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Abstract The ability to generate accurate terrain models is of key importance in a
wide variety of robotics tasks, ranging from path planning and trajectory optimization
to environment exploration and mining applications. This paper introduces a novel
regression methodology for terrain modeling that takes place in a Reproducing
Kernel Hilbert Space, and can approximate arbitrarily complex functions using
Variational Bayesian inference. A sparse kernel is used to efficiently project input
points into a high-dimensional feature vector, based on cluster information generated
automatically from training data. Each kernel maintains its own regression model,
and the entire set is simultaneously optimized in an iterative fashion as more data
is collected, to maximize a global variational bound. Additionally, we show how
kernel parameters can be jointly learned alongside the regression model parameters,
to achieve a better approximation of the underlying function. Experimental results
show that the proposed methodology consistently outperforms current state-of-the-art
techniques, while maintaining a fully probabilistic treatment of uncertainties and
high scalability to large-scale datasets.

1 Introduction

Any sort of autonomous task is predicated on a system’s ability to sense its surround-
ings, as a way to understand its current state before deciding what its next action
should be in order to achieve a determined goal. For mobile robot navigation, an
accurate model for terrain representation is crucial, since it dictates which areas the
vehicle can traverse safely and which ones would result in a collision, or some other
sort of unfavorable outcome. The main challenges in creating an accurate terrain
model lie in the presence of measurement uncertainties, data incompleteness and
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handling details in unstructured areas, which becomes even more challenging in
large-scale scenarios, which is the case for most current applications. Any sensor
is inherently inaccurate, and these inaccuracies are compounded by uncertainty in
vehicle localization, as new data is collected during navigation to produce a global
representation of observed areas. Data point density rapidly decays as we move
away from the sensor, creating low-resolution areas in which large portions of the
environment within range remain unobserved. Terrain details (i.e. sharpness and
sudden discontinuities) should be correctly captured for an accurate representation
of observed data, however if the model is too complex it might overfit and produce
poor estimates under testing conditions.

In robotics, state-of-the-art terrain representations were originally limited to tools
such as elevation maps (EMs) and triangulated irregular networks (TINs). EMs
[15, 34] are 2D grid-based structures that model 3D space in terms of a scalar
estimate corresponding to the height of each cell, an arrangement also known as a
2.5D representation. Their main advantage is simplicity, however this comes at the
cost of drawbacks such as: inability to handle abrupt elevation changes [35]; lack of a
statistically proper way to handle spatial correlation or measurement uncertainty [16];
and scalability issues to larger datasets [9]. Over the years, these drawbacks have
been partially addressed in several ways, such as [34], that proposes an extension
capable of handling multiple surfaces and hanging objects, and [16, 7], that attempts
to incorporate uncertainty estimates in the EM model. TINs [28], on the other hand,
sample a set of points that capture important aspects of the observed terrain surface,
which are then connected to their nearest neighbors to produce a triangular network
model. While better able to capture sudden elevation changes and more efficient
when dealing with flat areas, TINs struggle with dense sensor data [34], due to the
huge memory footprint produced by highly textured surfaces, and are still unable to
formally incorporate spatial dependencies and measurement uncertainty.

The use of Gaussian Processess (GPs) [27], a powerful Bayesian non-parametric
regression learning technique, for terrain modeling has become popular in recent
years, because they are able to handle most of the above mentioned issues. They
provide a continuous elevation function that can be sampled at arbitrary resolutions,
incorporate uncertainty in an statistically sound way and represent spatially corre-
lated data in an appropriate manner. Essentially, a GP implements an interpolation
technique commonly used in statistics, called Krigging [18], which is the best linear
unbiased estimate based on the underlying stochastic model of spatial correlation be-
tween data points (further discussion on other interpolation techniques for grid-based
methods can be found in [14]). The standard GP framework, however, scales cubically
with the number of training points, thus rendering it computationally too expensive
for large-scale datasets, and most kernel covariance functions are too smooth to
correctly model terrain details and sudden discontinuities. Non-stationary covariance
functions [35, 22] can be used to produce variable smoothness throughout the input
space, and sparse approximations [25, 33, 23] reduce computational complexity by
projecting data into a subset of inducing points, or using GP ensembles.

