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Abstract— Understanding the dynamics of urban environ-
ments is crucial for path planning and safe navigation. However,
the dynamics might be extremely complex making learning
algorithms a viable solution. Within the methods available
for learning dynamic environments, Dynamic Gaussian process
occupancy maps (DGPOM) are very attractive because they
can produce spatially-continuous occupancy maps taking into
account neighborhood information, and provide probabilistic
estimates, naturally inferring the uncertainty of predictions.
Despite these properties, they are extremely slow, especially in
dynamic mapping where the parameters of the map have to be
updated as new data arrive from range sensors such as LiDARs.
In this work, we leverage recent advancements in stochastic
optimization techniques, in particular, stochastic variational
inference (SVI), in order to quickly learn dynamic areas in
an online fashion. Further, we propose an information-driven
technique to “intelligently” select inducing points required for
SVI without relying on any object tracker which essentially
improves computational time as well as robustness. These long-
term occupancy maps entertain all attractive properties of
DGPOM while the learning process is significantly faster, yet
accurate. Our experiments with both simulation and real robot
data on road intersections show a significant improvement in
speed while maintaining a comparable or better accuracy.

I. INTRODUCTION

Autonomous vehicles will be present in most major cities
within the next ten years. These vehicles will be required to
navigate among people, bicycles, and other vehicles, while
attempting to maximize the transport efficiency and reducing
the chance of accidents. However, urban environments can
be very challenging to model. There are areas of complex
dynamics such as main intersections where cars move in
opposite directions, at different speeds, and potentially also
turning, making the development of planning algorithms that
are both safe and robust quite challenging. Additionally, a
long-term model of the dynamics of urban environments
can improve traffic minimizing travel times and battery
consumption.

There are several methods for representing the environ-
ment but most of them assume that the environment is static.
In occupancy grid maps [1], the world is divided into a grid
with a fixed cell size and a Bayes filter is used to estimate
the occupancy probability. It has three main limitations: 1)
the cell size has to be predetermined heuristically (cannot
be very large or very small) and hence a map with varying
resolutions cannot be rendered, 2) the world is discretized
and therefore the map is not continuous and, importantly,
3) the cells are assumed to be independent and hence loose
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the interpolation power which makes the map susceptible for
occlusions and invalid laser reflections.

Considering these disadvantages of grid maps, Gaussian
process occupancy maps (GPOM) [2]–[4] and Hilbert maps
[5] were built for purely static environments. The key to
the success of these methods was using kernel machines
to capture spatial relationships and dependencies. Though
it is not clear how Hilbert maps can be used in dynamic
environments, [6] proposed an extension to GPOM called
dynamic GPOM (DGPOM), for mapping long-term dynam-
ics. Although DGPOMs are appealing, they have an O(N3)
computational cost as in any conventional Gaussian process
based model where N is the number of data points. In the
dynamic setting, where the map has to be updated as new
laser scans arrive, N grows unwieldy and hence updating the
map at least in near real-time is prohibitive beyond a few
hundred data points. The other conventional approach to use
occupancy grid maps to build long-term dynamic occupancy
grid maps (DGrid) is assigning a memory unit for each cell
and updating individual cells as new data arrives without
considering any spatial relationships [7].

The majority of other works that use grid maps in non-
static environments have been dedicated for other aspects
of dynamic environments and the term “long-term maps”
appears in the robotics literature to convey several ideas.
Unsurprisingly, all extensions of occupancy grid maps suffer
from limitations of static grid maps. [8] [9] attempted to
remove the effect of spurious dynamic objects such as
walking humans to build robust static occupancy maps. There
are also works to model how individual cells change over
time using hidden Markov models [10]–[12], time series and
spectral approaches [13], [14]. Unlike these methods aimed
at capturing the dynamics of individual cells, our objective
is to build an area-wide occupancy probability map, similar
to what can be implicitly obtained from DGPOM, which
can later be used for safer path planning. For instance,
Fig. 1 shows a robot learning long-term occupancy in a
dynamic environment. Compared to the majority of existing
examples where a parking lot or an inside of a building is
mapped, we use vehicles in busy intersections and roads in
a central business district which we call “highly dynamic
environments”.

