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Abstract— Scene understanding is a crucial requirement
for robot navigation. Conditional Random Fields (CRF) are
commonly used to solve the scene labelling problem since
they represent contextual information efficiently and provide
efficient inference methods. However, when a robot navigates
through an unknown environment, it is often necessary to adjust
the parameters of the CRF online to maintain the same level of
accuracy under changes no predicted during the training phase.
Online parameter learning can be challenging since ground
truth information is not available for newly encountered scenes.
To address this issue, this paper proposes a stochastic gradient
descent (SGD) method to learn the parameters of a constrained
CREF (cCREF) in an online fashion. By leveraging the information
from laser scans and image data the complexity of the labelling
problem can be significantly reduced. The parameters are
estimated by optimising a novel loss function that takes into
account highly confident labels as a reference while eliminating
the need for manual labelling. These labels are obtained purely
based on the information from camera and laser sensors, in
a self-supervised manner. Sensor data is pre-processed using
methods such as convolutional nets, discriminant analysis, and
Euclidean distance based clustering to extract reference labels.
We show that this online parameter learning is robust to
changes in the data distribution by selecting the learning rate
appropriately. Experimental results are presented on the KITTI
data set demonstrating the benefits of online CRF training.

I. INTRODUCTION

Scene understanding is an important skill for many robotic
tasks. It provides the foundation, which allows a robot to
perceive and reason about its environment. For navigation in
urban settings, such information is crucial for safety, as it
allows the robot to identify the areas that can be a risk due
to the presence of dynamic objects. Commonly, CRF models
are used to perform scene labelling, since they excel at
integrating local classifiers and spatial smoothness. However,
efficient combination of this information is challenging.

Particularly in autonomous navigation, where the robot's
environment is continuously changing the efficient combina-
tion of features is very important. Adaptively and continually
learning the CRF parameters is therefore coupled with the
current distribution of data. However, CRF parameter learn-
ing can be painstaking due to complex correlations between
variables and the cost involved with inference. Due to the
enormous cost associated with computing the CRF objective
function, stochastic gradient methods that use a gradient
calculated at a single point or small subset of the data, instead
of the actual gradient, is an appealing alternative. As a result,
Stochastic Gradient Descent (SGD) algorithms are widely
used in online learning.
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Training of CRF is commonly conducted with fully la-
belled images. In some cases partially labelled images are
used to train CRF since it also helps to overcome issues
such as parameter over fitting and over-estimation. However
in autonomous navigation the learning occurs as the new data
encounters where no ground truth data is available. In this
scenario parameter learning is not a trivial problem.

The purpose of this paper is to propose an online
parameter-learning framework for CRF based scene-labelling
models by eliminating the use of manually labelled images
and robustly continue parameter learning in changing envi-
ronments. In this setup, we are searching for the best set of
parameters for CRF model to accurately predict the labels for
the current image. In other words, we are interested in finding
the best local estimate rather than a global optimum for all
the encountered images in the past. We use information from
the camera and laser sensors as a reference to compute the
loss of wrong labelling. By minimising this loss, we obtain
the parameters for the current context. We use an SGD-based
approach for the optimisation as it facilitates getting the best
parameter set based on the recent data. We demonstrate the
performance of the online parameter learning on constrained
CRF (cCRF) model proposed in [2]. We use the real world
street scene data in KITTI [8]. To summarise the main
contributions of the paper are:

1) Developing a model to learn CRF parameters by elim-
inating the need for ground truth labels. The model
derives reference labels by pre-processing the sensor
information.

2) Using stochastic gradient based method to update the
parameters while making the method robust to non-
stationary data in the long term deployments.

3) Learning parameters of cCRF model in a online fash-
ion using the techniques (1) and (2) to make it robust
when labelling continuous streams of data

II. RELATED WORK

A number of approaches have proposed to efficiently
estimate the parameters for CRF models. Verbeek et al. [20]
introduce a method for learning CRFs by marginalising out
the variables with unknown labels and by maximising the
log-likelihood of the variables with known labels using gradi-
ent ascent. Tsuboi et al. [18] also present a similar framework
for training CRFs using a partially annotated corpora to
conduct natural language processing. In [9], authors develop
a hybrid model for exploiting incompletely labelled data that
combines a generative topic model for image appearance
with discriminative label prediction. In [10], authors propose
a method for parameter learning in dense random fields. This



method uses information about the dependencies between
parameters by learning them jointly. The loss are functions
computed bases on mean field marginal. These methods
target the offline learning of the CRF parameters.

