
Large-Scale 3D Scene Reconstruction with Hilbert Maps

Vitor Guizilini1 and Fabio Ramos2

Abstract— 3D scene reconstruction involves the volumetric
modeling of space, and it is a fundamental step in a wide
variety of robotic applications, including grasping, obstacle
avoidance, path planning, mapping and many others. Nowa-
days, sensors are able to quickly collect vasts amounts of data,
and the challenge has become one of storing and processing
all this information in a timely manner, especially if real-time
performance is required. Recently, a novel technique for the
stochastic learning of discriminative models through continuous
occupancy maps was proposed: Hilbert Maps [1], that is able
to represent the input space at an arbitrary resolution while
capturing statistical relationships between measurements. The
original framework was proposed for 2D environments, and
here we extend it to higher-dimensional spaces, addressing
some of the challenges brought by the curse of dimensionality.
Namely, we propose a method for the automatic selection
of feature coordinate locations, and introduce the concept of
localized automatic relevance determination (LARD) to the
Hilbert Maps framework, in which different dimensions in
the projected Hilbert space operate within independent length-
scale values. The proposed technique was tested against other
state-of-the-art 3D scene reconstruction tools in three different
datasets: a simulated indoors environment, RIEGL laser scans
and dense LSD-SLAM pointclouds. The results testify to the
proposed framework’s ability to model complex structures and
correctly interpolate over unobserved areas of the input space
while achieving real-time training and querying performances.

I. INTRODUCTION

Having a reliable model of surrounding space is of vi-
tal importance in robotics, with applications ranging from
grasping and object manipulation to obstacle avoidance and
autonomous navigation. At its core, such model should be
able to distinguish between occupied and unoccupied areas,
i.e. which ones are safe for traversing and which ones would
produce a collision. Additional desired properties include:

• Probabilistic reasoning, so the model can take into
account inherent imprecisions in sensor measurements.

• Spatial relationships, so the model can interpolate and
extrapolate available information in order to improve its
estimates in unknown areas.

• Incremental learning, so the model can adapt to new
information as it is collected during navigation.

• Update and query efficiency, so the model can be ac-
cessed in real-time, both to incorporate new information
and to obtain estimates as they become necessary.

Initial models [2], [3] would discretize the space, main-
taining a grid of equally-sized cubic volumes (voxels) that
store information about that area. However, this approach is

1Vitor Guizilini is with the School of Information Technologies, Univer-
sity of Sydney, Australia. vitor.guizilini@gmail.com

2Fabio Ramos is with the School of Information Technologies, University
of Sydney, Australia. fabio.ramos@sydney.edu.au

very memory-intensive, especially at finer resolutions and in
higher dimensions, and as a simplification each cell is treated
independently, thus ignoring spatial relationships. Over the
years substantial work has been done to improve this initial
framework, trying to achieve the properties above mentioned
under different sets of circumstances [3], [4], [5], [6].

Nowadays, a popular state-of-the-art grid-based approach
for 3D scene reconstruction is OctoMap [7], which works
by maintaining a tree-like structure (an octree) that re-
cursively divides the space into smaller areas. Areas with
similar classification are merged and/or pruned, to control
access time and memory usage, and new information is
incorporated by adding new internal nodes. The Gaussian
Process Occupancy Map (GPOM) framework, introduced in
[8], addresses spatial dependency by placing a GP prior over
the space of functions mapping locations to the occupancy
class. It does not require a prior discretization of space, since
it produces a continuous function that can be sampled at
arbitrary resolutions, but it scales cubically with the number
of training points, which limits its applicability to large-scale,
high-dimensional datasets. A similar drawback can be found
in the use of Gaussian Process Implicit Surfaces (GPIS) [9],
that switches from classification to regression and introduces
a new covariance function, the thin-plate, that is particularly
suitable for this sort of application.

Recently, a novel continuous occupancy mapping tech-
nique was introduced: Hilbert Maps [1], that is able to repre-
sent real world complexity in a linear fashion by operating on
a high-dimensional feature vector, that projects observations
into a reproducing kernel Hilbert space (RKHS) [10]. The
result is an elegant probabilistic framework that allows for
very efficient stochastic gradient descent optimization over
its parameters, and querying can be performed at arbitrary
resolutions. The original paper focuses on 2D datasets, and
while the extension to 3D environments is straightforward,
it comes with some challenges brought by the curse of
dimensionality, namely the number of feature coordinates
necessary to properly represent the environment.

