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Abstract— Visual-Inertial SLAM methods have be-
come a very important technology for several appli-
cations in robotics. This kind of approach usually is
composed by sensors as rate gyros, accelerometers
and monocular cameras. Magnetometers and GPS
modules generally used for outdoors are absent in the
SLAM system observation, since the magnetometer
measurements deteriorate in the presence of ferro-
magnetic materials and the GPS module signals are
unavailable indoors or in urban environments. In
order to make use of all these sensors, we propose
Markovian jump linear systems (MJLS) to model the
modes of operation of the navigation system based
on available sensors and their reliability. An extended
Kalman filter for MJLS fuses the sensor data and esti-
mates the motion using the best mode of operation for
each particular time instant. Experimental results are
presented to show the effectiveness of the proposed
method, in situations that would pose a challenge for
standard data fusion techniques.

I. INTRODUCTION

Visual simultaneous localization and mapping (VS-
LAM) has attracted attention for several applications in
robotics lately, see [1], [2], [3], [4], [5] for some examples.
This method consists in estimating from a stream of
images the camera pose and environment model during
navigation. Based on the way that VSLAM extracts
information from the image [6], [7], [8], it can be clas-
sified as a featured-based method [9] or a direct method
[10]. Featured-based methods use only information of
the feature extraction process to obtain pose estimates
and the 3D model, which can be arguably considered
a limitation. However, it has a low computational cost,
which is important for real-time applications, and that
justifies the larger number of works using this method
in mobile phones [11], [12], [13]. Direct methods, on the
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other hand, use the entire array of image information
to obtain pose estimates and the 3D model. Because of
that, they have a high computational cost and are usually
implemented on computers with GPU support. In mobile
phones, recently [8] managed to use a direct approach
for semi-dense depth maps of internal environments in
augmented reality applications.

Additionally, VSLAM from a monocular camera has a
scale ambiguity that limits its use in certain applications
[14]. To overcome this issue, the technique called Visual-
Inertial SLAM, that is VSLAM aided by an inertial
navigation system (INS), has been widely used. This
technique consists in fusing VSLAM with rate gyro and
accelerometer information, usually using an extended
Kalman filter [12], [15], [16]. Sensors such as magne-
tometers and GPS modules have not been used indoors
[13], since magnetometer measurements deteriorate in
the presence of ferromagnetic materials and GPS signals
becomes unavailable indoors or in urban environments.
However, these sensors have been successfully used for
Unmanned Aerial Vehicle localization in outdoors tasks,
since they provide absolute measurements which elim-
inate the drift in pose estimation [17]. That motivates
the use of these sensors in outdoors SLAM approaches,
such as in [18], [19].

The availability and reliability of this sensor in a
filtering system could be modeled as a MJLS, which is a
particular class of variant systems in random time. For
example, in [20], [21] the authors presented a Kalman
filter for MJLS to fuse four inertial sensors and three
encoders from one exoskeleton’s leg. A criterion based on
the norm of the measured acceleration was established
in order to select the best mode of operation. Results
showed in [21] demostrated that the MJLS-based KF out-
performed the commonly used KF. Others applications
of Kalman filter for MJLS can be seen in [22], [23], [24],
[25], [26].

Taking into account this scenario, this paper proposes
the use of MJLS to model the modes of operation of
a navigation system based on sensors available and their
reliability. The system is composed of an IMU, a monocu-
lar camera and a GPS module. A MJLS-based EKF fuses
sensor data and estimates motion, using the best mode
of operation for that time instant, what is an improve-
ment over the standard Kalman filter implementation,
that uses information from all sensors simultaneously.
This ability is of utmost importance in robust long-term
navigation, since the introduction of erroneous sensor



data can easily compromise localization estimates, and
by extension other modules that rely on such information
(i.e. mapping, path planning, collision avoidance).

This paper is organized as follows: In Section II the
development of the MJLS for the Visual and GPS aided
INS problem is presented. In Section III the estimate of
the position scale of VSLAM, along with the availability
and reliability of the sensors, are defined and the MJLS-
based EKF algorithm is introduced. In Sections IV and
V we present and discuss experimental results, before
proving conclusions that should guide future work.