For large scale learning problems it need algorithms that
can scale favourably. Due to high cost associated with CRF
inference SGD methods are commonly used instead of batch
learning methods in online settings. The momentum method
[14] is commonly used to help SGD to accelerate in rele-
vant directions and dampen oscillations. Selecting an ideal
learning rate for SGD can be challenging. ADAGRAD [4]
is one popular method of updating the learning rates since it
only uses first order assumptions. However, the method tends
to have properties of second order methods and annealing
implicitly. ADADELTA [22] is a recent improvement which
assists SGD to overcome the sensitivity to the hyper param-
eter selection. Further, it also prevents continual decaying
of the learning rates and facilitates to escape from local
minima by allowing the learning rate to progress. However
in most of the problems the SGD has a slower convergence
rate. To overcome this issue Schmidt er al.[16] apply the
stochastic average gradient (SAG) algorithm which combine
the characteristics of deterministic and stochastic models to
train CRFs. They show that this algorithm converges with
a less number of iteration than SGD. However given this
advantage still it may be difficult to apply SAG algorithm for
models with complex features that associate with a greater
number of labels and also it confine to problems with finite
number of training examples.

In our research, we are interested in online learning for
autonomous navigation. Schraudolph et al. [17] propose a
scalable, stochastic quasi-Newton method for online convex
optimisation. In online settings when new data appear with-
out a prior knowledge loss functions are not guaranteed to
be convex all the time. Hence non-convex optimisation is
a matter of interest. Schaul et al [15] propose a method to
automatically tune learning rates to minimise the expected
error in the current situation. The framework performs well in
non-convex problems. The method is based on local gradient
variations across samples. In this framework, learning rates
have the freedom to progress or diminish to make it robust
for non-stationary problems. The framework is aimed for
solving computer vision problems. Our framework also uses
a similar technique to change learning rates to adapt changing
data distributions but focus on exploiting the robot sensor
data.

Fathi et al. [6] propose an incremental self-training algo-
rithm where they iteratively label the least uncertain frame
and update similarity metrics. This self-training video seg-
mentation provides higher accuracy for foreground identifi-
cation problems. The approach of [13] consists of combined
self-learning algorithm for ground detection. The system
automatically learns to ally salient features that are extracted
from sensor data in correspondence to the ground class.
New observations are labelled by outlier rejection using
the past data. Vijayanarasimhan et al. [21] demonstrate a
method to reduce human effort in video annotation. They

choose k number of frames for manual labelling to ensure
that automatic pixel level label propagation would occur
with minimal expected error. Here they minimise the effort
required for labelling and correcting propagation errors. All
these methods require some amount of labelling of the data,
which is difficult to obtain in real time navigation tasks.
Our framework omits the need to use labelled data in the
learning process, which instead try to exploit the existing
sensor information and educate the parameters to adjust
meaningfully.

III. BACKGROUND

Figure 1 shows a overview of the proposed framework.
We use this framework to learn the parameters of the
cCRF model [2] in a online fashion. cCRF conducts scene
segmentation by enforcing a set of global constraints on the
optimisation which makes it more computationally efficient.
Further it also has a high accuracy in scene segmentation
and requires only unary and pairwise potential terms. The
following section summarises the formulation of the cCRF
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{ Labels
|

Constrained
CRF model

Fig. 1: Overview of the online parameter learning for cCRF model
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Fig. 2: Example of the type of CRF graph used in this paper. Pairwise
potentials are indicated by the edges, while the additional constraints are
indicated by the two shaded areas, A and B. These areas encode sets of
nodes which are required to be assigned the same label.

A. ¢CRF Model

A graphical representation of the cCRF model presented
in [2] is depicted in Figure 2, where circles and edges
denote nodes and connections between nodes respectively.
Each node corresponds to a super pixel [1] in the image
and the neighbouring nodes are connected. The two sets of
nodes coloured identically in Figure 2 represent sets of nodes
constrained to take the same label. Where S is the set of
super pixels in the image. X = {z1,x2,...,z N} is the set of
discrete random variables, where z; corresponds to the label



prediction of super pixel/node ¢. Each super pixel can take
one of the output labels L = {1,...,n}, where n denotes
the number of classes.