Despite Gaussian processes [15] massive success in ma-
chine learning and statistics for spatial interpolation prob-
lems, they have been less appealing for robotics applications
mainly because of the scalability issues which in turn became
the major bottleneck of DGPOM. In this paper, we utilize
state-of-the-art stochastic optimization techniques to build
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(a) Motion field (b) Predictive mean (c) Predictive variance

Fig. 1: The occupancy map produced using the proposed algorithm (VSDGPOM). The robot, indicated by the black arrow head, resides at the middle of
the two roads. Its field of view is shown in blue laser beams with red laser hit points, when there are no moving vehicles. Static objects such as buildings
and parked vehicles are shown in yellow and the traffic flow in green arrows. Vehicles moving in the upward direction are more frequent than that of
downward. Therefore, after several laser observations, the occupancy probability of the left road shown in (b) is higher than that of the right road. The
occupancy probability of unseen outlying areas is almost 0.5. (c) is the associated uncertainty which is high in the outlying areas, dynamic areas and
near edges. Since the model captures neighborhood relationships, areas around (−50, 15), (−50, 35) and (60, 20) are correctly mapped, regardless of
occlusions due to the three parked vehicles.

dynamic occupancy maps, significantly ameliorating the scal-
ability issues. More specifically, we make use of variational
approximation to the Gaussian process classification [16] and
leverage stochastic gradient descent (SGD) [17] for parame-
ter optimization in an online-fashion. Rather than using the
entire data set for optimization, our framework “intelligently”
select inducing input points to sparsely represent denser areas
without discarding1 any data.

While entertaining all advantages of GPOM — continu-
ous, considers spatial dependencies and provides mean and
variance of estimations — our model2 has the following
advantages compared to existing methods;

1) It can build long-term occupancy maps in large and
highly dynamic environments with thousands of data
points within minutes, which would otherwise take
several days with existing methods such as vanilla
DGPOM.

2) It can sequentially update the long-term occupancy
map as new laser scans are captured.

3) It learns all key parameters, including inducing points,
by the model itself and hence the accuracy does not
rely on heuristic parameter choices.

4) It does not require any underlying motion model or
object trackers.

The paper is organized as follows. Having provided an
overview of GPOM, the base of our model in section II,
other preliminaries are discussed in section III. The pro-
posed method, variational sparse dynamic Gaussian process
occupancy maps (VSDGPOM) is explained in section IV.
The experiments and results are detailed in section V. We
conclude our discussion in section VI with limitations and
future work.

II. GAUSSIAN PROCESS OCCUPANCY MAPS

In this section, we briefly discuss the Gaussian process
classification framework [15] with reference to GPOM [3].
While discussing literature, this section lays the foundation

1Note that discarding informative data is not desirable for any learning
technique.

2Python code: https://goo.gl/VvlF6f

to describe our proposed technique which will be discussed
in section IV.

A. GPOM for static environments (GPOM)

Consider a robot with known localization and equipped
with a 2D laser scanner in a static environment. The end-
point of each laser reflection is considered as occupied
y = 1 and a randomly sampled points between the end-point
and the sensor are considered as unoccupied y = 0. The
corresponding 2D longitude-latitude locations are given3 by
x = (xlongi, xlati). The robot collects such N input-output
pairs {(xn, yn)}Nn=0 over time.

Then, consider a non-linear function of inputs f(x)
whose evaluations are collectively denoted by f :=(
f(x1), f(x2), f(x3), . . . , f(xn), · · · f(xN )

)
. This function

is latent and hence not directly observable. However, we can
have a prior belief over these functions using a Gaussian
process (a collection of random variables which has a joint
Gaussian distribution [15]) with mean 0 and covariance
KNN , i.e. p(f) = GP(0,KNN ). This covariance matrix of
size N × N is typically built using a squared-exponential
kernel k(x,x′) := α exp (−γ‖x− x′‖22) which measures
the proximity between each pair of points. Intuitively, with
resemblance to a bell-shaped curve, α controls the height
of the bell while γ controls the width of the bell. This is
a reasonable belief because inputs of the same class close
to each other should produce similar outputs and this is the
key to capture spatial relationships. The prior belief can be
adjusted by tuning the hyperparameters α and γ. GPOM
learns (optimizes) these hyperparameters to have the best
belief.

