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Abstract— Robots often have to deal with the challenges of
operating in dynamic and sometimes unpredictable environ-
ments. Although an occupancy map of the environment is
sufficient for navigation of a mobile robot or manipulation
tasks with a robotic arm in static environments, robots op-
erating in dynamic environments demand richer information
to improve robustness, efficiency, and safety. For instance, in
path planning, it is important to know the direction of motion
of dynamic objects at various locations of the environment for
safer navigation or human-robot interaction. In this paper, we
introduce directional statistics into robotic mapping to model
circular data. Primarily, in collateral to occupancy grid maps,
we propose directional grid maps to represent the location-wide
long-term angular motion of the environment. Being highly
representative, this defines a probability measure-field over the
longitude-latitude space rather than a scalar-field or a vector-
field. Withal, we further demonstrate how the same theory can
be used to model angular variations in the spatial domain,
temporal domain, and spatiotemporal domain. We carried out
a series of experiments to validate the proposed models using a
variety of robots having different sensors such as RGB cameras
and LiDARSs on simulated and real-world settings in both indoor
and outdoor environments.

I. INTRODUCTION

Safe operation of robots in dynamic environments where
humans, vehicles, and other robots operate is central for full
autonomy. Spatial information alone is not sufficient in com-
plex environments. This is because, the prediction of future
events drives decision making whilst properly managing the
risk of collisions. Although conventional mapping techniques
represent the space in terms of the probability of occupancy
[1], [2], they do not explicitly capture the patterns in the
motion direction of dynamic objects such as people, cars, and
cyclists. Understanding and modeling directions are com-
plicated and cannot be treated with conventional techniques
from linear statistics as the treatment of angular quantities
requires that distributions be mapped into hyperspheres, in a
set of techniques known as directional statistics [3].

In general, a robot requires a map for path planning and
safe navigation. To this end, the most common approach is
to represent the actual geometry of the environment as floor
plans [1] or 3D models [4], [5] in the metric space, though
graph based approaches also exist [6]. These metric maps
are typically built using data collected from RGB cameras
or depth sensors such as LiDAR [1], [7].

The basic information about the environment a robot
requires to maneuver is to know which areas of the envi-
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Fig. 1: Motivation for directional mapping. (a) Plan view of a road where
simulated human coming from two directions walk across a crosswalk
and head towards a different direction. We are interested in modeling
directions people move after taking observations over a period of time (b)
The world is divided in to a 5 x 4 grid. The directional distribution—
a probability distribution over directions [—180°, 180°]—at different cells
modeled using the proposed method (DGM) is illustrated using polar plots.
For any location/cell in the space, such a directional distribution exists. The
correspondence between the direction of arrows and the direction of polar
plots can be observed. (c) To elaborate, the polar plot marked in * on the
grid map is emphasized. This shows the probability density for different
angles at the particular cell—the probability density increases as go farther
away from the center. (d) The equivalent unwrapped probability function
with a support [—180°,180°] is given for clarity.

ronment are occupied and which areas are not. To model
this, in his seminal paper, Elfes [1] proposed occupancy grid
maps—the environment is divided into a grid and occupancy
probability of each cell is updated as beam reflections are
collected from a depth sensor such as sonar or LiDAR. Later,
continuous scalar-field representations have been proposed
[2], [8]. However, all of these methods assumed a static en-
vironment where the only moving object in the environment
is the robot. To build a static occupancy map in the presence
of a few dynamic objects, [9], [10] proposed to filter dynamic
objects as a preprocessing step and then map the occupancy.

More recently, rather than considering dynamic objects as
nuisances, they have been incorporated into the map in order



to model the long-term occupancy [11]-[14] and understand
occupancy patterns [15]-[18]. Nevertheless, unlike in static
environments, occupancy is not the only information that can
be extracted in dynamic environments. Supplementing addi-
tional information about the dynamics of the environment
could hugely benefit path planing and object detection algo-
rithms [11], [19]. For this purpose, information rich maps
can be developed by modeling the uncertainty of directions,
speed, texture, etc. of all locations of the environment in
addition to occupancy information. Consider an instance as
in Fig. 1 (a) where simulated humans walking in roadsides
and a crosswalk. If the robot knows about the angles people
turn, path planning algorithms can be designed to plan ahead
and to make efficient and safer maneuvers. As shown in
Fig. 1b, in this paper, we propose a novel technique to
model directional uncertainty of the environment at different
locations observed overtime.