The solution to this CRF is obtained as a maximum a pos-
teriori (MAP) estimation of the conditional log-likelihood;
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The potential functions of the CRF are indicated as ¢;(x;)
for the unary potential and ;;(x;,x;) for the pairwise
potential correspond to each super pixel ¢ and each of its
neighbours j € N (7). Z(S) denotes the normalising term.
To solve the inference problem P(X|S) efficiently Zhang et
al [23] propose a quadratic programming (QP) relaxation. To
improve this label assignment Charika et al [2] add global
constraints to the QP problem. This constrained quadratic
programming model is denoted as follows,
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This cCRF model has parameters corresponding to unary and
pairwise terms. The relaxed indicator variable x(z!) denotes
the probability of random variable x; taking label p. Eq. (2¢)
enforces that all pairs of points ¢ and j in a constraint set
C}, € C are assigned the same label. These global constraints
obtained from additional sensor data. Charika et al [2]
reformulate the problem by enforcing the global constraints
implicitly in the optimisation problem which results in a
large dimensional reduction in the QP problem. Inference of
this reduced problem is done by the gradient based approach
proposed by Zhang et al.

IV. ONLINE LEARNING

In this section we present our framework which permits
us to optimise the parameters © of the unary and pairwise
potentials of the cCRF model in an online fashion. We
optimise the loss function, detailed next, using stochastic
gradient descent (SGD) which allows for fast and continues
updates of the parameters.

A. Loss Function

Our goal is to minimise the difference between the refer-
ence labels I' extracted in a self-supervised manner using
sensor information and cCRF label prediction r of the
corresponding super pixels in S by selecting the optimal CRF
parameters O,

©* = arg min (T, r). 4)
e
where ©* is the set of optimal parameters we wish to find
and [ is the loss function we need to optimise. cCRF label
prediction r;;, = p1;(z}) where i€ S and p € L.

Ideally we would compare the predicted result to ground
truth labels, as is typically done in parameter learning.
However, as we operate in an online setting we do not have
access to such ground truth labels for the data we observe.
Therefore we extract labels for super pixels where we are
highly confident about the label purely based on laser point
clusters, fully convolutional net (FCN) [11] classifier results,
and pseudo linear discriminant analysis classifier (pLDA)
[12] results. As such in each frame we process we will
have a varying number of super pixels with reliable reference
labels at our disposal. Putting all this together we obtain the
following loss function:

I = lagree + lairer + liaser- @)

Where,
dgree - Z )\ Z Hrz - F || ) Sagree = [Sla 7Sn]
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lagree provides a measure of deviation from reference labels,
where )\; is the weight for the loss component of each class.
S denotes the set of superpixels which we are confident the
true label is 7 based on the classifiers and laser point clusters,
i.e. super pixels, covered by a point cloud segment that does
not belong to the ground plane and both classifiers predict
the label to be a vehicle will be added to the set of reference
labels to use in the computation of the loss function. lgiger iS
used in cases where we have knowledge that a certain label
assignment is not possible, i.e. a super pixel that is observed
by the laser cannot be sky. Here we add a loss if the cCRF
predictions assign a label to a less probable class (based on
the knowledge from laser clusters and classifiers),

Laifter = Z o Z lr; - Tl Saitter = {St1, .-, Sn},

S;jESiiter  1ES;
(7)

where «; is the weight for the loss component of each class.
S; denotes the set of super pixels which we are confident
the true label is not j based on the classifiers and laser
point clusters. Finally for parts where we have point cloud
segments we assign a 10ss, lj,ser, if CCRF prediction violates
the label consistency obtained by the laser segments,

laser = A Y Y [l = riga |” ®)

C eciec;



Putting these parts together with a regularizer to prevent
overfitting we obtain the following optimisation problem:

0% = arg minZl + || exp(©)]|?, )
e
k
where each k£ is a new image. This type of function is
amenable to optimisation using stochastic gradient descent.
For our method we propose to use ADAGRAD which is
described in the next section.

B. Stochastic Learning

As we operate in an online setting where we continuously
obtain new observations standard batch gradient optimisation
methods are not applicable due to he unbounded size of the
data to be processed. As such we use stochastic gradient
descent (SGD), which operates on a single observation at
a time, to optimise the parameters using the loss function
presented in Eq. (9).