Since all points are statistically independent (because of
the sampling procedure) to each other and the output is either
0 or 1, the likelihood — the probability of actual output
given the function evaluation — is a Bernoulli distribution
p(y|f) =

∏N
n=1 φ

yn
n (1 − φn)1−yn where φn := φ(f(xn))

is the function evaluated at xn and then “squashed” using
a probit or sigmoid function denoted by φ(·). The marginal

3We use the following notation for x, y, f, v, u and k: regular letters for
scalars, bold face letters for vectors and block letters for matrices.
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likelihood can be calculated by integrating the joint prior-
likelihood distribution over f .

Since the prior, likelihood and marginal likelihood are
known, the Bayes’ theorem can be applied to obtain the
posterior distribution as in (1),

q(f)︸︷︷︸
approx.

posterior

≈ p(f |y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|f) ×

prior︷︸︸︷
p(f)

p(y)︸︷︷︸
marginal likelihood

(1)

However, because of the Bernoulli likelihood, exact com-
putation of the posterior is not analytically tractable and
hence the posterior is approximated by a Gaussian distri-
bution q(f) ≈ p(f |y). GPOM uses a local probabilistic least
square approximation [15] while we use a different approach
in this paper which will be discussed in section III-B.

Once the data is collected, the first step is to learn the
model by optimizing hyperparameters α and γ with respect
to the log marginal likelihood log p(y) [15]. Nevertheless,
since log p(y) = − 1

2y>K−1
NNy − 1

2 log
(
(2π)N |KNN |

)
,

optimization involves inverting the N×N covariance matrix
KNN which has computational complexityO(N3). Since the
objective function is non-linear and non-convex, optimizing
hyperparameters is typically performed using an iterative
optimization procedure which requires this matrix to be
inverted several times. In order to incorporate new laser
scans and obtain reliable results, especially in unstructured
and dynamic environments, these hyperparameters have to be
optimized for every new laser scan. Since the number of data
points N grows over time, computations become extremely
slow and hence GPOM is limited to a few hundred data
points to be executed in real-time.

Having trained the model, the predictive occupancy with
mean and variance (similar to what we obtain with our
method in Fig. 1b and 1c) for a query location x∗ can
be obtained by integrating the approximated posterior as
p(f(x∗)|y, X,x∗) =

∫
p(f(x∗)|f)q(f)df = N (mean, var).

This step also involves inverting KNN which slows the
GPOM further.

B. GPOM for dynamic environments (DGPOM)

The method discussed in section II-A assumes a static
environment. [6] extend GPOM to dynamic environments
(DGPOM) by incorporating motion information of the envi-
ronment into the static map. To this end, the velocities of the
dynamic areas v := [vlongi, vlati] are calculated by subtract-
ing consecutive laser scans and then they are implicitly fed
into the kernel as xmodified := [(xlongi +

∫
vlongidt), (xlati +∫

vlatidt), (tnew − told)], assuming constant acceleration of
dynamic objects. The authors illustrate the potential of this
method for developing long-term maps [6]. However, the
computational time dramatically increases as more data are
collected. In sections III and IV, we propose a scalable
technique to build long-term maps which sequentially learns
dynamic areas by itself without relying on underlying vehicle
trackers or optical flow. Under our framework, we do not

Fig. 2: Red and blue are two classes (say, occupied and unoccupied). This
shows M = 12 inducing points used to represent N = 700 ground truth
input points. Inducing points should represent the entire data set to obtain
reliable results.

consider the dichotomy, static vs. dynamic maps, as static
maps are essentially a sub-case of dynamic maps.

III. PRELIMINARIES

In order to explain building long-term maps in section
IV, firstly we discuss two crucial concepts: inducing points
(III-A) and the variational inference framework for Gaussian
process classification (III-B).

A. The concept of inducing points

The major bottleneck of using Gaussian processes is
O(N3) computational complexity which occurs when invert-
ing KNN . It can be shown [18] that the computational cost
can be decreased to O(M2N) by using the nyström low-
rank matrix approximation (which has inherent relationships
to singular value decomposition and principal component
analysis), KNN ≈ KNMK

−1
MMKMN , where M � N .