In this paper we propose a novel regression methodology for terrain modeling that
operates on a Reproducing Kernel Hilbert Space (RKHS) [30], generated by the pro-
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jection of input data into a high-dimensional feature vector. In this high-dimensional
space, real world complexity can be represented using very simple models, which
results in efficient training and query times. Although this approach has already been
explored before, most notably in [36] for a functional regression setting and in [12]
for rough terrain estimation using space-carving kernels, here we develop a fully
probabilistic sparse approximation that is suitable for online learning and can be
readily applied to large-scale datasets. Variational Bayesian inference is used for
the probabilistic treatment of variables, thus providing a measure of uncertainty that
quantifies the model’s confidence in relation to its own estimates. The compact sup-
port kernel introduced in [10] serves to decouple different dimensions of the RKHS,
which enforces non-stationarity in the input space and allows the optimization of dif-
ferent localized regression models, while still maximizing a single global variational
bound. Furthermore, we show how kernel parameters can be jointly learned alongside
regression model parameters, to achieve a better variational approximation of the
underlying function. Finally, we test the proposed methodology in two large-scale
unstructured real datasets, and show that it outperforms other commonly used terrain
modeling techniques both in terms of accuracy and computational speed.

2 Methodology

We assume a training dataset D = {X ,y} composed of N observed input points
X = {xn}N

n=1, with xn ∈ RD, and their corresponding output values y = {yn}N
n=1,

with yn ∈R. The objective is to produce a continuous function g(.) that approximates
a hypothetical underlying latent function f (.), from which D was sampled. This
latent function can be defined as:

yn = f (xn)+ ε = wT xn + ε , (1)

where ε is the system noise and w is the parameter vector, that is optimized based
on the information contained in D and defines the regression model. For a standard
linear regression model, w is a D+ 1 column vector and xn is augmented so that
x̃n = {1,x1

n,x
2
n, . . . ,x

D
n }. The use of basis functions can further improve its predictive

powers [2], however for notation simplicity here we assume a non-biased linear
regression model.

2.1 Bayesian Inference

We start by modeling ε as a zero-mean Gaussian distribution with variance σ2
ε , i.e.

ε ∼N (0,σ2
ε ). The probability of an output y, given the corresponding input x, model

parameters w and noise variance σε , is given by:
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p(y|x,w,σ2
ε ) =N (y|wT xn,σ

2
ε ) =

1√
2πσ2

ε

exp
(

1
2σ2

ε

(yn−wT xn)
2
)

. (2)

Furthermore, if we consider the entire training dataset D and assume they are
sampled independently from f (.), the log-likelihood function can be expressed as:

ln p(y|X ,w,σ2
ε ) =

N

∏
n=1

lnN (y|wT xn,σ
2
ε ) =

N
2

lnβ − N
2

ln(2π)−βE(w) , (3)

where β = σ−2
ε is the noise precision and E(w) = 1

2 ∑
N
n=1
(
yn−wT xn

)2 is the sum
of squared errors loss function. Based on the above equation, we can conclude that
maximizing this log-likelihood is equivalent to minimizing the sum of squared errors
between model estimates wT xn and ground-truth information yn. The gradient of
Equation 3 is given by:

∇ ln p(y|X ,w,σ2
ε ) =

N

∑
n=1

(
yn−wT xn

)
xT

n . (4)

Setting this gradient to zero and solving for w, we obtain the optimal parameters
as wML = (XT X)−1XT y. However, this direct optimization has the known effect
of inducing over-fitting if model complexity is not carefully selected [2], since
simply maximizing the likelihood function will always lead to excessively complex
models. Because of that, usually a Bayesian formulation is used [4], that is able
to automatically determine model complexity based on training data alone. This
is done by placing a prior distribution on the model parameters themselves, such
that p(w) =N (w|µµµ0,S0). To facilitate the treatment, we can assume a zero-mean
distribution and a single precision parameter α , so that p(w|α) = N (w|0,α−1I)
The posterior distribution p(w|y) =N (w|µµµ t ,St), calculated using the information
contained in D, has the following mean and variance values:

µµµ t = St
(
S−1

t−1µµµ t−1 +βXT y
)
= βStXT y (5)

S−1
t = S−1

t−1 +βXT X = αI +βXT X . (6)

It can be shown [2] that maximizing this new formulation with respect to w is
equivalent to minimizing the sum of squared errors with the addition of a quadratic
regularization term λ

2 wT w, with λ = α/β .