For each image (iteration) we compute a stochastic gra-
dient with which to update the parameter vector ©. To this
end we form a mini-batch composed of the last M images
and perform M parameter update steps. The value of M is
dependent on the rate at which images are received, higher
rates allows us to use larger values of M. The values of ©
obtained in this way are adapted to the current context of the
scene, however, also retain information from the past. As the
learning rate has a big impact on the speed of convergence
and quality of the obtained result we employ ADAGRAD
[4] which uses individual learning rates for each parameter
that change based on past data. The basic equations of
ADAGRAD have the following form:

G=> g9
t

where g; = 7I(T, r) is the gradient at iteration t. With this
we can update the parameter set © as follows:

0:=0 - 77Diag(G)*1/2 og,

(10)

Y

where 7 is the global learning rate, g the current gradient.
While ADAGRAD works well in typical large scale problems
there are some drawbacks when using it in an online setting.
The main one is that the entire gradient value history is
accumulated which results in a continuously decreasing step
size. In an online settings this means that at some point
the parameters would no longer adapt to changes in the
environment. One possible solution is to use a constant fixed
learning rate which would always allow for changes in the
environment to be reflected in the parameters. However,
selecting a suitable fixed learning rate is not trivial and would
require a lot of testing for different scenarios which clearly
isn’t ideal. So in order to have the good learning rates of
ADAGRAD while still being able to adapt to changes we
adopt a procedure similar to that of [15].

The basic idea is to have a decaying learning rate, but at
opportune moments increase this learning rate again to allow
quicker adaptation. In our case once the learning rate has
become sufficiently small for a number of iterations we set

Algorithm 1: Online Learning Algorithm

// cCRF(..)- MAP estimation of cCRF model
// t — Iteration number
// w - Image frame index

// 8,v — Thresh hold values
// G - Accumulated gradient
// ©, - Parameter set correspond to w'
image frame
Input: 7-Global learning rate , I - Input image , M - Mini
batch size
Output: Label assignment X
// Initialisation
1w=M-+1 ,GZO,@w:[l]lxm Yw € [1,..M]
// SGD parameter optimisation
2 while Images available do
// Select past M frames and shuffle

h

3 foreach vVt € {w — M, ..,w} do
4 r < cCRF(O, I})
5 I' < self supervised reference labels of image I;
6 loss=l(T", r)
// gradient of the loss function
7 g+ &
// gradient accumulation
8 G+ G+gg”
// updating the parameters
9 O + O, —nDiag(G)~Y%. ¢
10 end

// Decide when to reset the step size
11 ifVr €ft:t—v];abs(0r — O-_1) < then
12 | G=0;

13 end

14 Ow+1 ¢ Ou

15 X CCRF(@erh Iw+1)
16 w<+—w+1

17 end

18 return X

G = 0 which discards all previously accumulated gradient
information. This effectively increases the learning rate and
allows the optimiser to adapt to changes if necessary. In the
case that the distribution has changed the gradient will be
non-zero and pull the solution to a different local minimum.
Similarly, if the distribution hasn’t changed the gradients
will be close to zero and the algorithm will not change the
parameters.

An overview of the steps involved in our algorithm are
summarised in Algorithm 1. With each new image the last M
images, typically 10 to 20, are used to compute the gradients
of the parameters © using the loss function (lines 4 to 9).
Next we decide whether or not to reset the step size which
allows us keep adapting to changes (lines 11 to 13). Finally,
we update the parameter set © and obtain the segmentation
results before processing the next image (lines 14 to 16).
Our experiments we have considered 7 object classes (n=7)
which resulted in 21 parameters.

V. EXPERIMENTS

In this section we present experimental evaluation of
our proposed framework for online learning of CRF pa-
rameters. The results compare the results obtained using
cCRF with fixed parameters with those obtained using cCRF
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TABLE I: Overview of the loss function parameters.

with adaptive parameters. We use the KITTI dataset [§]
as it provides typical image and laser scanner data col-
lected in urban environments. The data which was collected
in the city of Karlsruhe using a vehicle equipped withe
cameras and a Velodyne laser scanner provides a variety
of scenes and environmental conditions. Test set includes
images from drive_0021, drive_0043, drive_ 0071,
drive_0038, drive_0093 and drive_0095.