This is performed by choosing M inducing inputs x̆ to
represent the dataset as illustrated in Fig. 2. The smaller
the M , the faster the algorithm is. Though the quality of
approximation depends on how inducing points are chosen,
unfortunately, there is no efficient method to find optimal
inducing points [19]. The common practice is to naively
choose a pre-determined number (fixed M ) of inducing
points randomly or using the k-means algorithm, even though
it is best that inducing points represent the entire dataset as
much as possible. In section IV-C, we propose a technique
which can not only intelligently locate where the inducing
points should be but also can decide how many of them (M )
to use. In general, GPs that use low-rank approximations are
called “sparse Gaussian processes”.

B. Variational sparse Gaussian Process classification

In section II-A and (1), we described that the exact
posterior is intractable and hence GPOM uses an alternative
approximation which is often poor. Other techniques, such
as variational inference [20], approximate the intractable
posterior p(f |y) with q(f), a distribution of know form such
as f ∼ N (mean, variance). Alternatively Markov chain
Monte Carlo (MCMC) sampling approximates the posterior
by a set of samples. In this paper, we use variational inference
due to its appealing computational cost, being significantly
faster than MCMC, while preserving similar level of accu-
racy. Variational inference is also known to provide more
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accurate approximations than first order methods such as
Laplace [20].

In variational inference, the parameters of q(f) =
N (mean, variance) are iteratively estimated by minimiz-
ing the distance between the approximate posterior dis-
tribution and true posterior distribution measured by the
KL-divergence KL[p(f |y)‖q(f))]. Since the true posterior
is difficult to compute, an alternative lower bound L is
minimized. In 2015, Hensmen et al. [16] leverage proper-
ties of variational inference and incorporate them into the
sparse GP classification framework (III-A). Since inducing
inputs are used in sparse GPs, an approximate posterior
distribution q(f̆) can be defined over inducing functions
f̆ :=

(
f(x̆1), f(x̆2), f(x̆3), . . . , f(x̆M )

)
. In a similar way

f is defined as in II-A, but with a smaller number of points
M � N . Now, the goal is to find the sparse and approximate
posterior q(f̆) = N (f̆ |m,S) using the lower bound [16]
given in (2),

L =
N∑
n=1

{
Eq(f(x̆n))[log p(yn|fn)]−KL[q(f̆)‖p(f̆)]

}
, (2)

where q(f(x̆n)) indicates marginals of q(f) = N (f |µ,Σ)
with,

µ = KNMK
−1
MMm, (3)

Σ = KNN +KNMK
−1
MM (S−KMM )K−>MMKNM . (4)

Superficially, the only difference to the generic variational
method discussed in the previous paragraph is that here f̆
is used instead of f . The objective function L has to be
optimized with respect to all parameters to approximate the
posterior. Note that hyperparameters α and γ are hidden
inside all K•• terms.

IV. LONG-TERM MAPS WITH GP (VSDGPOM)
In this section we present our main contribution, sum-

marized in Algorithm 1. We describe how to utilize the
sparse variatianal GP framework to build long term maps
of dynamic environments. Note that section III-B is a dual
approximation: 1) variational approximation to obtain the
posterior 2) nyström approximation (low rank) to represent
the covariance matrix. With regards to the former approx-
imation, it is required to optimize the bound (2) in an
online fashion as the robot captures new data. On the other
hand, with regards to the nyström approximation, we need
to choose the “near-best” inducing points appropriately from
new data to keep the size of the covariance matrix as small
as possible, yet being representative.

A. Optimizing the lower bound
Although (2) looks cumbersome, the KL term can be

analytically evaluated with a computational cost of O(M3),
while the Eq(fn) term can be computed using 1D Gaussian
quadratures. When compared with conventional GPs and
GPOMs whose computational cost is O(N3) with M � N ,
this a significant improvement to the speed of the framework,
assuming inducing points are chosen effectively.

Learning the model requires the optimization of two types
of parameters: 1) variational parameters of the posterior m

and S and; 2) hyperparameters of the kernel α and γ. To
do this, a gradient based optimization technique is utilized.
Note that the bound in (2) is a sum over all data points
and therefore a subset of data points (also known as a mini-
batch) can be effectively used to perform stochastic gradient
descent (SGD) [21]. That is, the following updates are made
iteratively until convergence: mnew ← m + η ∂L∂m , Snew ←
S + η ∂L∂S , αnew ← α + η ∂L∂α and γnew ← γ + η ∂L∂γ , where
η is the learning rate. This optimization is performed for
each new laser scan. As we garner more inducing points, the
size of m and S has to be increased accordingly. Therefore,
the already optimized m and S matrices can be augmented
(appended) with new randomly chosen elements for faster
convergence.

