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Abstract— In this work, we introduce a novel method for
two-dimensional occupancy mapping using Gaussian processes.
We address mapping as the task of classifying the robot’s
environment between free and occupied regions. The biggest
challenge when using Gaussian processes for this task is the size
of the input datasets. We tackle this problem by introducing
a novel kernel, able to use as input data aggregated into two-
dimensional cells. Using this kernel, we achieve comparable
performance to previous Gaussian process occupancy mapping
techniques in a fraction of the time taken by them. The
approach can also be used to convert popular occupancy grids
into continuous Gaussian process occupancy maps.

I. INTRODUCTION

For any autonomous system, creating an accurate repre-
sentation of its environment is an essential step to efficiently
interact with it. As such, mapping plays a role of central
importance in robotic navigation and path planning. One of
the most popular method used for this task, occupancy grid
maps (OGMs) was developed in the 80s by Moravec and
Elfes [1]. The method is versatile, easy to implement and
computationally efficient, which accounts for its widespread
use, especially in 2D mapping.

OGMs, however, are not without shortcomings. Arguably,
their most notorious deficiency comes from the standard
approach of breaking down the task of mapping an area
into the binary estimation of whether or not each grid cell
is occupied. This approach makes the very strong assump-
tion that the cells are independent, i.e., the occupancy of
each cell is not affected by its neighbours. More than a
mere approximation, this simplification ultimately ignores
an important property of the very system it is trying to
describe: obstacles in real world are physical entities with
fairly regular, continuous structures.

As expected, this impacts the quality of the predictions
made. Ignoring the spatial dependance between cells causes
OGMs to have very high uncertainty in regions which
are occluded, between data points or where readings are
otherwise sparse. Using a model that does not exclude spatial
correlations could help overcome this, resulting in more
accurate and reliable maps.

A possible way to circumvent these problems is modelling
the data using a method that is able to infer spatial correla-
tions among data points. This creates an opportunity to use
Gaussian processes (GPs), a Bayesian inference method that
is very apt at nonlinear interpolation. To fit a nonparametric
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function through the data, GPs use a kernel which encodes
a prior belief over the correlation between data points [2].
GP-based continuous occupancy mapping methods (GPOMs)
have been proposed in the past [3], [4] and provide the basis
for this work.

In a robotic mapping scenario, GPs face challenges of their
own. They are not quick to compute, with a computational
complexity that scales cubically with the number of inputs.
To further this problem, the laser sensors commonly used in
robotic environment sensing generate tens of thousands of
readings every second.

The computational complexity of GPs is hard to tackle,
since it stems from a very fundamental operation of inverting
a Gram matrix built on the data points. This work proposes
a technique that (1) preserves the strengths of GPOMs, but
also (2) reduces the number of inputs by using kernels
calculated over areas, thus condensing several data points
into a single input for the GP. This last item is of great
importance since, given the complexity of the task at hand,
even a small reduction in the number of inputs can have a
significant impact on performance.

II. BACKGROUND

Robotic mapping can be interpreted [5] as the calculation
of the map m as a posterior over the space of all possible
maps, given the sensory information z collected by the robot
in its path, which is taken to be a collection of poses s:

p(m|z, s). (1)

The standard OGM approach is to partition m into a finite
number of cells mi. To each of these, a binary occupancy
value is attached, indicating whether or not that particular cell
is occupied. Then the map is approximated by the product
of all posterior probabilities:

p(m|z, s) =
∏
i

p(mi|z, s). (2)

This is where the weakness of the method lies, and several
attempts have been made to address this shortcoming. An
interesting approach using Bayesian inference is the GPOM
[3], which tries to regress the occupancy value y in location
x using a Gaussian Process prior with mean function µ(x)
and covariance function k(x,x′):

y(x) = GP(µ(x), k(x,x′)). (3)

Estimating the mean value for new query points requires
computing the covariance matrix between all input X =
{xi}Ni=1 and query X∗ = {xj

∗}Mj=1 points, a noise term σn,



and the observations y = {yi}Ni=1 associated with inputs X:

y(X∗) = K>∗ (K + σ2
nI)−1y, (4)

where,
K = k(X,X) and
K∗ = k(X,X∗).