A. Constrained Conditional Random Field

Our goal is to segment the images into the following
seven classes: pedestrians and cyclists, ground, vegetation,
buildings, sky, vehicles, and unknown. The unary potentials
¢; of the CRF are obtained from the combination of the
posteriors of two classifiers. A pseudo linear discriminant
analysis classifier [12] trained on the KITTI dataset using
HSV colour histograms, RGB Hog features [3], and pixel
coordinates corresponding to each super pixel. And a FCN
classifier based on the pre-trained pascal-fcn32s-dag
net [19] trained using the pascal [5] dataset. Figure 4 shows
the classifier outputs for a raw image. The weighted average
of the posteriors of these two classifiers is used as the unary
potentials. For the pairwise potentials the following simple
function is used:

1 ifi=j
Vi = {0.01 otherwise (12)

The constraints required by both the constrained CRF as
well as the self-supervised labelling process are extracted
from the Velodyne scans using a simple process. Firs the
ground plane is removed using RANSAC [7] to find the
largest ground plane. The remaining points are clustered
using an Euclidean distance based algorithm. Of the resulting
clusters only those with at least a certain number of points
are retained. These 3D segments are then mapped, using the
extrinsic calibration data provided by the KITTI dataset, into
the image space to obtain the corresponding super pixels.

The seven classes associates with, 14 parameters to control
the pairwise potentials and 7 to control the unary potentials.
All nodes in the CRF use the same set of parameters. The
gradient of the loss function Eq. (4) is calculated using
central finite differences [16].

The weights of the loss function A and « were cho-
sen through a grid search followed by a fine tuning on
drive_0091. These values are summarized in Table I. The
base learning rate was selected as n = 0.037 in a similar
manner.

B. Results

In the following we present results comparing cCRF
using fixed parameters and cCRF using parameters that are
adapted online using our proposed method. An overview
of the typical behaviour and performance of the proposed
algorithm is shown in Figure 3. The top image demonstrates
how the online adaptive cCRF maintains a higher overall
accuracy in comparison to cCRF using fixed parameters.
This is clearly visible in the areas where cCRF has drops
in accuracy which the online cCRF manages to avoid as it
adapts to the changes and as a result doesn’t drop as much
in terms of accuracy. The middle and bottom image evaluate
the accuracy on the parts of the image for which we have
obtained labels (middle) and those where we have had no
label information (bottom). As to be expected the result for
areas where we have labels is better then for those where we
lack label information, however, the difference is relatively
small. Overall the shapes and trends are quite similar which
is a good indication that the parameter training done on the
labelled parts influences the parameters of classes without
labels in a positive way. One interesting case are the two
drops in performance around the frame #200 and #350. In
the first instance this drop is present in both labelled and
unlabelled data and as a result the online cCRF manages
to mitigate it. By contrast the second instance only occurs
in the unlabelled part of the data and as such no parameter
adaptation happens because of it and both the online cCRF
and fixed cCRF reduce in accuracy. This again demonstrates
that parameters updated based on the labelled parts of the
data improves the performance in areas where we have
not obtained labels. Figure 5 contains the image frames
correspond to the marked points A,B,C,D in the top graph of
Figure 3.The results of online CQP avoid the errors in CQP
solution occurred due to illumination and noise.

The same type of improvements can be observed in other
datasets. Figure 6 shows the relative change in accuracy be-
tween cCRF and online cCRE, i.e. a positive value indicates
that online cCRF is performing better then cCRF using fixed
parameters. From these plots we can see the constant gain
in accuracy where the spikes stem from sudden drops in
accuracy in cCRF which online cCRF manages to mitigate.
These results are also verified in the comparison of several
performance metrics on multiple datasets in Table II. The
table shows how online cCRF consistently improves on the
results obtained by cCRF. This improvement is typically in
the 2% to 3% range, but in a few cases the gain is as much
as 6%.