B. Querying the model

Once variational parameters and kernel hyperparameters
are optimized, the predictive occupancy map can
be generated by

∫
p(f∗ | f̆)q(f̆)df̆ where f∗ :=(

f(x∗1), f(x∗2), f(x∗3), . . . , f(x∗Q)
)

indicates latent
function evaluations for Q number of query locations x∗.
Any location in the continuous longitude-latitude space
can be queried in this way, as summarized in Algorithm
3. There are no bounds for Q and hence maps with any
resolution can be generated with a computational cost of
O(M3). Recall that, in contrast, the computational cost of
querying in GPOM is O(N3). The integral has a closed
form solution and it can be calculated easily by plugging
optimized parameter values in equations (3) and (4) with
KNN and KNM replaced by KQQ and KQM , respectively.
For instance, Fig. 1b shows the mean map obtained from (3)
and Fig. 1c shows the variance map obtained from (4). This
variance map indicates the uncertainty about the mean map
which is one of the advantages of Gaussian process based
occupancy maps over grid based maps. The uncertainty
in outlying areas, dynamic areas and edges is high. In
occluded areas, the variance can be low or high depending
on the strength of spatial dependencies while the mean map
indicates correctly interpolated occupancy probability [2].

C. Choosing inducing points

As discussed in III-A, both the quality of the map and
speed can be improved by choosing inducing points appropri-
ately. From a theoretical perspective, it is possible to get the
derivative of (2) with respect to x̆ and iteratively find a sub-
optimal solution to optimize the location of a predetermined
M number of inducing points [19]. In fact, such techniques
are computationally highly expensive and hence they are
not desirable for real-time robotics applications. On the
other hand, such methods cannot automatically determine the
minimum number of inducing points M required to build a
high quality map. In this section, we propose a technique
capable of determining the number of inducing points as
well as where to place them. This involves two steps and
they are summarized in Algorithm 2.
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Fig. 3: (a) Raw data of a new laser scan (both occupied and unoccupied plotted together at t > 1 for the dataset in Fig. 1a. The data is used to query the
model and the distance metric is calculated as in (b). Thresholded data with ζ = 3.5 shown in (c) are used to calculate cluster centroids (DBSCAN) as
indicated in F. Nt = 1186 data points in (a) is reduced to 21 after thresholding and, further reduced to Mt = 5 after obtaining centroids.

Algorithm 1: VSDGPOM learning algorithm
Input: Filtering threshold ζ
Initialize (x, y) as null matrices;
Initialize t← 0;
while new laser scan do

t← t+ 1 ;
(xt, yt)← Extract new points;
if t = 1 then

Randomly initialize x̆, γ, α,m,S;
else

x̆t ← Algorithm2(xt, yt,x, x̆, γ, α,m,S, ζ);
Augment x̆ with x̆t;
Augment m,S with size(x̆t) random numbers;

end
Augment (x, y) with (xt, yt) ;
Optimize γ, σ,m,S w.r.t. L - eq. (2);

end

Algorithm 2: Information-driven inducing point selec-
tion

Input: x∗, y∗,x, x̆, γ, α,m,S, ζ
Output: Inducing points x̆t at time t
Initialize xinformative as a null matrix;
Initialize Nt ← length(x);
for i = 1 to Nt do

(µ∗i , σ∗i)← Algorithm3(x∗i ,x, γ, α,m,S);
disti ← |y∗i − µ∗i |/σ∗i ;
if disti ≥ ζ then

Augment xinformative with x∗i ;
end

end
x̆t ← obtain DBSCAN centroids using xinformative

1) Filtering uninformative data: Intelligent selection (Al-
gorithm 2) is run for each new scan after the very first scan.
Considering the tth time step, Nt data points {xi, yi}Nt

i=0,
both occupied and unoccupied are obtained from the scan-
ner. Variational parameters and hyper-parameters have been
optimized sequentially from step = 0 to step = t− 1. Based
on these previously optimized parameters, we use the laser
locations of the current scan xi as query inputs (x∗i = xi)
and query the predictive mean µ∗i and variance σ∗i using
(3) and (4) as described in section IV-B. Then (5), which is

