
Non-stationary dependent Gaussian processes for
data fusion in large-scale terrain modeling

Shrihari Vasudevan, Fabio Ramos, Eric Nettleton and Hugh Durrant-Whyte
Australian Centre for Field Robotics, University of Sydney, NSW 2006, Australia
Email: shrihari.vasudevan@ieee.org, {f.ramos,e.nettleton,hugh}@acfr.usyd.edu.au

Abstract— Obtaining a comprehensive model of large and
complex terrain typically entails the use of both multiple sen-
sory modalities and multiple data sets. This paper demonstrates
the use of dependent Gaussian processes for data fusion in the
context of large scale terrain modeling. Specifically, this paper
derives and demonstrates the use of a non-stationary kernel
(Neural Network) in this context. Experiments performed on
multiple large scale (spanning about 5 sq km) 3D terrain data
sets obtained from multiple sensory modalities (GPS surveys
and laser scans) demonstrate the approach to data fusion and
provide a preliminary demonstration of the superior modeling
capability of Gaussian processes based on this kernel.

I. INTRODUCTION

Most field robotics applications such as mining and agri-
culture automation require robots to function in large and
complex terrain. For autonomous robots to function in such
high-value applications, an efficient, flexible and high-fidelity
representation of space is critical. The key challenges in real-
izing this are that of dealing with the problems of uncertainty,
incompleteness and handling highly unstructured terrain.
Uncertainty and incompleteness are virtually ubiquitous in
robotics as sensor capabilities are limited. The problem is
magnified in a field robotics scenario due to sheer scale of
the application (for instance, a mining or space exploration
scenario). Contemporary tessellation based surface mapping
approaches have not been able to provide a statistically sound
solution to the problem of uncertainty incorporation and
management. The assumption of statistical independence of
data has resulted in many popular interpolation techniques
being inaccurate in the context of modeling terrain.

Typically, sensory data is incomplete due to the presence
of entities that occlude the sensors view. This is compounded
by the fact that every sensor has limited perceptual capabili-
ties i.e. limited range and applicability. Thus, most large scale
modeling experiments would ideally require multiple sensory
snapshots and multiple sensors to obtain a more complete
model. These sensors may have different characteristics (e.g.
range, resolution, accuracy). The problem thus is in fusing
these multiple and multi-modal sensory data sets to obtain an
integrated model - this is the theme of the paper. Terrain data
can be obtained using numerous sensors including 3D laser
scanners and GPS. The former provide dense and accurate
data whereas a GPS based survey typically comprises of a
relatively sparse set of well chosen points of interest.

This paper uses a Gaussian process (GP) representation
of terrain data, as presented in [1]. The contribution of
this work is a novel approach to fusing multiple, multi-
modal terrain data sets to obtain a comprehensive model
of the terrain under consideration. The fusion technique is

generic and applicable as a general Gaussian process fusion
methodology. The specific contribution of this work is the
derivation and use of non-stationary kernels for multi-task
problems with dependent processes. Experiments conducted
using large scale 3D data obtained from GPS and laser
scanner based surveys in real application scenarios (mining)
are reported in support of the proposed approach.

II. RELATED WORK

State-of-the-art representations used in applications such
as mining, space exploration and other field robotics sce-
narios as well as in geospatial engineering are typically
limited to elevation maps ([2] and [3]), triangulated irregular
networks (TIN’s) ([4] and [5]), contour models and their
variants or combinations ([6] and [7]). Each of these methods
have their own strengths and preferred application domains.
The former two are more popular in robotics. All of these
representations, in their native form, do not handle spatially
correlated data effectively and do not have a statistically
principled way of incorporating and managing uncertainty.

Gaussian processes [8] (GP’s) are powerful non-parametric
Bayesian learning techniques that can handle these issues.
Recently, Gaussian processes have been applied in the con-
text of terrain modeling - see [9] and [1]. They produce
a scalable multi-resolution model of the large scale terrain
under consideration. They yield a continuous domain repre-
sentation of the terrain data and hence can be sampled at any
desired resolution. They incorporate and handle uncertainty
in a statistically sound manner and represent spatially cor-
related data appropriately. They model and use the spatial
correlation of the given data to estimate the elevation values
for other unknown points of interest. In an estimation sense,
GP’s provide the best linear unbiased estimate [10] based
on the underlying stochastic model of the spatial correlation
between the data points. They basically perform an interpo-
lation methodology called Kriging [11] which is a standard
interpolation technique used in the mining industry. GP’s
thus handle both uncertainty and incompleteness effectively.