Next we are going to look at the per class performance
to see the impact online cCRF has on those. Looking at
Figure 7 we can see that for very simple classes such as
“ground” there is barely any improvement. For more complex
and varied classes this changes. In the case of the “pedestrian
and cyclists” class there is mostly no change, however, when
cCRF makes large errors the online cCRF method maintains
good accuracy. Looking at the “vegetation” and “buildings”
classes we can see that online cCRF has a somewhat



Quality Measure Average Precision Average Recall Average Accuracy F1 Score
Method ¢CRF  Online cCRF | ¢CRF  Online cCRF | cCRF Online cCRF | c¢CRF  Online cCRF
Dataset0071 | 0.8440 0.8676 | 0.8793 0.8987 | 0.9493 0.9562 | 0.8237 0.8481
Dataset0095 | 0.8501 0.8938 | 0.9350 0.9393 | 0.9496 0.9642 | 0.8435 0.8884
Dataset0038 | 0.7454 0.7860 | 0.7135 0.7780 | 0.9317 0.9441 | 0.7284 0.7814
Dataset0093 | 0.8534 0.8767 | 0.8390 0.8624 | 0.9503 0.9601 | 0.8458 0.8692

TABLE II: Quantitative comparison of cCRF and online cCRF on different dataset. Online cCRF consistently improves on the results of cCRF in varied
datasets, such as Dataset0071 which has a high concentration of pedestrians to Dataset0095 which contains a large amount of vehicles.
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Fig. 3: Accuracy on a per frame basis for the drive_0093 dataset from
KITTI. (Top) overall accuracy of each frame, (middle) accuracy of the
super pixels for which we extracted labels in a self-supervised manner,
and (bottom) accuracy for super pixels without label information. Overall
the online cCRF is able to adapt the parameters to prevent drastic reduction
in accuracy. Comparing the (middle) and (bottom) graphs one can see that
even though the parameters are learned only on data from the (middle) the
changes have a positive impact on the (bottom) graph.

smoother curve while exhibiting a positive accuracy offset
over cCRF. These impressions are also verified by the numer-
ical evaluation presented in Table III for drive_0093. For
hard classes such as “Cyclists & Pedestrians” the precision
does not improving, however, recall improves significantly
which also reflects in the F1 score. Depending on the class
some metrics remain unchanged while others gain and as a
result the F1 score improves across the board. As such the
online cCRF method manages to improve on the challenging
metrics for each class without degrading others.

While during typical autonomous navigation the environ-
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Fig. 4: Left image shows the raw image, middle overlays output of the pLDA
classifier. Right image present the recognised foreground objects using the
FCN classifier
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Fig. 5: Example images for the quality improvement in online CRF

ment changes smoothly rather then abruptly we evaluated the
ability of our proposed method to quickly adapt to changes
in the data. To this end we selected two very different
datasets, drive_0093 which contains mainly vehicles and
drive_0071 which has data captured in a pedestrian zone.
These two datasets were processed one after the other as if
they were one continuous data stream. In Figure 8 we show
the evolution of the unary potential parameters of online
cCRF (top) and on-diagonal pairwise parameters (bottom)

drive_0095 drive_0071
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Fig. 6: The plots show the relative accuracy, i.e. difference in absolute
accuracy values, between cCRF using fixed parameters and online cCRF. A
positive value indicates that the accuracy of online cCRF is better then that
of cCRF. We can see how online cCRF is outperforming cCRF in almost
all cases. Big spikes in the relative accuracy can be explained by a drop in
accuracy of cCRF that online cCRF managed to adapt to in time.



Quality Measure Average Precision Average Recall Average Accuracy F1 Score
Method ¢cCRF  Online cCRF | cCRF Online cCRF | c¢CRF Online cCRF | c¢CRF Online cCRF
Cyclists & Pedestrians | 0.8066 0.7994 | 0.5797 0.7279 | 0.9233 0.9346 | 0.5184 0.6375
Ground | 0.7223 0.7805 | 0.9095 0.9379 | 0.9145 0.9363 | 0.8335 0.8687
Vegetation | 0.8923 0.8949 | 0.8830 0.8658 | 0.9705 0.9707 | 0.8622 0.8624
Buildings | 0.9527 0.9515 | 0.9210 0.9219 | 0.9050 0.9124 | 0.8768 0.8888
Sky | 0.6674 0.6911 | 0.8885 0.8960 | 0.9868 0.9877 | 0.7435 0.7521
Vehicle | 0.8701 0.8987 | 0.8801 0.8955 | 0.9123 0.9345 | 0.8751 0.8955

