensitive each dimension is for classification purposes
(smaller length-scales indicate less connected dimensions).
This information could be employed to detect and remove
dimensions that are not particularly useful in classification,
thus reducing the dimensionality of the problem and, its
computational complexity.

(a) Ground/Tree classification (α =
6.55 , σ2

v = 4.41)
(b) Healthy/Diseased classification
(α = 31.45 , σ2

v = 3.02)

Fig. 9. Trained length-scales for each feature dimension.

Variance values provided by the GP framework were also
analysed, and are an estimate of the classification confidence.
This information enables the detection of areas whose classi-
fication is particularly imprecise, therefore the results should
not be used without careful consideration. Fig. 10(a) shows
the Ground/Tree variance and, as expected, the transitional
areas are more uncertain, since some pixels belong to both
classes in the same contextual block. Fig. 10(b) shows the
Healthy/Diseased variance, which accounts for most of the
noise in the final classification results (Fig. 8(b)).

(a) Ground/Tree

(b) Healthy/Diseased

Fig. 10. Classification variance in the GP for both binary classifications.
Darker areas indicate larger variances (lower certainty).

IV. CONCLUSION

A method for the detection and learning of visual features
representing ground, healthy and diseased plants has been
proposed, using RGB images from an UAV in outdoor
environments. These features were processed by four distinct
machine learning techniques (K-NN, RF, ANN and GP),
and the classification output was compared for the selection
of the best model within the proposed methodology and
according to the F-measure metric. The aim is the detection
of Ceratocystis wilt, a common Eucalyptus disease in Brazil,
however the same technique can be readily applied to any
visually observable condition.

We believe these results are an important step towards
the advancement of precision agriculture as a reliable way
of monitoring large crops autonomously. Further work will
focus on improving the feature vector, both by removing
irrelevant features and also introducing new descriptors (e.g.
textons and HOG). The variance estimate provided by the
GP framework will also be a valuable tool for the access to
the local accuracy of classifications, which could be used to
guide the UAV as to further survey areas of high uncertainty.
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