The work [1], also proposed the use of non-stationary
kernels (neural network) to model large scale discontinuous
spatial data. It compared performances of GP’s based on
stationary (squared exponential) and non-stationary (neural
network) kernels as well as several other standard inter-
polation methods applicable to elevation maps and TIN’s,
in the context of large scale terrain modeling. The non-
stationary neural network kernel was found to be superior
to the stationary squared exponential kernel and at least as
good as most standard interpolation techniques for a range



of terrain (in terms of sparsity/complexity/discontinuities).
The work presented in this paper builds on GP terrain rep-
resentation discussed. However it addresses the problem of
fusing multiple such terrain representations into an integrated
representation and focuses particularly on the neural-network
kernel based GP’s.

Data fusion in the context of Gaussian processes is neces-
sitated by the presence of multiple, multi-modal, incomplete
and uncertain data sets of the entity being modeled. Two
preliminary attempts towards addressing this problem include
[12] and [13]. The former bears a “hierarchical learning”
flavor to it in that it demonstrates how a GP can be used
to model an expensive process by (a) modeling a GP on
an approximate or cheap process and (b) using the many
input-output data from the approximate process and the few
samples available of the expensive process together in order
to learn a GP for the latter. The latter work attempts to gen-
eralize arbitrary transformations on GP priors through linear
transformations. It hints at how this framework could be
used to introduce heteroscedasticity (random variables with
non-constant variance) and how information from different
sources could be fused. However, specifics on how the fusion
can actually be performed are beyond the scope of the work.

Two recent works that demonstrate data fusion (based on
GP’s) in the context of large scale terrain modeling include
[14] and [15]. The former is based on the ideas that (a)
data from the same entity can be modeled using a single set
of GP hyperparameters with just the noise parameter varying
between data sets i.e. the data sets are considered as different
noisy samples of a common terrain that has to be modeled
and (b) the fusion problem can then be treated as a standard
GP regression/estimation problem with data having different
noise parameters. The work [15] treats the data fusion
problem as one of (a) modeling each data set using a GP
and (b) formulating the data fusion problem as a conditional
estimation problem wherein estimation of a GP is improved
using information from other GP’s - through learning auto-
covariances and cross-covariances between them. This idea
has been inspired by recent machine learning contributions
in GP modeling ([16] and [17]), the latter approach being
based on [18]. In kriging terminology, this idea is akin to
co-kriging ([19]).

The work presented in this paper is a theoretical and prac-
tical extension to that presented in [15]. The state-of-the-art
in multi-task/dependent GP modeling uses stationary kernels
as computing closed form auto/cross-covariance functions
for the selected kernel is a major complexity in applying
this technique. This work extends the state-of-the-art by
demonstrating the use of a non-stationary kernel (the neural
network kernel) in the context of multi-task modeling using
dependent Gaussian processes. Experiments are performed
on large scale terrain data obtained from real mining sce-
narios. The scale of the experiments represents a distinctive
feature of this work. Towards ensuring the scalability of
the approach, approximation methods have been used in
both the learning and inference stages. The contribution of
this work is thus a novel method of fusing multiple multi-

modal large scale data sets (terrain data, in this case) into
an integrated model using non-stationary (neural-network)
dependent GP’s. Note that this work develops the fusion
methodology. The registration of individual data sets to a
common reference frame is assumed given for this work.

III. APPROACH

A. Gaussian processes

Gaussian processes ([8]) (GP’s) are stochastic processes
wherein any finite subset of random variables is jointly
Gaussian distributed. They are non-parametric Bayesian,
continuous representations that provide a powerful basis for
modeling spatially correlated and possibly uncertain data.
They may be thought of as a Gaussian probability distribu-
tion in function space. They are characterized by a mean
function m(x) and the covariance function k(x,x′) that
together specify a distribution over functions. In the context
of the problem at hand, each x ≡ (x, y) (2D coordinates)
and f(x) ≡ z (elevation) of the given data. Although
not necessary, the mean function m(x) may be assumed
to be zero by scaling the data appropriately such that it
has an empirical mean of zero. The covariance function or
kernel models the relationship between the random variables
corresponding to the given data. The non-stationary neural
network (NN) kernel ([20], [21] and [22]) takes the form

kNN (x,x′,Σ) = 2
π arcsin

(
2x̃T Σx̃′√

(1 + 2x̃T Σx̃)(1 + 2x̃′T Σx̃′)