II. MARKOVIAN ESTIMATION SYSTEM

In this section we present a MJLS for the Visual and
GPS aided INS problem, also referred in this paper as
Markovian Estimation System (MES), see Fig. 1. The
system is composed of an IMU, a monocular camera
and a GPS module. The IMU consists of a three-axis
rate gyro, a three-axis accelerometer and a three-axis
magnetometer, measuring respectively angular velocity,
linear acceleration and magnetic field measurement. The
monocular camera provides data for a VSLAM algorithm
that outputs orientation, position and a 3D model of
where it is currently located. Finally, the GPS module
provides the outdoor location information.
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Fig. 1. Motion estimation system diagram.

The MJLSs are proposed as a way to model the modes
of operation or the Markov state of the navigation system
based on the availability and reliability of the sensors
that can be observed. Once the Markov state is selected,
the MJLS-based EKF fuses sensor data and estimates
orientation, position and velocity of the platform, along
with biases of the inertial sensors using the best mode of
operation for that time instant.

The navigation system frames are shown in Fig. 2,
where {G} is the Global frame, {£} is the Local frame,
{Z} is the IMU frame, {C} is the Camera frame and {A}
is the GPS module frame. The spatial transformations
among the sensors and the Local frame %T, gT and
f\T are considered known and constant. The orientation
of the Global frame {G} in the Local frame {L} is
represented by a unit quaternion ¢ = [go q1¢ ¢2J qgk}T,
where qo, q1, g2 and g3 are scalar values.

The position and velocity of {£} in {G} are repre-
sented by 9p and 9w, respectively, and the rate gyro

and accelerometer biases are described by b, and b,,
respectively.
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Fig. 2.

Motion system frames.

In the next sections, we are going to present the motion
error model, the measurement model and MJLSs for the
problem described in this section.

A. Motion error model

In this work, the motion model is established as an
error state-space system in Section II-C. For this purpose,
we show below the error motion equations of the system
presented in Fig. 1. For more details of error models,
please see [16], [27].

First, the error between the actual quaternion ¢ and
the estimated quaternion ¢ is defined as an incremental
quaternion dq as shown below:

| 6g0 | _ | cos g%) - 1
kA R N P B
where dqy is a scalar quantity, dq is a vector, u is the
rotation axis and de is the rotation angle, and de is
the orientation error vector that has direction of u and
magnitude of de.

Using the approximation (1), it is possible to write the
derivative of the orientation error vector as:

dé~ —w x Je — 6by — wy, (2)

o~

where & = wy — by, @ is the estimated angular velocity,

Bg is the estimated rate gyro bias, and dby = by — b,.

The dynamic equation of db, is given as:
by = Agdby + Wy, , (3)

where A, is the correlation time matrix of the Gauss-
Markov process.

The derivative of the linear velocity error using the
approximation (1) is obtained as:

950 ~ féﬁT [@*] e — éET(;ba - éﬁTWav (4)

where 9 v = Yv —E'TJ, 9% is the estimated linear velocity,
0b, = b, — b, and b, is the estimated accelerometer bias.



The dynamic equation of b, is defined as:
6b, = Aadb, + Wy, (5)

where A, is the correlation time matrix of the Gauss-
Markov process.

And finally, we can define the position error derivative
as

96p = 9Yov. (6)

where 96p = 9p — 9p and 9p is the estimated position.
The motion error equations obtained in this section are
going to be used in the Section II-C in order to obtain
the error Markovian state-space system.

B. Measurement models

The error between the actual and estimated mag-
netometer measurement m,, = M, — ﬁm, using the
approximation (1) and following the steps shown in [27],
can be written as:

My ~ [éﬁg’mex} Je + v, (7)

where 9m, is the magnitude vector of Earth’s magnetic
field and v,, is Gaussian white noise.

In order to observe the orientation of VSLAM, its
quaternion qVSO is converted to a magnetometer mea-
surement in the following way:

mYSO = £R9m, +vYSO, (s)

where SR is the rotation matrix in function of ¢VS©,

and vY39 is Gaussian white noise. Following the steps
to obtain (7) for the Equation (8), we have:

MO~ [§RIm. | de + viSO, 9)
where mYS0 = mYS©0 —m.

For orientation estimation purposes, we are interested
in the gravity measurement in the Local frame {L£} [17].
This is possible when the rigid body has null dynamic
acceleration. In this way, the error between the actual
and estimated gravity measurement g, = g, — ga, using
the approximation (1) and following the steps shown in
[27], is obtained as:

g~ [[-Er@%07] 1] | J5 [ +ve 0

where 9g, is the Earth’s gravity vector and v, is Gaus-
sian white noise.