Here lies the reason behind the complexity of the algo-
rithm. If we take the number of input points to be N and the
test points to be M , this calculation alone has a complexity
of O(N3 + N2M). Despite this challenge, the method is
quite robust: it not only incorporates contextual information
about the environment into the predictions—removing the
independence assumption that plagues OGMs— but also
returns a variance plot that can be used to create exploration
strategies to improve the quality of the map.

Of special interest for the present work are previous
GPOM methods that used integral kernels to measure rela-
tions between higher dimensional geometrical elements (like
lines or areas) as well as points. This is known as change of
support in the geostatistics community.

Within the realm of robotic mapping, methods using
change of support have been proposed in the past [6][4].
They extend standard GP kernels by allowing the calculation
of covariance matrices between points and lines (Kxl) or sets
of lines (Kll′ ). This is achieved by integrating traditional
kernels k:

Kxl =

∫
x∈l
k(x,x′) dx, (5)

Kll′ =

∫
x′∈l′

∫
x∈l

k(x,x′) dx dx′. (6)

These models are designed to be used with laser
rangefinder sensory information, and the lines integrated over
coincide with the laser beams—that is, they connect the
positions from which the beams were emitted to where they
were reflected. The results obtained were encouraging when
compared to naı̈ve GPOM and to OGM, as evidenced by
comparing the receiver operator characteristic (ROC) curve
for these methods (Figure 1 and Table I). The ROC curve is
a plot of the false positive rate (FPR) versus the true positive
rate (TPR) as the discrimination threshold varies, frequently
used to illustrate the performance of a binary classifier.

TABLE I: GPOMIK ROC analysis [6]

Method Accuracy FPR when
TPR = 90%

GPOMIK 0.9441 10.1%
GPOM 0.9162 79.57%

OGM 0.8938 21.9%

Another interesting use of change of support has been
made in a different domain. In image processing, [7] uses
an area kernel for image resolution enhancement. This kernel
can represent covariances between points and areas (KxA)
or sets of areas (KAA′ ), similar to equations 5 and 6 but
using double integrals.

These are used to fuse images of different modalities (e.g.
greyscale and colour) in different resolutions of the same

Fig. 1: ROC curve for GPOMIK, GPOM and OGM [6].

Fig. 2: Algorithms that detect groups of anomalous samples
(unfilled points) are easy to detect on the input space. Kernels
supported on distributions can be used to detect anomalous
groups of normal samples (filled points) in the distribution
space [8].

subject. Each pixel in the lower resolution image is an input
area A that corresponds to a set of pixels in the higher
resolution image, each of which is on its turn an input point
x. This allows for the discretisation of the problem, so KxA

and KAA are given by:

KxA =
1

N

∑
x∈A

k(x,x′) dx, (7)

KAA′ =
1

NN ′

∑
x′∈A′

∑
x∈A

k(x,x′) dx dx′, (8)

where N and N’ are the number of pixels x in a pixel A.
Change of support has been used in other kernel method

applications. In anomaly detection, [8] uses kernels calcu-
lated over probability distributions P to generalise one-class
support vector machines to a space of probability measures:

K(P̂1, P̂2) =

∫∫
k(x,x′) dP1(x) dP2(x′) (9)

Rather than calculating anomalies in the data themselves,
this approach allows the calculation of anomalies appearing
as a result of the data’s interactions, which the authors
named group anomalies (as opposed to point anomalies). So
instead of detecting groups of anomalous samples, for which
there are other suitable detection algorithms, the method
detects anomalous groups of normal samples, as illustrated in
Figure 2. This kind of anomaly can only be observed in the
space of distributions, so a kernel supported on distributions
is better suited for the task.



III. OCCUPANCY MAPPING WITH HIGH-DIMENSIONAL
SUPPORT GAUSSIAN PROCESSES

Our aim is to further extend kernels to extract information
from arbitrarily defined areas. We can use such a tool to
aggregate 2D laser rangefinder data into regions containing
only free or only occupied points, effectively reducing the
number of inputs to the Gaussian process. The output of the
method is a continuous occupancy map, which can then be
sampled in regular intervals to generate a grid map at any
required resolution.

The algorithm here proposed is divided into three stages:
1) Input generation and pre processing:

• collect data points from rangefinder;
• separate data points between free (beams) and

occupied (hits);
• generate input cells.