2.2 Variational Bayesian Approximation

The explicit calculation of these distributions quickly becomes intractable as models
get more complex, particularly when hyper-parameters such as α and β are integrated
alongside model parameters w. Because of that, considerable work has been done in
approximation techniques, such as Markov Chain Monte Carlo [8] and Variational
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Bayesian [21, 2, 6] methods. Here we will focus on Variational Bayesian methods,
that introduce a new distribution q(.) that is optimized to approximate p(.), such that
p(Z|X)≈ q(Z) according to a distance metric D(q, p), usually the Kullback-Leibler
(KL) divergence, defined as:

DKL(q||p) = ∑
Z

q(Z) log
q(Z)

p(Z|X)
. (7)

The prior on w and β is a conjugate normal inverse-gamma distribution param-
eterized on α , defined as p(w,β |α) =N (w|0,(αβ )−1I)Gam(β |a0,b0). Similarly,
α receives the hyper-prior p(α) = Gam(α|c0,d0). There is no analytic solution to
these posteriors, due to the introduction of hyper-priors, so a variational treatment
becomes necessary. The variational bound to be maximized is:

L(q) =
∫ ∫ ∫

q(w,α,β ) ln
p(y|X ,w,β )p(w,β |α)p(α)

q(w,α,β )
dwdαdβ ≤ ln p(D) , (8)

where p(D) is the model evidence. To maximize this bound, we assume the varia-
tional distribution q(w,α,β ), which approximates the posterior p(w,α,β |D), can
be factored as q(w,β )q(α). The variational posterior for w and β that maximizes
this variational bound, while keeping q(α) fixed, is given by:

lnq∗(w,β ) = lnN (w|wt ,β
−1Vt)Gam(β |at ,bt) , (9)

with:

at = at−1+
N
2

, bt = bt−1 +
1
2

(
∑
n
(yn−wT

n xn)
2 +

ct

dt
wT

t wt

)
,

V−1
t =

ct

dt
I +∑

n
xnxT

n , wt =Vt ∑
n

xnyn . (10)

Similarly, the variational posterior for α , while keeping q(w,β ) fixed, is given by:

lnq∗(α) = lnGam(α|ct ,dt) , (11)

with:

ct = ct−1 +
D
2

, dt = dt−1 +
1
2

(
at

bt
wT

t w+Tr(Vt)

)
. (12)

The complete variational bound can then be rearranged to assume the form:

L(q)t =−
N
2

ln2π− 1
2 ∑

n

(
at

bt
(yn−wT

t xn)
2 +xT

n Vtxn

)
+

1
2

ln |Vt |+
D
2

− lnΓ (at−1)+at−1 lnbt−1−bt−1
at

bt
+ lnΓ (at)−at lnbt +at

− lnΓ (ct−1)+ ct−1 lndt−1 + lnΓ (ct)− ct lndt . (13)
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This bound is maximized by iteratively updating over Vt , wt , at , bt , ct and dt
until L(q) converges. The predictive distribution is evaluated by approximating the
posterior p(w,β |D) by its variational counterpart q(w,β ), such that:

p(y|x,D)≈ St
(
y|wT

t x,(1+xTVtx)−1,2at
)

, (14)

which is a Student’s t-distribution with mean wT
t x, precision (1+xTVtx)−1at/bt and

2at degrees of freedom. This variational Bayesian formulation lends itself naturally
to online learning, since new information can be incorporated as the iterative process
described previously is performed. Several extensions that further improve online
learning have also been proposed, such as a forgetting scheme that allows its use in
dynamic environments [29, 13] and asynchronous streaming support [3].

2.3 Variational Hilbert Regression

The Hilbert Maps (HM) framework, introduced in [26], proposes the modeling of
arbitrarily complex functions by projecting input coordinates x into a Reproducing
Kernel Hilbert Space (RKHS) [31], using a feature vector Φ(x). The dot product
of these feature vectors can be used to approximate popular kernels found in the
literature [27], and by operating only in terms of kernel evaluations it is possible
to avoid calculations in this high-dimensional (and possibly infinite) feature space.
The original implementation, alongside subsequent extensions [10, 5, 11], focus on
classification tasks, such as occupancy mapping, and here we propose what is to
the best of our knowledge the first application of the Hilbert Maps framework for
regression tasks.