Algorithm 3: Querying unknown locations x∗
Input: x∗,x, γ, α,m,S
Output: Mean µ and variance σ
µ← eq. (3);
σ ← eq. (4);

similar to the 1D Mahalanobis distance, is used as a metric
to measure how influential the individual data point in the
new laser scan to make a change in our model,

dist[yi, p(y∗|x∗;µ∗i , σ∗i)] =
|yi − µ∗i |

σ∗i
. (5)

This metric indicates dynamic areas which have been
underrated in previous time steps. The distance values above
a user-defined threshold ζ are considered as informative
data points and such data points indicate candidate areas
for inducing points. For instance, assuming the robot is
stationary, the distance value will be very low for static
objects4 such as walls in the environment because the robot
has seen it in previous scans and it is not a new information.
In contrast, if the robot observes an object such as a vehicle
in a previously unoccupied area (which implicitly tells that
it is a moving object), it is a region of rich information
and hence it is worth introducing more inducing points into
such areas. In that sense, the distance metric is essentially
an information filtering criterion. Fig. 3 (b) indicates the
distance metric while Fig. 3 (c) shows thresholded points.

2) Clustering filtered informative data: Recall that our
objective is to select highly representative inducing points.
The straightforward option is to include all informative data
obtained from the previous section (IV-C.1). However, gen-
erally physical objects have several laser returns and hence,
it is ineffective to include all informative data as inducing
points. Therefore, at this stage, we cluster informative data
and choose cluster centroids as inducing points.

Now the problem is how to perform unsupervised clus-
tering. A natural choice is the popular k-means algorithm,
however, it has several limitations and issues for our applica-
tion. The number of clusters (i.e. k value) must be predefined
although this is difficult to do in advance as it depends on
the number of dynamic objects and how well the model
has been learned so far. On the other hand, the location

4Objects are not explicitly represented in the model as there are no object
trackers. The model understands neighbors solely by the neighborhood. We
use the term “objects” merely for explanation purposes.
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to include inducing points must be based on data density,
and not on how distant data points are from centroids as
in k-means. Therefore, we adopt the seminal Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [22] that automatically decides the number of
clusters by itself based on data density. As shown in Fig.
3d, centroids of these clusters are set as inducing point
locations x̆t. This essentially avoids the inclusion of several
unnecessary inducing points making the set significantly
smaller. The algorithm is as fast as k-means. Other popu-
lar clustering algorithms such as Affinity Propagation [23]
performed poorly in our pilot experiments, possibly because
they are not density-based algorithms. Having decided on the
inducing points for the tth laser scan x̆t, we augment x̆ with
them. In summary, as given by Algorithm 1, for each new
scan, inducing points are selected as in section IV-C and the
bound is optimized following IV-A.

V. EXPERIMENTS

A. Experimental setup, datasets and evaluation metrics

In order to eliminate any confounding factors, and without
loss of generality, the robot was kept stationary in all
experiments. A moving robot has no detrimental effect on
our algorithm. All algorithms were prototyped in python and
executed in a 8 GB RAM laptop.

Three datasets were used to demonstrate the speed and
accuracy performance of the algorithm:

1) Dataset 1: This dataset was obtained from a laser
simulator which resembles a real LiDAR. As illustrated in
Fig. 1, the environment consists of buildings, parked vehi-
cles and vehicles moving in opposite directions in different
velocities and accelerations. The robot’s field of view is 1800

and 100 m radius. The simulated dataset is mainly used
to demonstrate the algorithm’s robustness against occlusions
and mapping various traffic densities which would otherwise
be difficult to illustrate using a real traffic flow.

2) Dataset 2: This is a real four-way busy traffic inter-
section where vehicles move in various directions obeying
traffic light signals. This is the same dataset used in our
benchmark model [6]. The sensor’s (SICK LMS291) field of
view is 1800 in a 30 m radius.