The error between VSLAM position and the estimated
position is modeled as:

—~VSP
9op = = g5p+v¥SP,

(11)

and the error between the GPS position and the esti-
mated position is modeled as:

—~GP
Yp  =9p+vSiT. (12)

C. Error Markovian state-space system

In this section, we propose the MJLS for the Visual and
GPS aided INS. All the modes of operation of the MJLS
proposed in this work are defined in Table I. Combining
the equations (2), (3), (4), (5) and (6) the error state-
space model is obtained as:

%X = Ax + Bw. (13)
where x = [de”  6bI Y96v 6B Yop] € RIS
is the state that describes the motion system, w =

T
T wl wl wl € RI12x! jg the Gaussian white

[wg Wy, W, Wba}
noise vector with covariance matrix ), and:

—[@X] —I3x3 03x3  0O3x3 Oszx3
03x3 Ay O3x3 O3x3  O3x3
A= | —ERT[a*] 03x3 0Osxz —GRT 0Osxs |,
033 O3x3  03x3  Aa  0O3x3
03x3 O3x3  0O3x3  Osx3z  I3x3
[ —I35x3 Osxs  Osxs  Osxs
O3x3  I3x3  Osxz  Osxs
B = O3x3  Isxs _éRT 033
03x3  03x3  O3x3z I3x3
0O3x3  0O3x3  Osx3z Osxs

Using the equations (7), (9), (10) , (11) and (12) the

measurement model is written as:

zo = Cox + ve, (14)

T .
where zo = [z z& zE | s € R%*! is the measure-

T .
ment error vector, vg = [vleT v2@T V%T] € R%! is the
Gaussian white noise vector with covariance matrix Rg,
and:

C&' 03x3 O3x3 Ozxz Osxs
Co=| C& 0343 03x35 C3& 0343
O3x3 Osxs Oszxs Osxz O

28, 23, Ze, Vi, Va, Ve, C&L. In the above equations, C2!,
C%' and C¥ are defined in accordance to the operation
mode of the motion system as shown in Table I.

IIT. IMPLEMENTATION

In this section we present the methods used to esti-
mate the metric scale for the position of VSLAM, the
guidelines to define if the sensor is available or reliable,
which define the choice of the Markov mode established
in Table I, and lastly the algorithm for MJLS-based EKF
for the Visual and GPS aided INS problem.

A. Scale estimation

Estimation of VSLAM scale consists of detecting the
instants in which the platform is moving and compar-
ing this displacement with a reference. The intervals in
which the platform is moving are detected by analyzing
the derivative of the velocity obtained by the VSLAM
position. When the magnitude of the VSLAM velocity
is larger than a specific threshold, we can compute the



TABLE 1
OPERATION MODES OF THE MJLS

Markov state ©) | b | % | % | vb | v | % | b | 03 0B 1cd
oo | oo | v L owa | oo owr | oaes | —[68%07] | raes | ooes
|0 | on | ovea | o80° | o | omes | G50 | —[g2%0%) | o | o0ma
|0 | o | | o | o [ | o] | [gm0e] | roes | s
|5 | o | o |0 | v | g | [5w0me) | [n) | s | roes
| | o | oo | vm | v | oo | 55%me] | ~[55%00] | roxs | fovo
oor | e | on | T8 | v | v | <G | [ER9met] | - (£R0%] | toxs | fors
M-G-VSP | &m | 8 | 98YS% | vm | va | WP | [6R9meX] | —[5R99eX] | Taxs | Taxs
NS-NS-NS | 0sxs | 0sxs | 0sxs | 0sxs | 0axs | 0sxs | 033 | 033 | 0sxa | 03xs
VSO-NS-NS | %50 | osxs | Osxs | vN© | 0sxs | Osxs | [§RImeX] | 03xs | 0sxs | Osxs
VSO-NS-VSP | 7550 | oaxs | 98V57 | viSO | oaxa | " | [§RImeX] | 0sxs | 0sxs | Isxs
VSO-NS-GP | 7550 | osxs | 95097 | wi®O | osxs | vFP | [ERImeX] | 0sxs | 0sxs | Isxs
M-NS-NS | mm | 0sxs | 0sxs | vm | 0sxs | Oxs | [fRImeX] | 0sxs | 03xs | Isxs
M-NS-GP | mm | osxs | 997 | v | osxs | FP | [ERImeX] | 0sus | 0sus | Isxs
M-NS-VSP | mm | osxs | 9P | v | ogxs | v | [§RImeX] | 0sxs | 03xs | Isxs

displacements of VSLAM dV5F and its reference d®°f.
The scale metric is then estimated using a low-pass filter:

f
1™

Xk}-‘,—l = Oé/)\\/g + (1 — a)m

(15)
where « is a constant in the range of 0 < a < 1. After n
iterations, the scale Ak11 is used in the VSLAM position
and the Markov mode VSP of Table I is considered true.