In [10] a sparse derivation was developed, which used clustering to place inducing
points throughout observed areas of the input space, that served as anchors for
different dimensions of the feature vector. Sparseness is achieved using the kernel
proposed in [19], which vanishes exactly to zero after a certain distance threshold.
The feature vector Φ(x) and sparse kernel k(x,M) are defined as:

Φ(x,M) =


k(x,M1)
k(x,M2)

...
k(x,MM)

 ,

k(x,Mi) ={
2+cos(2πri)

3 (1− ri)+
1

2π
sin(2πri) if ri < 1

0 if ri ≥ 1

, (15)

whereM = {Mi}M
i=1 = {µµµ i,Σi}M

i=1 is the cluster set extracted from D, each one
containing mean µµµ and covariance Σ values calculated from their corresponding input

points subset and used to obtain the distance threshold ri =
√

(x−µµµ i)
T Σ
−1
i (x−µµµ i).

Efficient data storage structures, such as kd-trees [20], can be used to quickly search
for clusters within this threshold, thus eliminating irrelevant kernel calculations.
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For the proposed regression methodology, each cluster is augmented to include
a parameter vector θθθ = {w,V,a,b,c,d}, such thatMi = {µµµ,Σ ,θθθ}i. Note that each
cluster has its own regression model, that is initialized empty (i.e. with zeros) and
updated as new information is observed. Assuming that each new observation {x,y}∗
is drawn independently from the underlying function f (.) and belongs to a single
cluster, the global variational bound can be expressed as the sum L(M) = ∑iL(qi)
(i.e. the feature vector Φ(x∗,M) is orthogonal), with each local component described
by Equation 13. To enforce sparsity during updates, and maintain non-stationarity in
different areas of the input space, these components are scaled by the corresponding
feature vector Φ(x∗,M), so that:

L(M)t+1 = L(M)t +max
Θ

[
M

∑
i=1

Φi(x∗,M)
(
L(Mi)t+1−L(Mi)t

)]
, (16)

where Θ represents all model parameters {θθθ}M
i=1, that are optimized to maximize

the increase in the global variational bound from timestep t (prior to new data
incorporation) to t + 1 (after new data incorporation). The intuition is that points
closer to a cluster should contribute with a larger rate of change for that particular
model. Similarly, parameters of clusters with no points within its distance threshold
(i.e. Φi(x,M) = 0) remain unchanged, since there is no relevant information to
be incorporated. Note that multiple points can be incorporated simultaneously, by
optimizing Equation 16 with the summed contribution of each new observation
scaled by their corresponding feature vector.

Prediction is performed in a similar way, using the approximated distribution in
Equation 14 to generate mean µ∗ and variance ν2

∗ estimates for any query point x∗.
Each cluster contributes with one estimate, that is scaled according to its correspond-
ing feature vector Φ(x,M) dimension and normalized by the total sum of the feature
vector, so that nearby clusters contribute more strongly to the final estimate:

µ∗ =
1

||Φ(x∗,M)||1

M

∑
i=1

Φ(x∗,Mi)wT
i x∗ (17)

ν
2
∗ =

1
||Φ(x∗,M)||1

M

∑
i=1

Φ(x∗,Mi)
bi

ai
(1+xT

∗Vix∗) (18)

A consequence of the sparseness enforced by Φ is that query points outside the
distance threshold of all clusters will not be considered by any model, which results
in an ill-defined behavior in Equations 17 and 18. A solution to this scenario is to set
a minimum number of nearest clusters whose models will be considered, regardless
of their distance thresholds. In the experiments we used a simple heuristic in which
ri/r̄ nearest neighbors are considered, where ri is the distance threshold to the nearest
cluster and r̄ is the average distance between clusters. This formulation ensures that
more clusters are used to estimate areas further away, thus producing smoother results
that do not depend on any model in particular, while nearby regions still retain their
sharpness, since fewer clusters are used for estimates.



8 Vitor Guizilini and Fabio Ramos

2.4 Joint Kernel Learning

Given an initial dataset D, several different clustering techniques [17, 1, 32] can be
used to generate cluster centers, and by extension covariance values. In this work
we employ the ASK-Means algorithm described in [11], because it produces similar
cluster densities and can automatically determine how many clusters are necessary to
properly describe input data. Once the kernel parameters {µµµ,Σ}M

i=1 are generated, the
methodology described previously is used to separately learn the regression model
parameters Θ = {θθθ}M

i=1 that together compose the Variational Hilbert Regression
model.