This paper addresses these challenges, and proposes a
set of modifications that allows the use of the Hilbert
Maps framework in higher-dimensional spaces with real-
time update and query performances, while achieving results
comparable to other state-of-the-art 3D scene reconstruction
tools. The technical contributions of this paper are:

1) An automatic coordinate selection technique for
Hilbert Maps feature vectors, that is scalable to higher-
dimensional datasets.

2) A sparsification technique for feature vector calcula-
tion, that brings computational complexity down to

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



O(logM), where M is the number of feature coor-
dinates.

3) The introduction of localized automatic relevance de-
termination (LARD) into the Hilbert Maps frame-
work, in which each feature coordinate maintains its
own length-scale values, thus naturally inducing non-
stationarity in different areas of the input space.

The remainder of this paper is structured as follows:
Section II starts by describing the standard Hilbert Maps
framework, and then introduces the proposed modifications
for higher-dimensional processing. Section III describes the
new training and updating methodology, necessary to in-
corporate to modifications here described. Section IV dis-
cusses experimental results using simulated and real large-
scale datasets, obtained from laser scanners and a dense
visual SLAM technique, and finally Section V concludes and
presents future research directions.

II. HILBERT MAPS
A. Overview

For the task at hand, we assume a training dataset
D = {xi, yi}Ni=1, where xi ∈ �3 is a point in the three-
dimensional space1 and yi = {−1,+1} is a classifica-
tion variable that indicates the occupancy property of xi.
This dataset is obtained incrementally, as the robot moves
throughout the environment collecting distance measure-
ments from nearby surfaces (i.e. with a laser scanner or cam-
era triangulation). The point of contact of each distance beam
is labeled as +1 (occupied), while the distance traversed by
the beam is labeled as −1 (free). As in [1], a random sample
from every one to two meters is enough to ensure a good
coverage of empty space.

This dataset is used to incrementally learn a discriminative
model p(y|x,w), parametrized by a vector w, to predict
the occupancy property of new query points x∗. A simple
Logistic Regression classifier (LR) is used [11], due to its
training speed and direct extension to online learning. The
probability of non-occupancy for a query point x∗ is:

p(y∗ = −1|Φ(x∗),w) =
1

1 + exp (wTΦ(x∗))
, (1)

and, conversely, p(y∗ = +1|Φ(x∗),w) = 1 − p(y∗ =
−1|Φ(x∗),w) is the probability of occupancy. However, in
contrast to conventional LR, this model has a nonlinear
decision boundary, since it operates on feature vectors Φ(x)
rather than directly on the value x of data points. In order
to estimate the optimal parameters w, we minimize the
regularized negative log-likelihood (NLL) function, given by:

NLL(w) =
N�

i=1

− log p (yi|Φ(xi),w) +R(w) (2)

=
N�

i=1

�
1 + exp

�
−yiwT Φ̇(xi)

��
+R(w), (3)

1Even though not explored here, this framework can be trivially extended
to higher-dimensional spaces, to address other sorts of classification prob-
lems.

where R(w) = λ1�w�22 + λ2�w�1 is a regulariser term,
used to prevent overfitting and to enforce sparseness in w.
Respectively, �.�1 and �.�2 are the L1 and L2 norms and λ1

and λ2 are parameters balancing the quadratic term and the
degree of sparseness. One particularly interesting property
of Eq. 3 is that it is suitable for stochastic gradient descent
optimization (SGD) [12], since its negative log-likelihood
value is the sum of the negative log-likelihoods of individual
points. Under the SGD framework, the information contained
in each training point provides one small step towards a local
minimum [13], given by:

wt = wt−1 − ηtA
−1
t

δ

δw
NNL(w), (4)

where η > 0 is the learning rate and the matrix A is a
preconditioner to accelerate convergence rate. In most cases,
A can be set to the identity matrix, while η is either constant
or asymptotically decay with the number of iterations. Note
that this technique naturally lends itself to online learning,
since new information can be added to the current model by
incrementally performing the stochastic update step given by
Eq. 4. This also ensures that computational costs remain con-
stant regardless of dataset size, since each point is processed
only once and can then be discarded.