2) Learning:
• feed input cells into MSK-GP;
• optimise kernel hyperparameters.

3) Post-processing and map generation:
• generate occupancy probability surface;
• probe at regular intervals to generate occupancy

probability grid;
• categorise grid points using thresholds to generate

occupancy map.
Detailed descriptions of each stage are presented below.

A. Input generation and pre-processing

The data generated by rangefinders usually consists of a
set of distances from the robot’s position to where each beam
was reflected (a ”hit”), indicating the position of obstacles
within the range of the sensor. Another piece of information
is available, though it might not be immediately obvious:
that the region between the robot and the hits is empty. To
fully incorporate this knowledge, we start by sampling each
beam in regular distances, creating a set of free points.

To create the areas, first a rectangular cell orthogonal to
the cartesian axes is put around the whole dataset. It is then
divided in a process similar to a quad-tree, always along the
longest axis, with two stopping criteria: once a cell has only
free or only occupied points or when it is smaller than a size
threshold, it is no longer divided. This process is illustrated in
Figure 3. In regions with very wide uncluttered or unprobed
areas (relative to the desired map resolution), a maximum
size threshold can also be established, to ensure that the free
cells do not become overly large, which could obscure a
possible lack of measurements in the corresponding area.

B. Multi-support Gaussian process

In order to handle the input created in the pre-processing
step, a GP formulated on areas is necessary. A fully func-
tional kernel for this task must be able to handle mixed inputs
containing points and areas. For this, we must create a pair
of functions analogous to Equations 5 and 6, to calculate the
covariance matrices between points and areas (Kpa) or pairs
of areas (KAA′):

(a) (b) (c)

Fig. 3: Cell generation process. Green points and areas are
free, red are occupied. (a) All the points are put in an initial
rectangular cell (0.9 × 1.0). (b) After the initial division,
the bottom cell only has free points, so it is not further
divided; upper element is divided again. (c) The top right cell
is further divided into a free and an occupied element, while
the top left is divided into an ambiguous area (in yellow)
and an empty one, which is discarded.

KpA =

∫∫
A

k(x,x′) dx, (10)

KAA′ =

∫∫
A′

∫∫
A

k(x,x′) dx dx′. (11)

In the above equations, k(x,x′) can be replaced by
virtually any positive semi-definite (PSD) kernel function. In
spite of this, calculating the true value of these integrals can
prove challenging even for simple kernels. An approximation
is thus made: for a finite number of points x ∈ A,

KpA ∼
∑
x∈A

k(x,x′), (12)

KAA′ ∼
∑

x′∈A′

∑
x∈A

k(x,x′). (13)

Similar approximations have been used to construct in-
tegral kernels in other works [8], [9], since kernels con-
structed by direct summation of PSD kernels ware PSD
themselves [10]. Moreover, even though the equations above
were formulated for 2D cells, they could in theory be used for
geometrical structures with any number of dimensions, which
renders this result more flexible than directly or numerically
solving Equations 10 and 11, as described in [4] and [6].

Once KpA and KAA′ are obtained, the covariance between
two input vectors, each containing both points and areas is
given by:

x =

[
A
p

]
, x′ =

[
A′

p′

]
, K =

[
k(A,A′) k(A,p′)
k(p, A′) k(p,p′)

]
. (14)

In this final form, the kernel can be used to create a multi-
support GP with the ability to handle only points, only areas
or mixed input sets containing both. As we will show in the
next section, however, this property is not entirely necessary
for the remainder of this work.

C. Map generation and post-processing

Once the input cells have been generated and a suitable
covariance function chosen, the hyperparameters can be
trained using an optimisation algorithm to minimise the log
marginal likelihood. Once this is done, the GP will have
learnt an unbound surface.



To obtain a valid occupancy probability surface we must
constrain this output to [0; 1], for which end we utilise a
sigmoid function of the form

ς(µ, v) = Φ

(
(α · µ+ β)√

1 + α2 · v

)
, (15)

where µ is the unbound output, v is the variance, Φ is
the normal cumulative distribution function and α and β are
parameters. This surface can be probed in regular intervals
to yield a traditional grid map of any desired resolution, with
real values for each cell.

To obtain a ternary output such as the one given by
traditional OGMs, a pair of thresholds can be chosen, such
that cells with probability of occupancy below the lower
threshold can be set as free, those above the higher one can
be set as occupied, and those in between as uncertain.