)
(1)

where x̃ and x̃′ are augmented input vectors (each point

is augmented with a 1), Σ =

 β 0 0
0 lx 0
0 0 ly

−2

is the

length-scale matrix, a measure of how quickly the modeled
function changes in the directions x and y with β being a
bias factor and d being the dimensionality of the data. The
variables lx , ly , β constitute the kernel hyperparameters.
The NN kernel represents the covariance function of a neural
network with a single hidden layer between the input and
output, infinitely many hidden nodes and using a Sigmoid
as the transfer function [21] for the hidden nodes. Hornik
in [23] showed that such neural networks are universal
approximators and Neal [20] observed that the functions
produced by such a network would tend to a Gaussian
process.

Regression using GP’s uses the fact that any finite set
of training (evaluation) data and test data of a GP are
jointly Gaussian distributed. This idea, shown in Equation 2,
yields the standard GP regression equations 3 and 4 which
respectively represent the mean-value and the uncertainty in
the prediction.[

z
f∗

]
∼ N

(
0 ,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(2)

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1z (3)

cov(f∗) = K(X∗, X∗)−
K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗) (4)



For n training points and n∗ test points, K(X,X∗) denotes
the n × n∗ matrix of covariances evaluated at all pairs of
training and test points. The terms K(X,X), K(X∗, X∗) and
K(X∗, X) can be defined likewise. The function values (f∗)
corresponding to the test locations (X∗) given the training
inputs X (a set of x), training outputs z (a set of elevation
values f(x)) and the kernel are given by Equation 3 and
their uncertainties, by Equation 4.

B. Multi-output / Dependent Gaussian processes

Multi-output Gaussian processes (MOGP’s or multi-task
GP’s) extend GP’s to handle multiple correlated outputs
simultaneously. The main advantage of this technique is
that the model exploits not only the spatial correlation of
data corresponding to one output but also those of the other
outputs. This improves GP regression/prediction.

The objective is to model terrain data obtained as (x, y, z)
coordinates from multiple and multi-modal datasets. An
elevation map, at any chosen resolution and region of the
terrain, needs to be estimated using these different datasets.
This can be achieved by performing a conditional estima-
tion given the different datasets and their GP models. The
problem can thus be specified as estimating

E[ f∗(X∗) ] , var(f∗(X∗)) | Xi , zi , GPi , X∗ , (5)

where Xi = (xi, yi) and zi = zi are the given data sets,
GPi are their respective GP model hyperparameters and i
varies from 1 to the number of data sets available, henceforth
denoted by nt. This estimation will need to take into account
both the spatial correlation within each dataset as well as
the spatial correlation across different datasets. Correlations
between GP’s can be modeled using auto-covariances and
cross-covariances between them.

The process convolution approach ([18]) is a generic
methodology which formulates a GP as a white noise source
convolved with a smoothing kernel. Modeling the GP then
amounts to modeling the hyperparameters of the smoothing
kernel. The advantage of formulating GP’s this way is that
it readily allows the GP to be extended to model more
complex scenarios, one such scenario being the multi-output
or dependent GP’s (MOGP’s or DGP’s). The following
formulation for DGP’s based on the NN kernel is inspired
by [18] and [17]. A derivation is provided in the appendix.

Given that a single terrain is being modeled, a single
Gaussian white noise process (denoted by X(s) and repre-
senting (x, y) information of the data sets) is chosen as the
underlying latent process. This process, when convolved with
different smoothing kernel (denoted by ki) produce different
data sets. The smoothing kernel for the NN kernel takes the
form

k(x, u) =
1

(2π)
d+1
4 |Σ| 14

erf(uT x̃) exp(
−uTΣ−1u

4
) . (6)

The result of this convolution is denoted by Ui(s). The
observed data is assumed to be noisy and thus an additive
white Gaussian noise N(0, σ2

i ) (denoted by Wi(s)) is added
to each process convolution output to yield the final data

sets observed. Equations 7 and 8 show the mathematical
formulation of the process convolution approach.