In this section we briefly discuss a few techniques that enable the joint learning of
kernel and regression model parameters {µµµ,Σ ,θθθ}M

i=1, as a way to further increase
L(M) values during the training process or decrease model complexity without
significantly compromising results.

2.4.1 Switching

Switching refers to changing the index of a given training point xk, so it belongs
to a new cluster. By extension, this change also modifies the kernel parameters of
both clusters, which can be performed efficiently using routines for incremental
calculation of mean and variance [24]. The maximization process for the global
variational bound now includes the cluster selection for xk, and is of the form:

L(C)t+1 = L(C)t +max
Θ ,C

[
C

∑
j=1

Φ j(x,C)
(
L(C j)t+1−L(C j)t

)]
, (19)

where C represents the subset of clusters considered to receive xk (note that the
remainder ofM is not considered here, since these clusters are not affected by the
switching process). As a way to avoid excessive computational costs, switching is
triggered by calculating the residual error ζ i

k = (µ i
k− yk)

2 of xk in relation to its
current clusterMi. If this value is above a certain error threshold, its nearby clusters
(i.e. within distance threshold) are considered as the subset C in Equation 19.

2.4.2 Splitting

Splitting refers to separating one cluster into two or more, each one receiving a
subset of its corresponding points. This is particularly useful when dealing with more
complex areas, with shapes that cannot be accurately captured by the regression
model.1 The splitting process does not affect any other clusters, and therefore its

1 The proposed framework can be trivially extended to support different regression models for each
cluster, including the learning of which regression models should be used, however this was not
explored in this paper.
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maximization process can be simplified to:

L(Mk)t+1 = L(Mk)t +max
Θ ,C

[
C

∑
j=1

Φ j(x,C)
(
L(C j)t+1−L(Mk)t

)]
, (20)

whereMk denotes the cluster to be split, and C is the subset of clusters produced
from its corresponding points. Note that this process introduces a new dimension to
the feature vector Φ , thus increasing the overall complexity of the underlying model.
To avoid over-fitting, new clusters are only generated if assigned a minimum number
of points, which can be calculated based on average point density for different areas
of the input space. As a way to avoid excessive computational costs, splitting is
triggered by calculating the average residual value ζ̄ i = 1

k ∑k ζ i
k of all k points inMi

in relation to its own regression model. If this value is above a certain threshold, its
points are considered for the generation of sub-clusters C in Equation 20.

2.4.3 Merging

Merging refers to combining two or more clusters into a single one, with the same
kernel and regression parameters. Differently from previous techniques, merging
does not attempt to maximize the global variational bound, since it decreases the
complexity of the underlying model. However, it can determine which clusters can
be safely removed without degrading estimates above a given error threshold, thus
promoting a trade-off between accuracy and speed that can be useful for certain
applications. Pseudo-code for the checking and merging of a clusterMi, given an
error threshold ζmax, is shown in Algorithm 1, and its effects on terrain mapping
results can be seen in Figure 3.

Algorithm 1: Pseudo-Code for cluster merging within the VHR framework.
input : M : Cluster Set

i : Index of cluster considered for merging
output : M : Updated cluster set

1 C← nearest(Mi) % Find nearest neighbors
2 for C j in C do

3 ζ
j

i = 1
U

√
∑u

(
µ

j
u − yu

)2
, {x,y}u ∈Mi % Residual error of Mi in relation to C j

4 ζ i
j =

1
V

√
∑v (µ

i
v− yv)

2 , {x,y}v ∈ C j % Residual error of C j in relation to Mi

5 if
(

ζ
j

i +ζ i
j

)
/2 < ζmax then

6 Mi← C j % Merge clusters
7 end
8 end
9 {µµµ,Σ ,θθθ}←Mi % Update cluster kernel and model parameters
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3 Experimental Results

In this section the proposed Variational Hilbert Regression (VHR) is used to address
the problem of terrain modeling, in which 2D inputs x = {x,y}N

n=1 are mapped into a
probability distribution f (x) =N (µ,ν2) for elevation values. Two different large-
scale publicly available datasets were considered, with VHR results being compared
to both standard linear (LI) and cubic (CI) interpolation techniques and also a GP
framework for the modeling of large-scale terrains, as shown in [35].