IV. EXPERIMENTS

All the experiments described in this chapter are per-
formed in a computer with a 3.2GHz processor and 8GB
RAM. Accuracy measurements displayed represent the area
under the receiver operating characteristic (ROC) curve. The
false positive rate (FPR) for a fixed true positive rate (TPR)
of 95% is offered as an additional performance metric.

Two different optimisers have been compared, the
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method
(BFGS) [11], [12], [13], [14] and simulated annealing [15],
[16]. Since their impact in the accuracy of the method was
negligible and this work does not focus on the optimisation
step, comparative results were omitted.

The proposed method (MSK-GPOM) is benchmarked
against the previous GPOM method using integral kernels
(GPOMIK) described in [6], which has been demonstrated
to outperform both OGMs and the GPOM method described
in [3], as previously shown in Figure 1 and Table I.

A. Synthetic data

Initial tests used synthetic data for which the ground
truth is known. It simulates a robot equipped with a laser
rangefinder taking 36 noiseless readings over 360 degrees
on each of 31 poses. It moves within a room roughly
20 × 16 arbitrary units of distance. Figure 4 has a visual
representation of the ground truth and the dataset generated.
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Fig. 4: Synthetic dataset. (a) Ground truth, walls represented
in blue; (b) simulated dataset, red lines represent beams and
blue crosses, hits.

Although the dataset may appear dense at a glance,
state-of-the-art rangefinders can take readings every 0.5◦,
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Fig. 5: Inputs for the compared methods generated from
the synthetic dataset. (a) MSK-GPOM input cells using a
threshold of 0.5, (b) GPOMIK input beams and hits using a
square exponential kernel.

generating sets 20 times denser than this. GPOMIK deals
with this through a routine that pre-selects a subset of
relevant readings, which may vary according to the kernel
being used. MSK-GPOM takes evenly spaced readings to
avoid the computational cost of calculating which readings
are relevant. The cells generated depend on the thresholds
chosen, but not on the kernel. The input datasets for each
of the methods compared, resulting from the different pre-
processing steps, is shown in Figure 5.
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Fig. 6: Outputs for the compared methods using the synthetic
dataset, MSK-GPOM on top and GPOMIK below it. (a) and
(d) Probability of occupancy, blue means zero, red means
one; (b) and (e) predictive variance, blue is low, red is high;
(c) and (f) Occupancy map, white is free, black is occupied,
grey is unknown.

TABLE II: Benchmark times on the synthetic dataset

Method Kernel Running time Accuracy FPR when
TPR = 95%

GPOMIK Matérn 3
Sq. Exp.

79.46s
86.58s

0.9447
0.9415

12.25%
9.76%

MSK-GPOM Matérn 3
Sq. Exp.

23.76s
19.33s

0.9416
0.9266

12.34%
16.30%

After feeding the inputs to a GP, both methods generate the
same types of outputs: a continuous probability of occupancy



(a) (b)

Fig. 7: ROC curves for the compared methods in the syn-
thetic data benchmark. GPOMIK in red, MSK-GPOM in
blue, no discrimination line in grey. (a) Square exponential
kernel; (b) Matérn 3 kernel.

surface and a continuous predictive variance surface. Then
we can sample these surfaces in the desired resolutions to
generate a map. If desired, thresholds can be used to con-
strain the map to the three states in a traditional occupancy
grid map—namely ”free”, ”occupied” and ”unknown”. In
Figure 6 we can see the output maps, sampled using a grid
of squares of side 0.5. To generate the three-state map, cells
with occupancy probability above 66% were considered oc-
cupied, those below 33%, free and the remainder, unknown.

In Table II and Figure 7 we can see a numerical compar-
ison between both methods. Results are displayed for GPs
using both the square exponential kernel (Figures 5 and 6)
and the Matérn 3 kernel. For this synthetic dataset, we can
verify that while running in one quarter of the time taken by
GPOMIK, MSK-GPOM achieved comparable accuracy.

B. Real data

Although the benchmarks in the previous subsection
suggest the algorithm achieves performance comparable to
GPOMIK’s, synthetic data offers a lot of conveniences that
in a real setting would not exist, such as lack of sensor noise.
In order to properly evaluate the MSK-GPOM algorithm, we
have tested it using datasets taken by actual robots.