B. Feature Selection

A crucial insight in the Hilbert Maps (HM) framework
is the application of its discriminative model not directly
to the inputs xi, but rather on a high-dimensional feature
vector Φ(xi) computed directly from xi. It is shown that
the dot product of these feature vectors can approximate
popular kernels used in the literature [14], e.g. Φ(xi)Φ(xj) ≈
k(xi, xj). In other words, they define a Hilbert space, and
thus are able to represent a nonlinear mapping of the inputs to
a space of potentially infinite dimension, while maintaining
computational efficiency. In [1] several different features with
the above mentioned property are presented and discussed,
alongside their relationship to other well-known classifica-
tion models.

However, one important question remains: Where are
these features located? Or, more specifically, what are the
coordinates of its components in the input space? These are
necessary in order to produce the feature vector Φ(x) that
describes each point x in the Hilbert space. In essence, they
act as anchors2, correlating different input points based on a
common distance metric: the kernel function k(xi, xj).

We start by augmenting the parameter set w to also include
each respective coordinate z, thus creating the parameter
set P = {zi, wi}Mi=1, where M is the number of feature
coordinates and zi ∈ �3 (note the similarity with the training
dataset D). For any point x, its respective feature vector is

2Or inducing points, a well-known concept for sparse approximation in
other learning frameworks [15].

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



(a) Training points (labelled as free and occupied) (b) Clustering results (10 occupied and 8 free clusters)

(c) LARD-HM results with k = 1 (d) LARD-HM results with k = 5 (e) HM results with k = 5

Fig. 1: 2D example of the proposed clustering and feature generation method. The training points in (a) are clustered using
the mini-batch k-means algorithm, and mean and covariance values are extracted from each cluster, as shown in (b). A value
of k nearest neighbors is then selected and used to produce the sparse feature vectors for the Hilbert Maps training and
inference steps. In (c) only one nearest neighbor is used, which explains the jagged lines as sudden changes between one
cluster and another. In (d) five nearest neighbors are used, thus producing a more smooth transition between different regions
of the input space. Finally, (e) shows the effects of removing Localized Automatic Relevance Determination (LARD) from
the Hilbert Maps framework.

defined as:

Φ(x) =




k(x, z1)
k(x, z2)

...
k(x, zM )


 . (5)

In [1] these coordinates are sampled in a grid-like man-
ner from a predetermined initial number, equally covering
the entire input space. However, the curse of dimension-
ality quickly renders this approach infeasible for higher-
dimensional problems, requiring an exceedingly large num-
ber of feature components in order to properly model the
environment. Most of these components, however, will be
irrelevant, since they correspond to empty areas of the input
space, and therefore could be removed without impacting
results.

Here we propose using available data to estimate feature
coordinate location, to avoid generating irrelevant coordi-
nates for any specific dataset. Clustering is a natural way
to achieve that, and in particular the k-means algorithm [16]
provides a quick and reliable technique to generate points
that can be used as feature coordinates. Furthermore, to
ensure scalability to large-scale datasets, the mini-batch k-

means algorithm [17] has been shown to achieve a good
compromise between speed and accuracy, being orders of
magnitude faster than the standard implementation while
consistently producing better results than its stochastic gra-
dient descent counterpart [13]. Mini-batch k-means is also
based on the principles of stochastic gradient descent such
that our method can be seen as a version of a doubly
stochastic gradient algorithm [18]. Pseudo-code for the mini-
batch k-means algorithm can be found in Alg. 1, and Fig.
1b shows an example of clustering in a simple 2D dataset.
Furthermore, empirical tests have shown that clustering each
class (occupied and free) independently tends to yield better
results.

Additionally, we can enforce sparsity by limiting the
number of feature coordinates that are relevant for each data
point. This approach is intuitive, since data points that are
far away are expected to have less impact on each other’s
estimate. We achieve this by maintaining a KD-tree [19] with
the position of all feature coordinates. For each data point
x, the k nearest neighbors are searched, and these are the
coordinates that will receive their corresponding k(x, zm)
kernel values (see Eq. 5), while the all the others are set to

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



Algorithm 1 Mini-Batch K-Means

Input: data points X
number of clusters m and iterations t , batch size b
distance function d(xi, xj)

Output: cluster centers C
1: C ← m points picked randomly from X
2: v ← 0 // Initialise per-cluster counter vector
3: for i = 1 to t do
4: B ← b points picked randomly from X
5: for x ∈ B do
6: C[x] ← min d(x, C) // Store center nearest to x
7: end for
8: for x ∈ B do
9: c ← C[x] // Get stored center for x

10: v[x] ← v[x] + 1 // Update per-cluster counter
11: η ← 1

v[x] // Calculate learning rate
12: c ← (1− η)c + ηx // Take gradient step
13: end for
14: end for

zero. Using this approach, the cost for calculating one feature
is now O(k logM) instead of O(M), due to the search cost
for nearest neighbors.