B. Awailable and reliable sensors

In this section we define availability and reliability of
the sensors used in the MES, and according to them
the Markov modes established in Table I are defined. As
discussed in Section II-B, we are interested in measuring
the accelerometer when the system has null dynamic ac-
celeration. This situation occurs if the following condition

@

is true:
(l2d-9)<n
||gel|

where p, is a threshold value. The Markov mode G is
considered true if the condition (16) is ¢rue. The mag-
netometer measurements deteriorates in the presence of
ferromagnetic materials, so the magnetometer is assumed
reliable if the following condition is true:

()<

where py, is a threshold value. The Markov mode M is
assumed true if the condition (17) is ¢true and the Markov
mode VSO is false. The Markov mode VSO is true if
VSLAM orientation is available.

The Markov mode VSP is true if VSLAM position is
available and the metric scale A has already been esti-
mated by the scale estimation system shown in Section

(16)

[ |
[l

(17)

ITI-A. The Markov mode VSP could be set as false if the
following condition is true:

[9pVEF — 9pST|| < py, (18)

where p, is a threshold value, 9pVSF is the VSLAM po-
sition and YpCF is the GPS position. In the instants that
condition (18) is true the VSLAM position is considered
not reliable. Finally, the Markov mode GP is true if the
position of the GPS module is available and the Markov
mode VSP is false.

C. MJLS-based EKF

The MJLS-based EKF here presented is based on a
discrete-time system analysis. In this sense, (13) and (14)
are discretized considering the sample time 7T as:

Xk+1 = Fixp + Grwy, (19)
zo,r = Ho 1Xi + Vo,
where
0zo(x)
ox
Once the state Xjiqj,41 is estimated, it is necessary
to update the orientation quaternion gy 1,41 [27], this
is done in the following way:

1 [ 1 ]
5 .
1 —5ef+1|k+156k+1|k+1 €kt1|k+1
(20)

Fy~1+ AT, Gy~ BT? Hey =

Tt 1lk+1 = Oqkt11k+1 @ Qht1]ks

where

T
\/1 +0€ 1y 10€kt L[k +1

Oqrs1jks1 =
5€k+1\k+1

e o T )
or, if (5€k+1|k+1(56k+1‘k+1 > 1:

52]\k+1|k+1 = \/



The accelerometer and rate-gyro biases are respec-
tively propagated as:

ki = TA bg |k T bg K|k
akt1)k = TA ¢ba K|k T+ b, ks

(21)

B
b, (22)

Using the measurement wy 141 and bg7k+1|k , we obtain
the estimate of the new turn rate:

~

Wik = W k+1 — bg pt1)k- (23)

Using the measurement @, 41 and b, ;1 1)x , we obtain
the estimate of the new accelerometer measurement:

App1)k = Qakr1 — bapri)h (24)
The quaternion Gj1|% is propagated as [17]:
_ o sm(l@l) g -
i = (cos ol 1+ 20 00) G )
where @ = [y @ G}g]T and
0 —w —w —ws3
_ @ 0 —@y —is
Q= 2
By @ 0 —m (26)
ws W w1 0
w1 = Twypqip, w2 = Twypiie, w3 = Tws gy,
and wk+1|k = W1kt w2 K1k W3 #+1k] - The linear

velocity 9 Vk41|, and position Py 1), are propagated as:

gak—o—l\k = éRTak+1|k +9ge, (27)
Opr1ph = T90h1 0t + 0, (28)
9Prs1)k = T90p 1 )pdt + O Pi.- (29)

Finally, the EKF algorithm for the MJLS presented in
Section II is depicted in Algorithm 1.

Algorithm 1 MJLS-based EKF

// Propagation:

: Reset error state Xp|x-

: Propagate biases using (21) and (22).

: Correct velocities using (23) and (24).

: Propagate the quaternion g1 using (25).

: Propagate the linear velocity and position using (28) and (29),
respectively.

D Poyin = Fu Py FT + GRQuGY

// Update:

Determine the Markov mode © using the reliable and available
sensors, see Section III-B, and compute He,, and Re, based on
Table I.