The first dataset considered here was obtained from the website http://asrl.
utias.utoronto.ca/datasets/3dmap/a100_dome.html, and is enti-
tled Rover. It contains 252616 points obtained from a laser rangefinder mounted on
top of a panning unit, to produce 3D slices of the surrounding environment. This
dataset covers an area of roughly 30m×30m, however due to terrain obstructions
a large portion remains unobserved, as it can be seen in Figure 1a, where the 1589
clusters generated from the original pointcloud are depicted. Figure 1b presents the
terrain modeling results obtained using a GP framework, based on the work of [35].
Due to the number of training points, a sparse approximation was necessary [33], in
which cluster centers were used as inducing points to decrease computational cost
during training and inference. Similarly, terrain modeling results obtained using the
proposed VHR framework are depicted in Figure 2, also colored by variance.

As expected, areas close to training points have lower variance values (shades
of blue), and as we move away from these observed areas variance values steadily
increases (shades of red, until saturation). Interestingly, in the VHR framework
variance values vary even in areas close to training points, according to the accuracy
of nearby local regression models that contribute to the feature vector. As observed
data diverges from current estimates, the resulting variance values increase (i.e.
different shades of blue on the bottom left image in Figure 2), which might lead to
switching and splitting, as detailed in Sections 2.4.1 and 2.4.2 respectively. It is also

(a) 1589 Clusters generated from the original
pointcloud (252616 points).

(b) Sparse GP results (mean estimates, colored
by variance).

Fig. 1: Terrain modeling results for the Rover dataset using a Sparse GP framework.
White dots indicate the points used to train the regression model.

http://asrl.utias.utoronto.ca/datasets/3dmap/a100_dome.html
http://asrl.utias.utoronto.ca/datasets/3dmap/a100_dome.html
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Fig. 2: Terrain modeling results for the Rover dataset using the proposed framework
(colored by variance). White dots indicate the points used to train the regression
model.

worth noting that the model produced by the Sparse GP (SGP) framework is much
smoother, and therefore does not capture fine details in well-defined areas of the
input space. The localized aspect of the VHR framework, on the other hand, produces
variable smoothness levels, that maintains the sharpness in well-defined areas while
smoothing out areas with higher variance. Additionally, the VHR framework does
not converge back to a single mean value as it moves away from observed data,
but maintains the behavior of nearby structures as dictated by their corresponding
local regression models, which tends to produce a visually better representation of
unobserved terrains.

The second dataset, entitled Aerial, was obtained from the website http://www.
pointcab-software.com/en/downloads/. It contains 39460480 points
collected by an UAV flying over a construction site, using a camera sensor. It covers
an area of roughly 140m×140m, with well-distributed training points throughout the
entire input space (Figure 3a). The residual error for each training point, in relation
to the trained VHR model, is depicted in Figure 4a, where we can see that most of
this residual error is concentrated in a few points (in fact, 90% of it is attributed to
47854 points, only 1.34% of the total). Figure 3 also depicts VHR terrain modeling

http://www.pointcab-software.com/en/downloads/
http://www.pointcab-software.com/en/downloads/
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(a) Original pointcloud
(39460480 points)

(b) 30895 clusters
(ζmax = 0.000)

(c) 15131 clusters
(ζmax = 0.005)

(d) 9580 clusters
(ζmax = 0.010)

(e) 1082 clusters
(ζmax = 0.050)

(f) 537 clusters
(ζmax = 0.100)

Fig. 3: Terrain modeling results for the Aerial dataset using the proposed VHR
framework (colored by height), with different number of clusters. Black dots indicate
cluster centers.
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(a) L1 error for training points, in descending
order.

(b) RMSE with different number of clusters.

Fig. 4: Training error results under different circumstances using the proposed VHR
framework, for the Aerial dataset (see Figure 3).

results using different number of clusters, which is achieved by varying the error
threshold ζmax (see Algorithm 1). If ζmax = 0 all clusters are considered, and as we
increase this value more clusters are merged together to decrease the complexity of
the resulting regression model. The corresponding degradation in terms of accuracy
is shown in Figure 4b, where we can see that the merging technique proposed in 2.4.3
is able to detect and remove clusters with lower impact on the overall regression
model (a decrease of 30% in the number of clusters produces an RMSE increase
of only 3.88%). Naturally, at some point there are no more low impact clusters left,
and further removals will start to have a more significant effect on overall model
accuracy.