C. Local Automatic Relevance Determination

Automatic Relevance Determination (ARD) is a common
technique in Bayesian learning [20], used to scale the input
space according to how relevant each dimension is for
predictive purposes. The larger a length-scale l is, the less
a function f( x

l2 ) responds to changes in x, and in the limit
l → ∞ the function f does not change at all, essentially
rendering any knowledge of x useless for the discriminative
model.

In this section we address the effects of introducing
independent length-scales for each feature coordinate, and
how it produces non-stationarity in the input space. We start
by augmenting the parameter dataset introduced in Section
II-B to also include a 3×3 length-scale matrix Σi, such that
P = {zi,Σi, wi}Mi=1. Similarly to how the values of z were
obtained from the centroids of each cluster, the length-scale
matrices can be calculated as the covariance matrix of the
points belonging to each cluster:

zm = {x̄m, ȳm, z̄m} =
1

Nm

Nm�

i=0

xm
i (6)

Σm =

�Nm
i=0

Nm − 1




(Δxm
i )2 Δym

i Δxm
i Δzmi Δxm

i

Δxm
i Δym

i (Δym
i )2 Δzmi Δym

i

Δxm
i Δzmi Δym

i Δzmi (Δzmi )2


 (7)

where Δxm
i = xm

i − zm. Following this approach, the
length-scale of each dimension is tied to the corresponding
variance of cluster points. Larger variances will produce
slower changes and vice-versa, which is to be expected,
since a larger variance indicate less certainty, rendering the
transition between classes blurrier. The standard RBF kernel,
with the introduction of multi-dimensional length-scales, is
expressed as:

k(xi, xj ,Σ) = exp

�
−1

2
(xi − xj)

TΣ−1(xi − xj)

�
, (8)

while the feature vector Φ(xi), introduced in Eq. 5, is
augmented to become:

Φ(x) =




k(x, z1,Σ1)
k(x, z2,Σ2)

...
k(x, zM ,ΣM )


 . (9)

The benefits of introducing Localized Automatic Rele-
vance Determination (LARD) into the Hilbert Maps frame-
work can be seen in Fig. 1e, where it has been switched off
in relation to Fig. 1d. Without LARD, only the distance from
each cluster is taken into consideration, and therefore clas-
sification is restricted to circular areas around the centroids.
With LARD, the shape of each cluster dictates classification
area, which allows for a better representation of different
structures in the environment and interpolation in unobserved
areas of the input space.

III. INCREMENTAL LEARNING

The training methodology present in the Hilbert Maps
framework, as shown in [1], lends itself naturally for online
learning, where new data is continuously obtained and used
to build a discriminative model of the environment. However,
the modifications proposed in Sec. II, namely the clustering
of data to produce the mean zm and covariance ΣM values
for each feature coordinate, introduce some obstacles for
the straightforward application of Hilbert Maps for online
learning. Every time new data D� = {xi, y}Pi=1 is obtained,
it falls under one of the following two categories:

1) Unobserved areas: As new areas of the input space are
observed, extra clusters should be produced to populate
these areas and incorporate this new information.

2) Revisited areas: As areas of the input space are
observed again, this new information should be added
to the clusters already populating these areas.

Category 1 can be performed by clustering the new data,
to produce a new parameter dataset P �, and append it to the
current parameter dataset P = {P,P �} as new coordinates
of Φ(x). The initial weight parameters for these coordinates
are set to w = 0 and then trained by iteratively running the
SGD update step shown in Eq. 4.