3) Dataset 3: We captured another real dataset in an urban
road. The sensor’s field of view is 2700 in a maximum
of 60 m radius. As specified by the manufactures, laser
readings beyond the min-max detection range or have invalid
intensities were filtered.

Two metrics were used to evaluate the accuracy of
our method: 1) area under receiver operating characteristic
(ROC) curve (AUC), 2) negative log-likelihood (NLL) loss,
− log p(y|y∗), which is also known as log loss or cross-
entropy loss [20], calculated as in (6),

NLL = −y log
(
y∗
)

+ (1− y) log(1− y∗), (6)
where y ∈ {0, 1} is the actual label and y∗ ∈ [0, 1] is the
predicted value. NLL is a more representative measure of
the robustness of these models [20] because it takes the

Fig. 4: Importance of intelligent selection and batch learning. The increasing
AUC and decreasing NLL of VSDGPOM indicate online learning where the
model learns better as more data are collected sequentially.

Fig. 5: (a) DGPOM (b) DGrid for dataset 1. These images can be compared
with Fig. 1b. The occupancy probability of unseen outlying areas approaches
0.5. Observe that DGrid is susceptible to occlusions.

probabilities of predictions into account. The smaller the
NLL, the better the model is.

For VSDGPOM model, ζ, the only free parameter, was
kept constant at 5 through out all experiments. The higher
the ζ value, the better the results and slower the algorithm
is. For an average performance, it can be any value between,
say, 2 to 6. For DGrid, the optimal grid resolution was chosen
in advance by grid search that maximizes the AUC.

B. Validating VSDGPOM

As the first experiment, we demonstrate how crucial the
two main steps of our algorithm are using dataset 1. Data
frames representing the past and future were randomly
selected as the test dataset and it was never used for training.
To maintain the class-balance, each frame of the test dataset
had equal number of occupied and unoccupied points. At
each training step (Algorithm 1), the entire test dataset was
used to query the model (Algorithm 3 with test dataset for
x∗) and, AUC and NLL were calculated.

Fig. 4 shows accuracy of VSDGPOM, VSDGPOM with-
out intelligent selection, and VSDGPOM without sequential
batch optimization. VSDGPOM has a clear learning curve
(increasing AUC and decreasing NLL) while VSDGPOM
without intelligent selection does not learn (almost constant
accuracy) which indicates the importance of intelligently
selecting inducing points. The average extra time for the two
steps is negligible. Therefore, picking inducing points intel-
ligently (section IV-C) indeed balances speed and accuracy
appropriately.

C. Spatial accuracy

In order to verify the spatial accuracy, definitely occupied
regions (walls, parked cars, etc.) and unoccupied regions
(sidewalks, free areas, etc.) were labeled manually. The
AUC and NLL accuracy metrics were averaged over each
leaning step and reported in Tables I and II. VSDGPOM and
DGPOM have comparable accuracies (or even better in many
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Fig. 6: (a) and (b) Satellite map and VSGPOM mean map of dataset 2 (busy four-way intersection). Arrows indicate the traffic flow. Vehicles stop for a
long time around (-5,10) to turn right (green arrow) and hence the area has a high occupancy probability. Only a few vehicles moving from right to left.
(c) and (d) The “front” view of the road and the top view of the VSGPOM mean map of dataset 3 (urban road). The robot is placed between the two
large trees. Because the sensor covers 2700, it interpolates the sidewalk behind it as unoccupied whereas the trees and bushes besides it are mapped as
occupied. Roads where the vehicles move are mapped with a probability between 0 and 1. The left side (top view) has been mostly occluded.

instances), while they clearly outperform DGrid. In fact, the
run-time difference between VSDGPOM and DGPOM is
significantly different and it will be further discussed in the
next section.

Then, we manually labeled occluded areas and the ac-
curacy was calculated to show the algorithm’s robustness
against occlusions (Tables I and II). This was possible only
for dataset 1 as determining occluded areas exactly is only
possible for a simulation dataset. Unsurprisingly, DGrid has
an AUC of exactly 0.5 which is equivalent to a random guess.
In contrast, DGPOM and VSDGPOM have an accuracy close
to 1 because the kernels can interpolate based on neighbor
points. In VSDGPOM, NLL is comparably smaller. These
results are apparent when comparing occluded areas behind
parked vehicles in Fig. 1 and 5. Fig 1 and Fig 6 show maps
built from VSDGPOM for datasets 1, 2 and 3.