[20] proposed to model human walking paths by intro-
ducing a Gaussian process prior over directions and thereby
implicitly constructing a field representation of angular
movements. This formulation has three main limitations: 1)
because the angle is assumed to be (—oo,+00), predicted
angles can be totally invalid, 2) it is assumed that movements
at a given location occur in only one direction which is not
practical for robotics applications as the robot, human, or
vehicles in the environment could move in any direction,
and 3) being a Bayesian nonparametric model, the algorithm
becomes slower as more data are captured. On the other
hand, the objective of all these approaches is to make short-
term future predictions such as tracking rather than building
information rich long-term maps that can be used for path
planning or navigation.

In our approach, highlighting the importance of dispersion
of data, the directions are represented by a probability
distribution that, 1) has a valid support of [—7, 7] and 2) can
model multi-directional movements. Having a finite number
of distributions laid over the longitude-latitude space using
a grid, it is possible to infer the probability of motion
for any direction for each such location. This directional
information can be plausibly used to extract paths as well as
variously regulate path planners to avoid high risk areas or to
follow the direction of traffic. Although incorporation of such
probability distribution into control algorithms is beyond the
focus of this paper, recent techniques have shown how to
embed probability distributions to improve path planning
and navigation [21]-[24]. Further, incorporating such prior
information is the key in Bayesian statistical methods and
prior information can be effectively used in online learning
in robotics [14], [25]. Additionally, such probabilistic models
naturally account for noises and imperfections in sensors and
pre-processing algorithms.

Despite the importance of modeling the stochasticity of
angles in robotics, it has hardly been discussed previously.
Therefore, introducing directional statistics into robotics to
model angular data, we present a statistical method:

1) to model multi-modal directional uncertainty in dy-

namic environments without obtaining spurious out-

puts as in current methods [20];

2) to quantitatively analyze spatial variations, temporal
variations, and spatiotemporal variations;

3) that does not require heuristic parameter tuning i.e.
ready for real world usage without any significant
modifications

Having discussed the motivation for our work in Section I,
Directional Statistics are introduced in Section II as prelim-
inaries for the following sections. Data preprocessing steps
required for mapping is detailed in Section III-A. Then, the
basic method is introduced in Section III-B assuming that
all movements are almost uni-directional such as one-way
roads. Next, in Section III-C, theory is generalized to model
multi-directional movements i.e. when there are no definite
paths or dynamic objects can move in arbitrary directions
such as in indoor environments or sidewalks. Experimental
results are reported in Section IV followed by discussions
and conclusions in Sections V and VI, respectively.

II. DIRECTIONAL STATISTICS

In this section, we introduce directional statistics where
observations lie on a circle of unit radius, or in high
dimensional scenarios, on a hypersphere of unit vector in
the plane [3]. In order to deal with circular data, directional
statistics was initially developed in physics and astronomy
[26] [27], and have successful applications in meteorology
[28], biostatistics [29] etc.

Although there are several approaches to model directional
data, we opted for the von Mises distribution [26] because,
i) it has all advantages of exponential family of distributions,
ii) analogous to a Gaussian distribution with more intuitive
parameters, and iii) sufficient statistics can be obtained ex-
plicitly [3]. These properties will be intermittently discussed
in Sections Il and V. The probability density function of
the von Mises distribution is given by (1),

1
VM(O; u, k) := ———— exp (k cos(f — , 1
O 8) = 550 p (kcos(0 —p)), (D
where p is the mean direction parameter (analogous to
mean in a Gaussian distribution) and k is the concentration

parameter (weakly analogous to the reciprocal of variance in
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Fig. 2: The probability density functions of von Mises directional distribu-
tion (a) The effect of the concentration parameter & for a fixed mean . = 0°.
The support of von Mises distribution is [—,w]. For instance, when
estimating the direction of a moving object from noisy sensor measurements,
a conventional Gaussian distribution which has a support (—oo, c0) cannot
be used because the actual range of directions is [—, 7]. (b) Corresponding
polar plots.



a Gaussian distribution). Jo(x) is the 0™ order and 1 kind
modified Bessel function given by (2),

T = 3 (5). @)

2
p=0 P!