Category 2 involves determining if an area of the input
space with new information has already been visited (i.e. has
clusters attached to it). This is done by first clustering the
new data, to produce a new parameter dataset P �, and then
compare each new cluster to the ones present in P , searching
for proximity. An initial filter eliminates matches that are
further away than ζ in the Euclidean space. The potential
matches are compared in length-scale space, using their
respective Σ matrices. If their coordinates fall both within
one standard deviation of each other, they are considered the
same cluster and merged together to produce new mean z and
covariance Σ values for that particular feature coordinate.
Pseudo-code for this incremental learning technique can be
found in Alg. 2.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



Algorithm 2 Incremental Learning for LARD-HM

Input: new data points Dn = {X, y}
current parameter dataset Pc = {Z,Σ,w}
number of clusters m and iterations t , batch size b
distance function d(xi, xj ,Σ) , threshold ζ

Output: updated parameter dataset Pc = {Z,Σ,w}
1: Zn ← kmeans(Xn,m, t, b, d(xi, xj , I)
2: for zn ∈ Zn do
3: merged ← false
4: for zc ∈ Zc do
5: if d(zn, zc, I) < ζ then
6: if d(zn, zc,Σc) < 1 and d(zn, zc,Σn) < 1 then
7: zc ← zn+c // Update mean vector
8: Σc ← Σn+c // Update covariance matrix
9: merged ← true

10: break
11: end if
12: end if
13: end for
14: if not merged then
15: Pc ← {zn,Σn, 0} // Add new cluster
16: end if
17: end for
18: wc ← updateSGD(Dn,Pc) // Update weight parameters

IV. EXPERIMENTS

In this section we test the proposed framework in three
different datasets: a simulated 3D environment, data from
a RIEGL laser scanner and data from a popular dense
visual SLAM algorithm, LSD-SLAM [21]. The proposed
framework is compared against one of the current state-of-
the-art 3D mapping techniques, OctoMap [7], and a localized
Gaussian process (GP) [14] solution, that takes each cluster
of points described in Sec. IIb and trains an independent GP
model for that particular region of the input space. Inference
is performed by querying the test point on its k nearest
neighbors and taking the inverse weighted average of each
mean value in relation to its respective variance value.

In all experiments, unless noted otherwise, the squared
exponential kernel in Eq. 8 was used, the sparse feature
vector in Eq. 9 was obtained using k = 5 nearest neighbors,
the learning rate in Eq. 4 was set to η = 0.1, a threshold
of 0.5 was used to differentiate between occupied and free
areas, and a resolution of 0.05m was selected for space
discretization. For plotting purposes, when using the HM
and GP frameworks, the marching cubes algorithm [22] was
used, with (when applied) each vertex colored by the in-
formation present in its nearest neighbor3. All computations
were performed on a 2.50x8 GHz notebook with OpenMP
parallelization when applicable.

A. Simulated 3D Environment

The first dataset addressed here was composed of 50k
points and simulated 3 scan lasers taken from an indoor
environment of about 40m2 (random noise σ2 = N (0, 0.1)
was added to each data point), as seen in Fig. 2a. The

3All coding and plotting for this paper was done using CVPP, a home-
grown C++ library freely available in https://bitbucket.org/vguizilini/cvpp.
A demo of LARD-HM is included in this library.

TABLE I: Average Processing times over 10 runs (msec)
for different tasks in the LARD-HM framework, on the
simulated dataset.

Task Total time Individual time
k-means clustering 471± 8 5.68× 10−3 / point

Length-scale calculation 23± 4 4.60× 10−2 / cluster
Training features calculation 116± 12 1.40× 10−3 / feature

SGD training 4± 1 4.82× 10−5 / feature
Grid features calculation 873± 121 1.37× 10−3 / feature

Grid features query 17± 4 2.66× 10−5 / feature

processing times for each major task present in the LARD-
HM framework can be found in Table I. It is clear that
most of the processing time is spent on clustering (m =
500) and feature calculation, while an almost negligible
amount is spent on actually training weight parameters and
querying test points. A similar comparison, now between
different 3D scene reconstruction methods, can be found in
Table II, where we can see that LARD-HM, while slower
than Octomap, manages to increase computational speed by
an order of magnitude over the original HM framework
proposed in [1]. It also requires significantly less memory,
since LARD-HM maintains one weight parameter for each
cluster, while the original HM framework maintains weights
distributed on a grid covering the entire input space.