Table 1 presents quantitative results for different terrain modeling techniques when
applied to both datasets, as data becomes sparser.2 For 100%, all points are used for
training and residual error calculation. For other levels, that percentage of points
(determined randomly) is used solely for training purposes and the remaining ones
only for residual error calculation (computational times for inference were calculated
based on a 0.1m resolution grid). The RMSE results testify to each algorithm’s ability
to extrapolate over available data to infer the state of unobserved areas of the input
space. As expected, standard interpolation techniques are unable to deal with sparser
data, with the residual error rapidly increasing as more training points are removed.
This increase is significantly smaller for the SGP and VHR frameworks, indicating
better interpolative powers, however VHR consistently outperforms SGP in terms of
residual error.

The computational times presented in Table 1 validate the VHR framework’s
ability to scale to larger datasets, especially when compared to the non-parametric

2 All computations were performed on a i7/2.60 x 8 GHz notebook, with multi-threading enabled
wherever possible. Due to lack of memory, training data was downsampled by 5 in the Rover dataset
and by 25 in the Aerial dataset for tests using the SGP framework.
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Table 1: Quantitative results for different terrain modeling techniques, with varying
levels of data sparsity.

Metric Sparsity
Rover Aerial

LI CI SGP VHR LI CI SGP VHR

RMSE
(m)

100% 0.201 0.211 0.186 0.149 0.101 0.113 0.087 0.054

90% 0.211 0.217 0.194 0.152 0.122 0.144 0.095 0.057

70% 0.234 0.263 0.217 0.162 0.165 0.198 0.104 0.059

50% 0.298 0.324 0.239 0.171 0.203 0.249 0.115 0.065

Training
Time

(s)

100% — — 4705.2 0.975 — — 31936.3 9.266

90% — — 3573.8 0.825 — — 23216.7 7.172

70% — — 1985.1 0.760 — — 16759.1 5.500

50% — — 1001.7 0.495 — — 10845.8 3.938

Inference
Time

(s)

100% 0.602 0.643 46.340 1.587 2.748 3.382 807.432 8.694

90% 0.361 0.490 42.945 1.423 2.470 2.865 498.374 8.019

70% 0.303 0.368 37.296 1.234 1.578 1.978 259.128 7.273

50% 0.217 0.276 28.254 1.092 0.934 1.107 168.109 6.558

SGP framework. As expected, interpolation techniques are much faster, since no
training is required, only linear and cubic calculations based on nearest neighbors.
The SGP framework, even when using a sparse approximation, required substantially
more training time (by several orders of magnitude) to generate optimized model
parameters, and inference was also noticeably slower. We attribute this increase in
performance provided by the VHR framework to the decoupling between different
local regression models, which produces efficient parameter updates during varia-
tional training. In [35] a similar local approximation using kd-trees is proposed as a
way to maintain computational complexity low and bounded, which would further
decrease SGP computational times, however this was not explored in this paper.
Regardless, RMSE results for the VHR framework are consistently smaller, which
makes it a more attractive terrain modeling technique both in terms of accuracy
and computational power. Interestingly, for the VHR framework, as the number of
training points decreases inference times become longer when compared to training
times, due to the large number of query points necessary to produce a reconstructed
model of the surveyed area, given the requested resolution.

4 Conclusion

This paper introduces a novel regression methodology based on sparse projections
to a Reproducing Kernel Hilbert Space. Observed data is clustered and different
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local regression models are attributed to each cluster, thus allowing non-stationary
behaviors throughout the input space and decreasing overall computational com-
plexity. We employ a Variational Bayesian approach to uncertainty estimation, and
training is conducted via the maximization of a single global variational bound that is
dependent on the parameters for each local regression model. Furthermore, we show
how kernel and model parameters can be jointly optimized, to produce a more accu-
rate approximation to the underlying function or to further decrease computational
costs by removing unnecessary clusters. The proposed VHR framework is tested in
two different large-scale terrain modeling datasets, with results that surpass other
commonly used terrain modeling techniques. Future work will focus on the use of
different regression models and kernels, such as the space-carving kernel proposed
in [12], and the active selection of regression models given local point distribution.
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