Together with the cosine term in (1), the modified Bessel
function attenuates the function and keeps the support in
[—, 7]. The effect of the x parameter is illustrated in Fig. 2.

Considering a dataset with N directions D = {6;} ,, let
us define the mean directional components,

N N
C:= Zcos f; and S:= Zsinﬁi. 3)
i=1 i=1
Then, the mean direction is given by,
- arctan(S/C), if C >0 @
~ \arctan(S/C) 4+ m, otherwise

and the mean resultant length is given by,
R=vC2+ 52 (3)

Note that R € [0,1] and the more homogeneous the direc-
ti0n§ are, the lligher the R is. The circular variance is defined
as V:=1-—R.

ITII. DIRECTIONAL GRID MAPS

Being analogous to occupancy grid maps [1], we introduce
directional grid maps (DGM) in this section. To formally
define, a DGM is a multi-dimensional field that maintains
probability measures given by a probability density function
of the directional uncertainty of the cells in a spatial lattice.
With the proposed method, we answer the following ques-
tions:

1) What are the overall directions of motion in different
places of the environment when observed over a period
of time? i.e. longterm spatiotemporal analysis;

2) What is the overall direction of motion in the entire
environment at a specific time? i.e. spatial analysis;

3) What is the the distribution of directions of a moving
object? i.e temporal analysis.

A. Pre-processing

The inputs to build an occupancy map are occupied
points and the free points in line of sight of lidar [1],
[8]. However, inputs to build a DGM are angle of mo-
tion at longitude-latitude locations at different time steps:
O(longitude, latitude, time). For simplicity and to be used
in collateral to occupancy grid maps, we discretize the world
and assign longitude-latitude pairs to the cell they belong to.
Therefore, the inputs are 6(cell, time).

Depending on the sensor type, for each time frame, 6
values or the optical flow can be extracted by any of the
commonly used existing methods. To name a few, data
association followed by direct angle estimation or Gaussian
process regression [12], tracking algorithms such as Kalman
filters, particle filters, mean-shift-tracking, dense optical flow,
etc. [30], [31]. Once 6(cell,time) are extracted, for the
computational convenience of answering questions detailed

in Section III, they are stored with tracker identities, if exists,
in a spatiotemporal database [32] indexed by space and time
keys.

B. Learning uni-modal movements (DGM-VM)

Without loss of generality, for the sake of simplicity to
introduce the method, in this section we assume the average
movements in the environment occur in approximately one
direction. The more general case is introduced in Section III-
C.

Consider a dataset with N directions D = {6,}¥,
Assuming i.i.d. of 6, the log-likelihood of the von Mises
distribution introduced in (1) is given in (6),

N

L(u, k; D) = log (H m exp (k cos(f; — u)))

i=1
N
= —Nlog2m — Nlog Jo(k) + & Z cos(f; — )
i=1

= —Nlog2r — Nlog Jo(x) + kN Rcos(d — p).
(6)

The objective is to learn p and x given D to maximize
the log-likelihood, i.e. maximum likelihood estimate (MLE).
Intuitively, for a given dataset, MLE adjusts its parameters
p and kK to set the higher values of the probability density
function align with more probable data points. These optimal
parameter values can be computed by (7),

(e ) = argmaxL(p, ;D) = (0,4 (R) (7

where A(-) = ‘;;8 To derive this, take the derivative of £

w.r.t. the parameters and equate to zero,

6—l:=/-<JNRsin(§—u):0 = . =0, (8)
o
oL Jy(k) _ 5
o= NJO(H,) + NRcos(0 — 1)
_ Jl(ﬁl) = o
= NJO(K)) + NRcos(f — 1)
= —NA(k) + NRcos( — p). 9

Setting g—g =0and p, = 0 — kK, = A"Y(R). See
appendix for approximating A~1(-). Alternatively, it is also
possible to maximize (6) w.r.t.the parameters using stochastic
gradient descent.