The 3D scene reconstruction results for LARD-HM,
alongside Original HM (OHM), OctoMap and Localized
Gaussian Processes (LGP) are shown in Fig. 2b, 2c and
2d respectively. The first noticeable aspect is that LARD-
HM was able to seamlessly incorporate data from different
sensors into a single scene (the processing order was green,
blue and red, see Fig. 2a), which testifies to the effectiveness
of the incremental learning technique described in Sec. III. It
is also clear that LARD-HM is better suited for interpolation
than OctoMap, and even the original HM framework, since
it is capable to fill in gaps in the training data to smooth out
inference results.

This effect becomes more prominent as we reduce the
number of training points, as depicted in Fig. 3, where differ-
ent ratios were set aside as ground-truth for testing. At 99%
training points, LARD-HM reaches virtually 100% correct
classifications, while OHM reaches 97% and OctoMap and
LGP converge to roughly 89% and 82%, respectively. As we
decrease the percentage of training points, LARD-HM and
LGP remain stable until about 40% before starting to steeply

TABLE II: Average processing times over 10 runs (msec)
for different methods of 3D scene reconstruction, on the
simulated dataset.

Method Training Time Query Time
(82842 points) (638683 points)

Original HM 3440± 285 25473± 5987
Local GP 7241± 873 72121± 10141

LARD-HM 216± 41 849± 55
OctoMap 130± 22 11± 2

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



(a) Data points, colored by scan number (b) Clustered covariance ellipses (c) Hilbert Maps with LARD

(d) Original Hilbert Maps (e) OctoMap (f) Localized GP (colored by variance)

Fig. 2: 3D scene reconstruction on a simulated environment using different techniques.

decline, while OHM and OctoMap consistently decrease in
a roughly linear fashion. At 5% training points, LARD-
HM still remains at about 78% correct classifications, while
LGP, OHM and Octomap reaches about 66%, 62% and 55%,
respectively.

The LGP framework has the interesting property of also
providing variance estimates, which can be used to measure
how certain the underlying model is of each particular
surface estimate. These variance estimates serve as color
texture for Fig. 2d, where we can see that variance increases

Fig. 3: Quantitative comparison on sparse simulated data,
obtained by changing the ratio between training and testing
points.

as we move away from training points, into areas of the
input space where there is still no available information.
The HM framework can be extended to provide this variance
information by substituting the LR classifier with a Bayesian
regression technique, however this was not explored here.

B. RIEGL Dataset

The second dataset considered here was obtained using a
RIEGL sensor, composed of about 1.4 million points spread
over an area of 400m2. For this dataset m = 1500 clusters
were automatically selected and all points were used for
training. Fig. 4 shows the 3D scene reconstruction results
using LARD-HM, with some zoomed in areas depicted in
the surrounding. The effects of changing the ratio of training
points (inducing sparsity) and number of clusters is depicted
in Fig. 6. At 70% of training data the percentage of correct
classifications stabilize at round 91%, and the same behavior
happens at around 1000 clusters. We attribute this stabiliza-
tion to the deterioration of each cluster information, since
with a larger number of clusters fewer points are attributed
to each one, which leads to worse mean and covariance

TABLE III: Percentage of correct classification for different
methods, on real datasets (50% sparsity).

Method RIEGL dataset LSD-SLAM dataset
OctoMap 74.76% 68.23%

Original HM 81.48% 73.47%
LARD-HM 89.25% 83.89%

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



Fig. 4: 3D scene reconstruction results on the RIEGL dataset using LARD-HM.

estimates. In fact, to avoid numerical instability clusters with
fewer than 5 points were merged with their nearest neighbors,
effectively decreasing the number of considered clusters.

C. LSD-SLAM Dataset

The last dataset considered here was obtained using vi-
sual information collected from a standard calibrated GoPro
camera attached to an UAV (Solo, from 3DRobotics). This

visual information was processed using LSD-SLAM [21] to
produce a dense 3D pointcloud (Fig. 5b), composed of 15
keyframes obtained from different viewpoints of a (roughly)
static environment, as seen in Fig. 5a. Each keyframe con-
tributed with an average of 80k data points.

Note that a GoPro camera is not ideal for this type of
application, and therefore the resulting 3D pointcloud has

(a) Original scene (b) Data points (c) LARD-HM results

Fig. 5: 3D scene reconstruction results on the LSD-SLAM dataset using LARD-HM.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.