D K = Pk+1Ho w(Ho kPiy1nHS , + Rox) ™"

D Xpg1lk41 = Xkt1 + Kep120, k41

Y Peyijptr = (I — Kir1He k) Pryak

—_

// Output:

: Obtain depyijkt1s Obg pt1jr+1s
96prt1 k1 from Ry q1jpp1-

: Update the quaternion according to (20).

by kt1jkt+1 = bg 1k T 0bg k1t
Vkf1k+l = Vkgilk T OVpi1|ps1

Dby kt1k+1 = Bakt1ik T 0ba kK41

Prt1lk+1 = Prhtilk T OPrti|k+1

—

96Vg 11 k+1s Obapt1ikt1, and

SR W

IV. EXPERIMENTAL RESULTS

Experimental results were obtained in a laptop with
an Intel i7-3537U processor with 8 GB of RAM. The
stream of images was obtained through a Point Grey
Chameleon3 camera at 50 Hz with 1/2” 1.55mm IR
MP fisheye lens. The VSLAM used was the Monocular
ORB-SLAM2 [28] with 5000 features per image running
at 10 Hz. The camera was calibrated using the Robot
Operating System (ROS) package camera_calibration.
The inertial data and GPS position were provided by
VN-100 Rugged IMU running at 100 Hz and MTK3339
GPS module running at 10 Hz, respectively. The MES
Algorithm 1 was developed in C++ using the Eigen
C++ template library for linear algebra and the ROS
framework. The parameters of the sensors were defined
empirically based on the noise variance of each sensor.

The weighting matrices Q and R for the MJLS-based
EKF were chosen as:

Qs 0O3x3 03x3 0O3x3
03x3 @b, 0O3x3 0O3x3
= € 30
@ O3x3 0O3x3 Qa O3x3 |’ (30)
03x3 Osx3 O3xz @b,
RO 0343 O3x3
Ro = | O3x3 R% 0343 |, (31)
O3x3 Osxs RY3
where 01 = {M, VSO, NS}; 62 = {A, NS}; 03 —

{GP, VSP, NS }; Qg @, Q. Qv,, RY, RV, RA, RST
and R;’SP are covariances matrices, and the matrlces
RNS RNS and RES are set with the previous Markov
state values, since their values are cancelled in the EKF
calculation.

The parameters of the scale estimation defined in
Section III-A are set as a« = 0.75 and n = 9. The
thresholds to define the reliable and available sensors
in Section III-B are set as p, = 0.05, p, = 0.05 and
pp = 12. Only the coordinates z and y were considered
in the computation of (18).

Results obtained for outdoors navigation, on the side-
walk of a park, are shown in Figures 3-7. In Fig. 3 the
trajectory is depicted, as estimated by the VSLAM and
GPS module individually and by the proposed Marko-
vian estimation system. The Markov states jumps during
this experiment are presented in Fig. 4, where we can
see that the system starts in Markov state M-G-GP;
at around 70s it jumps to VSO-G-GP, because VSLAM
orientation is available; at around 160s it jumps to VSO-
G-VSP, since VSLAM position is available; at around
230s it jumps to VSO-G-GPS, because VSLAM is not
reliable; and at around 295s it jumps again to VSO-G-
VSP, once VSLAM becomes reliable. Small jumps also
happen in seemingly random intervals due to changes in
sensor availability and reliability, as shown in Fig. 7(c).

Details of the orientation and position of the platform
during this experiment are presented in Figures 5 and
6. The zoom in Figures 7(a) and 7(b) show that the



system is able to provide robust position and orientation
estimates in intervals that others sensors are not available
or reliable. Based on these resuls, we can safely assume
that MES is a better option than VSLAM and GPS in
isolation, and that the proposed technique is able to deal
with unforeseen changes in sensor states that would pose
a challenge for standard data fusion techniques.
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V. CONCLUSION

In this paper, we propose a Markovian Jump Linear
Systems-based filtering for Visual and GPS aided inertial
navigation system. MJLS is used to model the modes
of operation of the navigation system. The MJLS-based
EKF attempts to select the best mode of operation
for determined time instant based on availability and
reliability of each sensor. This is an improvement over
the standard Kalman filter implementation, that uses
information from all sensors simultaneously. Experimen-
tal results were performed on an outdoor environment
considering the MES fusion of highly noisy data from an
IMU, a monocular camera and a GPS module. Results
show that MES consistently outperforms estimates from

each individual sensor, and the MJLS-based EKF is able
is perform robust data fusion in challenging scenarios.
Future work will integrate the MES framework devel-
oped with a 3D reconstruction system, to improve map
generation quality.
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