C. Learning multi-modal movements (DGM-VMM)

The method in section III-B assumes that movements
occur only in one direction. Although this assumption might
be applicable for roads with vehicles running in dedicated
lanes, such an assumption is not generally suitable for cross-
walks, sidewalks, manipulators, or aerial vehicles (Fig. 3).
Therefore, in order to capture multi-directional movements,
we use the convex combination of a mixture of M directional
distributions. The probability density function of such a

mixture with M von Mises distributions is given by (10).
M

VMM(@, @, W, H) = Z O‘mVM(G; Moy Km),

m=0

(10)
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Fig. 3: Mapping multi-modality. (a) More human paths are added to Fig. 1
so that human walk in different directions in some places e.g. crosswalk
(b) DGM modeled using the mixture of von Mises distributions. With
comparison to Fig. 1 (a) which only has a single von Mises distribution,
observe that some cells in (b) have two lobes indicating the method’s
capacity to learn bimodal movements. The middle-left cell shows a more
circular distribution because movements occur in different directions.

with M, = 1 for o, > 0 to guarantee VMM is a
valid probability density function.

However, there is no closed-form solution to find the
optimal parameter set {(vy, tm, km)}M_,. Therefore, as
with Gaussian mixture models, Expectation-Maximization
(EM) algorithm can be used [33]. This is an iterative proce-
dure where the posterior is estimated using the parameters
estimated in the previous iteration, and the parameters are
updated using the estimated posterior in the current itera-
tion. Once the parameters do not significantly change over
iterations, the optimization procedure can be stopped. This
is detailed in Algorithm 1.

The naive EM algorithm only learns the parameters,
not the number of mixture components M. Although it is
possible to preset it as a fixed number, in order to make
the algorithm faster and to make mapping fully autonomous,
we made use of DBSCAN [34] clustering technique and
initialized {1, }M_, with cluster centers, and then optimized
using the EM algorithm. Unlike the popular k-means al-
gorithm where the user requires to provide the number of
clusters, DBSCAN determines it using the density of data
points which is indeed our requirement.

In a similar fashion to a Gaussian mixture model [35],
in the E-step, the elements of the responsibility matrix are
computed as in (11).

am VM, (0r)
S A VM (6)
where VM, indicates a von Mises probability density
function of the mixture component m. Having obtained 7,

the objective of the M-step is to learn the parameters using
(12)-(14),

; Y

Ymn =

N
U = Lﬁ& Jmn (12)
N
mnen
pon = 22T (13)

~— =N 5
| Zn:1 'YmnenH

N
o mar (i mtel) gy

N
ZnZI Ymn

where A~1(-) is the inverse of Bessel function ratios as
described in Section III-B.

Algorithm 1: EM algorithm for multi-modal learning.
CalcRes() and UpdateParameters() are (11) and (12)-
(14), respectively.

Input: {0, }Y_,
{u£,‘3)};’n=1 = DBSCAN(6) //get density centers;
M =size({p2,}) //mumber of mixture components;
Initialize o) = 1/M, for m = 1: M;
Initialize /QS,?) 2 40, form=1: M,
Initialize € ~ +0;
Initialize ¢ = —1 //iterations;
while || — usffl)H <edo
11+ 1;
//E-step;
forn=1t N do
for m =1 to M do
’y,(,?n :CalcRes(Hn, aﬁ,’;‘”, MS,’;‘”, 117(%_1));
end
end
//M-step;
for m =11t M do
‘ (agf,,), u,(,fl), nSj)) =UpdateParameters (&%)n);
end

end
Output: o', 1l k& IV MM (10)

IV. EXPERIMENTS

A. Experimental setup and evaluation metrics

As given in Table I, we used a variety of datasets from
simulated and real-world environments having both LiDAR
and cameras, to validate different aspects of the proposed
methods and answer questions raised in Section III.