Fig. 6: Quantitative comparison for the RIEGL and LSD-
SLAM datasets within the LARD-HM framework, showing
the effects of sparse data and changing the number of clusters
(80% of training data was used for cluster comparison).

substantial noise and alignment issues, due to drift accu-
mulation and model inaccuracies. Even so, the LARD-HM
framework was able to accurately reconstruct the structures
present in the scene, as it can be seen in Fig. 5c. The
information in each keyframe was incrementally added to
the model, with 100 new clusters being calculated at each
iteration, and either incorporated as new feature coordinates
or merged with previous clusters.

V. CONCLUSION

This paper presented an extension of the Hilbert Maps
framework to higher-dimensional spaces, addressing some
of the challenges brought by the curse of dimensionality.
A novel methodology for automatic feature coordinate se-
lection was presented, and we introduced the concept of
localized automatic relevance determination, that induces
non-stationarity on the input space by maintaining different
length-scale values for each feature coordinate. The result is a
very efficient probabilistic classification technique, that rivals
other state-of-the-art 3D scene reconstruction tools. Future
work will focus on speeding up clustering and feature calcu-
lation, that are the bottleneck of the current implementation,
the use of different kernel functions, and also explore the use
of the proposed framework in other classification problems.

ACKNOWLEDGEMENT

The authors would like to thank Lionel Ott, for kindly pro-
viding code for the original HM framework, and 3DRobotics,
for the equipment used to obtain the LSD-SLAM dataset.

REFERENCES

[1] F. T. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent.” in Robotic: Science and
Systems (RSS), 2015.

[2] A. Elfes, “Occupancy grids: A probabilistic framework for robot
perception and navigation,” Ph.D. dissertation, Pittsburgh, USA, 1989.

[3] H. P. Moravec, “Robot spatial perception by stereoscopic vision and
3d evidence grids,” Carnegie Mellon University: Robotics Institute,
Tech. Rep., 1996.

[4] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d slam:
3d mapping outdoor environments,” Journal of Field Robotics, vol. 24,
pp. 699–722, 2007.

[5] R. Hadsell, J. A. Bagnell, D. F. Huber, and M. Hebert, “Space-carving
kernels for accurate rough terrain estimation.” vol. 29, pp. 981–996,
2010.

[6] B. Douillard, J. Underwood, N. Melkumyan, S. Singh, S. Vasudevan,
and A. Quadros, “Hybrid elevation maps: 3d surface models for
segmentation,” in International Conference on Intelligent Robots and
Systems (IROS). Proceedings of IEEE, 2010, pp. 1532–1538.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, pp. 189–206, 2013.

[8] S. T. O’Callaghan, F. T. Ramos, and H. F. Durrant-Whyte, “Contextual
occupancy maps using gaussian processes.” in International Confer-
ence on Robotics Research (ICRA). Proceedings of IEEE, 2009, pp.
1054–1060.

[9] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in International Confer-
ence on Robotics Research (ICRA). Proceedings of IEEE, 2011, pp.
2845–2850.

[10] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond, 2001.

[11] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge
University Press, 2005.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in International Conference on Computational Statistics
(COMPSTAT), vol. 19. Springer-Verlag, 2010, pp. 177–187.

[13] ——, “Stochastic gradient descent tricks.” in Neural Networks: Tricks
of the Trade (2nd Edition). Lecture Notes in Computer Science, 2012,
vol. 7700, pp. 421–436.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2005.

[15] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” The Journal of
Machine Learning Research (JMLR), vol. 6, pp. 1939–1959, 2005.

[16] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), vol. 24, pp. 881–892, 2002.

[17] D. Sculley, “Web-scale k-means clustering,” in International Confer-
ence on World Wide Web (WWW), vol. 19. ACM Digital Library,
2010, pp. 1177–1178.

[18] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song,
“Scalable kernel methods via doubly stochastic gradients,” in Ad-
vances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 3041–3049.

[19] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Application (VISAPP), vol. 4. INSTICC
Press, 2009, pp. 331–340.

[20] D. Wipf and S. S. Nagarajan, “A new view of automatic relevance
determination,” in Advances in Neural Information Processing Systems
(NIPS). Curran Associates, Inc., 2008, vol. 20, pp. 1625–1632.

[21] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conference on Computer Vision
(ECCV), vol. 13, 2014, pp. 834–849.

[22] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3d surface construction algorithm,” in Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH), vol. 14. ACM
Digital Library, 1987, pp. 163–169.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 27, 2016.