TABLE III: Class wise accuracy, precision, recall, and F1 score for cCRF and online cCRF on the drive_0093 dataset. Different metrics are improved
for different classes which is dependent on what makes a class hard to classify correctly. However, across the board the F1 score increases, indicating that
online cCRF manages to improve on hard aspects of the classification without sacrificing other areas.
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Fig. 7: Accuracy of cCRF and online cCRF on a per class basis for the
drive_0038 dataset. For easy classes there is little difference, however,
in more complex ones we can see online cCRF retaining good accuracy
when cCRF drops significantly as seen in “Pedestrians & Cyclists” or has
a constant performance offset as in the “Buildings” class.

as we process the data. All parameters start with a value of
1 and we can see how they quickly move to mostly stable
values different from 1. Then around iteration 800 the first
dataset ends and the second one starts being processed. We
can see abrupt jumps in the values indicating that the SGD
method is able to quickly change parameters if needed. After
this short period of rapid changes all parameters settle again.
The actual direction in which the parameter values move is
not necessarily indicative of the scene composition as the
parameter interact in complex ways inside the cCRF method
itself.

The importance of being able to quickly adapt to changes,
even if this is a rare occurrence, is demonstrated in Figure 9
which compares the accuracy of the first 50 frames after we
switch the datasets. We compare the results of cCRF using
the same fixed parameters, online cCCRF which contentiously
adapts its parameters and partial online cCRF which adapts
the parameters until the dataset changes, i.e. the parameters at
point “A” in Figure 8 are used. This allows us to evaluate how
important the ability to adapt quickly is. We can see that both
online cCRF methods outperform cCRF which is in line with
the previous results. The interesting part is the comparison
of the two online cCRF methods. In several areas we can
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Fig. 8: The top and bottom plots show the change of parameters correspond
to unary and pairwise potentials with adaptive learning. The test is done for
drive_0093. At iteration A data sequence drive_0071 is fed to the
framework which has different lightning conditions and class distribution
than the previous one. Plots clearly depict that after this sudden change on
input data, parameters dramatically change to adapt the situation

observe that the lack of adaptability results in degraded
performance, for example around frame 30 and 40. As such
being able to react quickly to changes in the environment is
important to prevent errors from accumulating over time.

All computations were performed on an Intel Core-i5
3.20GHz processor with MATLAB implementations of the
algorithms. Each parameter update requires 70 ms. As the
parameter updates are independent of the segmentation itself
it is possible to perform the segmentation at a higher fre-
quency then the parameter updates. Furthermore, the number
of images M considered in a single update step can be
chosen in a wide range. As we can see in Figure 10 the
performance stays very stable with 10 or more images used.
This means that longer range information, from older images,
does not negatively impact the adaptation capability of the
algorithm.
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Fig. 9: Accuracy of the first 50 frames after the new dataset was introduced.
Online cCRF continues to adapt, while partial online cCRF continues to use
the parameters used at the end of the first dataset while cCRF uses the same
initial parameters. We can see how the continued adaptation allows online
cCRF to improve over the partial online cCRF. As seen previously both
versions of online cCRF outperform cCRF using fixed initial parameters.

Average Performance with varying M

1 T
0% 5—88—a5—a—=a N
09 B
0.85 |- i
0.8 i = I = E— i::::t: N
0.75 Eﬁ/E” = E Recall

0.7 | \ \ \ \ :
0 5 10 15 20 25 30

Accuracy

Fig. 10: The plots shows the quality of the segmentation of the image
sequence drive_0038 with online cCRF with varying number of images
M considered in each update step.

VI. CONCLUSION

In this paper we presented a method that learns the
parameters of the unary and pairwise potentials of a CRF
in an online manner. This enables the algorithm to adapt
the parameters based on the current situation which is
advantageous in a life-long learning scenario where it the en-
vironment is expected to change over time. This is achieved
by formulating the selection of the optimal parameters as a
loss function using reference labels that are obtained in a self-
supervised manner. This loss function is updated efficiently
using stochastic gradient descent with continuously adapting
learning rates. In experiments conducted using data from the
KITTI dataset we demonstrate the benefit in regards of scene
segmentation performance of a CRF that continuously adapts
it’s parameters over one with fixed parameters. Furthermore,
we demonstrated that the proposed method can quickly adapt
to changes in the environment.
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