In order to assess models, we used several metrics. In a M-
mixture of distributions, the expected negative log-likelihood
(ENLL) is calculated as the average negative log-likelihood
over all data points[39] which indicates the likelihood a
given data point sampled from the distribution parameterized
by {(tms, Km«) }M_,. For unimodal settings M = 1. The
smaller the NLL or ENLL, the better the model fit is.

As a another metric, average probability density (APD)
is considered. Metrics are calculated with a 10-fold cross-
validation procedure. For each fold of test data, the proba-
bility density is calculated and averaged. Intuitively, if the
model has captured the full long-term distribution, it gives
a higher APD score because more points are concentrated
around the vicinity if that area. Unfortunately, because of
the problem is unsupervised learning and having a mixture
of distributions, most of the standard tests that are commonly



TABLE I: Description of datasets

Datasets
Unimodal

Description

Similar to [20], this simulated dataset represents
human walking paths which collectively have a uni-
modal directional pattern i.e. at a given location all
human walk approximately in the same direction.
Observations are assumed to be taken from the top
view. (Fig. 1 (a))

This is the multi-modal (to be exact, bi-modal)
extension to the above unimodal dataset. (Fig. 3 (a))
The publicly available Edinburgh Informatics Forum
Pedestrian Database (Aug.24) [36] is used. The setup
is an highly dynamic outdoor environment with RGB
cameras setup on top to track [36] people. (Fig. 5 (a))
Here, we use the Kuka robot arm in the MORSE
simulator [37]. The location of the end-effector in
the 2D space was tracked. Using only two joints, we
manipulated the robot to make planar movements to
simulate a repetitive task with normally distributed
random perturbations to the goal locations. Because
of this perturbations, robot’s path is slightly different
in each of the 20 iterations which results in observing
different angles of the end effector in the same
location. (Fig. 6 (a))

This tracks five people moving in a corridor using
a moving robot with a LiDAR [38]. (Fig. 8 (a))
This is similar to the corridor dataset, however in a
four-way intersection (Fig. 9 (a))

The single trajectory of a walking human in a
MORSE-simulated office environment is tracked.

(Fig. 10 (2))

Multi-modal

Edinburgh

Kuka

Corridor
Intersection

Human

used in linear statistics and robotics with normality assump-
tions cannot be used for this setting.

A notebook computer with an Intel Core-i7 processor and
a 8 GM RAM was used for experiments. For all experiments,
the tolerance parameter of the VMM algorithm € and the
density parameter of the DBSCAN were set to 1076 and
0.5, respectively. When using the Edinburgh dataset with
Gaussian process [20] is used in comparisons, a low-rank
approximation [40] had to be used because the Edinburgh
dataset contains 76260 data points which is not feasible to
fit using the full Gaussian process model. The python code
will be available soon: github.com/RansML.

B. Experiment 1: Validating the EM algorithm

Firstly, we show that the iterative EM algorithm described
in Section III-C in deed minimizes the NLL over the number
of iterations. In Fig. 4, NLL is plotted against the number of
iterations for the cell marked with “«” in Fig. 3 (b) for the
multi-modal dataset. For the Multi-modal dataset, the EM
algorithm converged within 5 iterations. The mean squared
error (MSE) of angles is reported in Table III. In DGM-
VMM, the MSE to the closest mode was considered.

600 A

NLL

400 -

Iteration
Fig. 4: Convergence of the EM algorithm

TABLE II: Mean squared error (MSE) of angles.

Method | Unimodal | Multi-modal
DGM-VMM 0.231 1.100
DGM-VM 0.239 2.484

C. Experiment 2: Modeling long-term spatiotemporal effects

In this section, we used Unimodal, Multi-modal, Edin-
burgh, and Kuka datasets to build the long-term spatiotem-
poral directional grid map so as to answer the question
”What are the directions of movements in different places
of the environment when observed over a period of time?”.
The resolutions of the grid maps were kept constant for
demonstration and visualization purposes (5 x 4, 5 x 4, and
17 x 23 cells for Unimodal, Multimodal, and Edinburgh
datasets). The maps for Unimodal and Multimodal datasets
are shown in Fig. 1 (b) and 3 (b), respectively. Around 15%
of randomly selected trajectories are shown in Fig. 5 (a)
and the corresponding DGM in Fig. 5 (b). By comparing
the trajectories and directions of lobes with intensities, it is
possible to see the model has successfully learned the direc-
tions, including multi-modality. In order to demonstrate that
the proposed algorithm is well suitable for other domains,
we used the Kuka dataset. Additionally, as shown in Fig. 6
(b), rather than maintaining a fixed grid, observations were
taken from a few user specified locations in the space.