The dataset used was provided by Dirk Haehnel, and
contains 395 poses with 361 equally spaced laser readings
spanning 180 degrees taken from each. The collection site
is Belgioioso Castle, located in Milan. The dataset is made
available on the Robotics Datasets webpage [17], maintained
by Cyrill Stachniss. The data are presented both in raw form
and after loop closure; the latter was used in this benchmark.
A subset of 52 poses was used, from each of which 37
equally spaced laser beams (out of 361) were taken into
consideration. For the ground truth, a different subset of
the data was used, with a balanced amount of free and
occupied points. These data refer to two adjacent rooms in
the castle, and can be seen in Figure 8, along with the input
sets generated for each method. In these tests, inputs and
results shown are generated using the Matérn 3 kernel.

The outputs generated from the real dataset are shown in
Figure 9. The thresholds for the occupancy maps are the
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Fig. 8: Real dataset. (a) Subset of the data used, red lines
represent beams, blue crosses represent hits, green circles
represent the robot’s positions in each frame; (b) input for
MSK-GPOM; (c) input for GPOMIK.
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Fig. 9: Outputs for the compared methods, MSK-GPOM
on top and GPOMIK below it. (a) and (d) Probability of
occupancy; blue means zero, red means one; (b) and (e)
predictive variance; blue is low, red is high; (c) and (f)
Occupancy map; white is free, black is occupied, grey is
unknown.

same as in the previous experiment, but the sampling grid
used is denser, generating a higher resolution map.

In Table III and Figure 10 we can see a numerical
comparison between both methods. The Belgioioso dataset
is larger than the synthetic one, and the grid used is finer,



TABLE III: Benchmark times on the real-world dataset

Method Kernel Running time Accuracy FPR when
TPR = 95%

GPOMIK Matérn 3
Sq. Exp.

445.42s
607.93s

0.9751
0.9665

9.60%
8.20%

MSK-GPOM Matérn 3
Sq. Exp.

52.07s
37.29s

0.9918
0.9947

3.30%
2.00%

(a) (b)

Fig. 10: ROC curves for the compared methods in the real
data benchmark. GPOMIK in red, MSK-GPOM in blue, no
discrimination line in grey. (a) Square exponential kernel; (b)
Matérn 3 kernel.

making the difference between both methods is more evident.
MSK-GPOM achieved a higher accuracy in a fraction of the
time taken by GPOMIK.

V. CONCLUSIONS AND FUTURE WORK

The contributions presented in this work are twofold.
Firstly, we introduce a multi-support kernel that is easy to
implement and enables traditional covariance functions to
accept as input not only points, but also two-dimensional
regions. This kernel can be used to reduce the size of
covariance matrices, accelerating Gaussian process inference
and learning. Then, we elaborate a continuous occupancy
mapping technique using a GP with the aforementioned
kernel to handle uncertainty. It demonstrated comparable
accuracy in relation to similar state-of-the-art techniques,
while taking a much smaller toll on speed when handling
large datasets.

These are only initial results. Even though the tests per-
formed were all for two-dimensional datasets, the kernel
presented can work in three dimensions as well. This means
the method could be tested using three dimensional datasets
after some small changes. The kernel developed is not
tailored for the problem at hand, so it could also prove
fruitful to investigate whether it can be used in other GP
applications to handle high-dimensional data.

The method still needs to face some robotic mapping
challenges. Currently, it does not support online learning,
which hinders its deployment in real-world full automation
scenarios. Furthermore, it was designed to use inputs from
laser rangefinders, which are not always available due to
the equipment’s cost. It would become more versatile if it
could be adapted to use other data modalities or perform data

fusion. Lastly, it has not been designed to take advantage
of parallel computer architectures that would render it even
faster, which could increase its appeal.

This method also offers opportunities to solve other ap-
plications. Since it takes arbitrary two-dimensional inputs,
it could potentially use occupancy maps stored as grids
or quad-trees as input for the GP. This would provide a
convenient method for redefining the resolution of existing
discrete maps, as well as converting them to continuous
maps. A three-dimensional implementation could do the
same with maps stored as oct-trees, that are very popular
in three-dimensional mapping.
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