TABLE I: Average AUC (µ± 2σ) for labeled spatial data

Dataset DGrid DGPOM VSDGPOM

Entire area:
Dataset 1 0.78 ± 0.04 0.99 ± 0.02 0.99 ± 0.04
Dataset 2 0.84 ± 0.17 0.98 ± 0.08 1.00 ± 0.00
Dataset 3 0.91 ± 0.02 0.96 ± 0.02 0.94 ± 0.05

Occluded areas only:
Dataset 1 0.50 ±0.00 0.99 ± 0.02 1.00 ±0.00

TABLE II: Average NLL (µ± 2σ) for labeled spatial data

Dataset DGrid DGPOM VSDGPOM

Entire area:
Dataset 1 0.39 ± 0.03 0.26 ± 0.09 0.06 ± 0.13
Dataset 2 8.77 ± 8.81 0.40 ± 0.08 0.10 ± 0.08
Dataset 3 1.46 ± 0.62 0.38 ± 0.02 0.22 ± 0.11
Occluded areas only:
Dataset 1 0.69 ±0.00 0.31 ± 0.13 0.02 ±0.16

D. Spatio-temporal performance

In this section, we compare VSDGPOM with other models
and verify that VSDGPOM is significantly faster for a similar
accuracy. The test dataset was selected as in section V-B, and
independently for DGrid, DGPOM and VSDGPOM. The first
row of Fig. 7 clearly shows that VSDGPOM does not have

an exponentially increasing time as in DGPOM. This was
possible because the speed of the core algorithm depends
on the size (M ) and quality of inducing points rather than
the amount of data (N ) collected. Additionally, though not
desirable from a theoretical perspective, 50% of training
data were randomly removed to evaluate the performance
of DGPOM (green curves in Fig. 7). As expected, although
there is an improvement in time when compared to full-
DGPOM (black), the time is significantly higher compared
to VSDGPOM. Note that DGPOM and DGPOM50% were
automatically stopped after several time steps due to memory
limitations as each dataset has at least 150,000 data points.
Due to this reason, DGPOM cannot capture long-term dy-
namics as these patterns develop slowly, over a long period.
In contrast, VSDGPOM can handle large datasets thanks to
information-driven intelligent inducing point selection.

The second and third rows of Fig. 7 indicate accuracy in
each training step. The AUC of all models is not smooth
during the first few time steps mainly because the new
vehicles appear in previously unoccupied regions. Although
all models have a learning curve, VSDGPOM and DGPOM
learn the correct occupancy probability within few iterations
while DGrid has a poor learning curve (compare red and blue
NLL curves). The observation that the accuracy measures of
DGPOM is slightly better than VSDGPOM (note that NLL is
a log-based metric) completely makes sense because VSDG-
POM is an approximation to the Gaussian process whereas
DGPOM does not approximate the covariance matrix. This
slight drop in spatio-temporal accuracy is negligible when
compared to the time saved. In contract to other techniques,
our method did not rely on separate object tracking algo-
rithms nor manual parameter tuning. These tasks were both
embedded within the method.

VI. CONCLUSIONS

Dynamic Gaussian process occupancy maps (DGPOMs)
can be used for long-term occupancy mapping in dynamic
environments with appealing theoretical properties. However,
as non-parametric Bayesian models, they can be extremely
slow. Our method utilizes efficient unsupervised learning
algorithms and recent developments in stochastic variational
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Fig. 7: Speed and accuracy performance of sequential learning. For each new laser scan, the models update their parameters and calculate accuracy against
a test dataset which represents randomly chosen samples from the past and future. Compared to DGPOM, our model has an incredible improvement in
speed (top row) for a similar accuracy (middle and center rows). For instance DGPOM50% takes 2 hours to update the map around t = 40 in dataset 1.
Though DGrid is also fast, it has a low accuracy and a sluggish learning curve, especially when the probabilistic measure (NLL) is considered.

inference to make DGPOMs faster by several folds. This
method can render occupancy maps at any arbitrary reso-
lution. The long-term maps developed here will be incor-
porated with short-term maps to make path planning more
reliable and safer [24]–[26].
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