The quantitative aspects of different methods are given in
Table III. DGM-VMM is faster because 1) its means are
initialized from DBSCAN, and 2) it has the flexibility to
adjust to any shape. For the Unimodal dataset, the Gaussian
process based method proposed in [20] works well. As
illustrated in Fig 7, because the Gaussian process cannot
handle multi-directional data, it merely averages directions,
resulting in incorrect predictions.

D. Experiment 3: Analyzing spatial variations

This is merely a demonstration to show that the same
model can be used to answer “at a given time, where do
everyone in the environment move?” For this purpose, all
data points at a given time (i.e. ¢ =fixed and all cells) in the
Edinburgh dataset were considered and the EM algorithm
was run for the von Mises mixture. The resulting polar plot
is shown in Fig. 5 (c). To interpret, considering the entire
environment, many people move towards ~ —90° and a few
people ~ 90°. This kind of an analysis provides a summary
statistic about the environment at a given time. Further, it
is also possible to answer questions such as how fast the
distribution changes over time by quantifying using a mutual
information or KullbackLeibler divergence.

E. Experiment 4: Analyzing temporal variations

In this experiment, we analyze the temporal evolution of
dynamic objects individually. For this purpose, we used the
Corridor and Intersection datasets, and corresponding direc-
tional distributions are found in Figs. 8 and 9, respectively.

Then, using the Human dataset, temporal evolution of the
map was analyzed in a sequential learning setting. In the
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(a) 100 randomly selected trajectories overlaid on the

real environment. (c) Spatial analysis
(b) VMM-DGM for (a)

Fig. 5: Edinburgh pedestrian dataset shows how people near the University of Edinburgh’s Atrium move from one building to another on a regular day.
TABLE II: Performance metrics for different methods. The smaller the ENLL or the higher the APD, the better the model is.

Unimodal dataset Multimodal dataset Edinburgh dataset Kuka dataset
Method ENLL | APD | Time ENLL | APD Time ENLL | APD | Time ENLL | APD | Time
DGM-VMM 0.113 | 1.358 15+£13 0.251 | 1.015 33+27 1.483 | 0.251 | 28+25 || -0.087 | 1.190 13+9
DGM-VM 0.177 | 1.172 | 71£34 0.696 | 0.615 115+62 1.733 | 0.202 | 72£72 0.747 | 0.699 | 55%15
GP [20] N/A 1.711 | 278%16 N/A 0.211 | 213£120 N/A 0.124 | >3600 N/A 0.217 | 413+40
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Fig. 6: The Kuka robot arm (a) The approximate path of the end-effector is (@) (b)
shown in blue arrows. Directional map of the Kuka end-effector movements.  Fig. 7: Gaussian process (GP) mapping [20] for Multimodal dataset where

(b) Some of the data points collected over 20 such cycles with perturbation  movements occur in different directions. This can be compared with Fig. 3.
are shown in blue dots. The corresponding directional distribution at  (a) mean direction (b) confidence as variance. Observe that the predictions
arbitrary locations are indicated by ploar plots. around places where multi-directional movements occur i.e. crosswalk and

lower-left sidewalk is not accurate. In such places the GP averages all

. . - . directions. As shown in (b), despite the inaccurate predictions the confidence
office environment shown in Fig 10 (a), the trajectory of about the prediction in such areas is also very high. Although angles are

a simulated human is shown in Fig 10 (b). The model iS  limited to [~180°, 180°] in the figure, they can be in the range (—oc®, 00°)
learned in an online fashion as data are collected over 286  Wwithout satisfying the recurrence relationship f(6) = f(6 + 360°).
times steps. In Fig 10 (c), the directional distribution of
four such time steps are shown. Starting with a dispersed  to determine the modes. This is not straightforward because
distribution (i.e. any angle is possible or x ~ 0), the the values of s and p determines both the number of modes
observing robot sequentially learns the directions the human  and where they are. However, because von Mises belongs to
moves. the exponential family of distributions, it is possible to utilize
similar algorithms that are used to find modes in mixture
V. DISCUSSIONS of Gaussians [41] or wavelet based methods used in signal
Similar to a Gaussian distribution, the mean, mode, and ~ processing to find peaks [42].
median of a unimodal von Mises is the same. However, when In the proposed algorithm, we used DBSCAN to determine
a mixture of von Mises is considered these quantities can be  the number of mixture components. As this is not part
different. Especially, for practical applications, it is important ~ of the EM algorithm, the number of mixture components



(a) A robot and five humans move in a corridor simultaneously. The point
cloud is shown in gray. [38]
Robot Person 1 Person 2 Person 3 Person 4 Person 5

OBEOOBRY

(b) Directional distribution of each track is indicated by polar plots with
corresponding colors.

Fig. 8: Corridor dataset

(a) Five humans move in an intersection simultaneously. The point cloud is
shown in gray. [38]
Person 1 Person 2 Person 3 Person 4 Person 5
O . °

(b) Directional distribution of each track is indicated by polar plots with
corresponding colors.

Fig. 9: Intersection dataset.

maybe suboptimal. In order to further improve the likelihood,
especially in high dimensional settings or when there is
a small amount of data, taking a Bayesian approach, it is
possible to consider M as a parameter to be learned. Taking
further advantages of the exponential family of distributions,
as with mixture of Gaussians [35], it can be easily factorized
and apply variational inference to jointly learn the number
of mixtures as well as mixture parameters.

The one dimensional formulation can be easily extended
to higher dimensions using the von Mises-Fisher extension
given by 15 for (D — 1) dimensions,

D/2-1

(2m)P2Jp ja—1 (k)
Such an extension can be used in modeling 3D spatiotem-
poral dynamics or modeling joint rotational uncertainties
in robot manipulators with high degrees of freedom. By
modeling bi-directional 3D uncertainties of a toy dataset (e.g.
a moving drone in 3D), Fig. 11 (b) illustrates that such an
extension is straightforward.

VMp(0;p, k) = exp (HMTQ). (15)
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(a) A person walking in the office latitude
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(c) The directional distribution for four tome steps. Initially, it is a uniform
circular distribution. Observe how the direction of lobes changes with the
direction of trajectories at different time steps.

(b) The plain view of the trajectory.
'35
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Fig. 10: Human dataset

Speed

90 °

Fig. 11: Usefulness of DGM (a) The directional distribution of Person 5 in
Fig. 9 with colors indicating different speeds i.e. speed for different angles
with the probability of angle (b) Demonstration of 3D lobes modeled using
the von Mises-Fisher distribution.

Interestingly, it is possible to use these directional maps
along with other information extracted from dynamic envi-
ronments to build maps that are informative. For instance,
Fig. 11 (a) shows speeds (separately modeled) of different
directions of “Person 5” in Fig. 9. Additionally, a large DGM
can be easily bundled together with a occupancy grid map
to represent the dynamics of the environment well. These
information rich maps can then be used to make planning
algorithms robust [21], [23].

One of the main limitations of the proposed method, as
with any other grid based method [1], the independence
assumption among cells [8]. Therefore, it might be useful
to consider the directional distribution as a conditional dis-
tribution or to have a more continuous representation [14],
[43].

VI. CONCLUSIONS

We presented a robust algorithm to estimate angular un-
certainties ubiquitous in robotics. To this end, we effectively
we made use of directional statistics that are not typically
utilized in robotics. Our method is generic enough to be
used in any robotic platform such as mobile robots, drones,
manipulators, etc. or in a variety of domains such as indoor
mapping, field robotics, and human-robot interaction.



APPENDIX

To evaluate r, using A=1(-),

)
2R+ R*+ 3R for small R

0.5(1— R)1,

Ky 7 .
otherwise

For empirical values of ”small,” refer [3], [27].
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