Yi(s) = Ui(s) + Wi(s) (7)

Ui(s) =

∫
s

ki(s, λ) ? X(λ) dλ (8)

Fusion GP regression takes into account data from the
individual data sets as well as the auto and cross covariances
between the respective GP’s that model them. The auto-
covariances and cross-covariances can be computed through
a convolution integral as the kernel correlation, as demon-
strated in [17]. Boyle et al. apply this technique for stationary
squared exponential kernel. This work inspires from [18]
and [17] to derive the auto and cross covariance functions
for the non-stationary NN kernel. For two GP’s N(0, ki)
and N(0, kj) based on the NN kernel and with length
scale matrices Σi and Σj respectively, the auto and cross-
covariances are specified by Equation 9.

KU
ij (x, x

′) =

Kf . 2
1
2 |Σi|

1
4 |Σi + Σj |−

1
2 |Σj |

1
4 kNN (x,x′,Σij)

(9)

where Σij is obtained as Σij = 2 Σi (Σi + Σj)
−1 Σj ,

The term, k(x,x′,Σij), is the NN kernel for two data x,
x′ and length scale matrix Σij . It is given by Equation
1. KU

ii (i = j) represents the auto-covariance of the ith

data set with itself and KU
ij (i 6= j) represents the cross

covariance between the ith and jth data sets. These model
the covariance between the input points of the data sets
(x, y) and not the noisy observations. Thus, they do not
consider the noise component of the observed data points
(the elevation or z values). The Kf term in Equation 9
is inspired from [16]. This term models the task similarity
between individual tasks (or data sets if only one task is being
modeled). Incorporating it in the auto and cross covariances
provides additional flexibility to the dependent GP modeling
process. It is a symmetric matrix of size nt ∗ nt and is learnt
along with the other GP hyperparameters.

The covariance matrix term K(X,X) in Equations 3 and
4 is then specified as

K(X,X) =


KY

11 KY
12 . . . KY

1nt

KY
21 . . . . . .

...
...

...
...

...
KY
nt 1 . . . . . . KY

nt nt

 , (10)

where KY
ii = KU

ii (X,X) + σ2
i I (11)

KY
ij = KU

ij (X,X) (12)

KY
ii represents the auto-covariance of the ith data set with

itself and KY
ij represents the cross covariance between the ith

and jth data sets. These terms model the covariance between
the noisy observed data points (elevation or z values). They
also take the noise components of the individual data sets /
GP’s into consideration. K(X∗, X) denotes the covariance
between the test data points and the sets of input data (from
the individual data sets) that are used for GP regression. It
is given by



K(X∗, X) =
[KU

i1(X∗, X1) , KU
i1(X∗, X2) , . . . KU

i nt(X∗, Xnt)]
(13)

where i is the output to be predicted - it can vary from 1 to
nt. K(X∗, X∗) represents the a priori covariance of the test
points (uncertainty of prediction) and is specified by

K(X∗, X∗) = KU
ii (X∗, X∗) + σ2

i (14)

The noise term is added assuming the test points are as noisy
as the data points of the ith GP. Finally, z represents the sets
of z data corresponding to the training data taken from each
of the data sets.

z = [z1 , z2 , . . . , znt] (15)

The hyperparameters of the system that need to be learnt
include nt ∗ (nt+ 1)/2 task similarity values, nt ∗ 3 length
scale values of the individual NN kernels and nt noise values
corresponding to the noise in the observed data sets.

C. GP Learning and scalability considerations

GP learning and inference are computationally expensive
operations in that both require matrix inversion. This op-
eration is of cubic complexity with respect to the number
of points in consideration. Thus, GP learning and infer-
ence approximations, introduced in [15], are used in this
work. Both use an efficient hierarchical representation of the
data-sets (a KD-tree was used) and implement a moving-
window/nearest-neighbor approximation. The GP inference
approximation uses the nearest data points (from individual
data sets) to the query point for regression. In the GP
learning approximation, a small set of training points are
identified through uniform sampling. The KD-tree is then
used to also select points in each of their neighborhoods
as training points. Thus, “patches” of data are selected for
training. GP learning then proceeds by using the maximum
marginal likelihood framework (maximizing Equation 16).
To further ensure scalability, a block-learning procedure is
adopted to learn the GP models. Instead of learning with
all training points at once, blocks of points are used in a
sequential marginal likelihood computation process within
the optimization step. The block size is pre-defined and
depends on the computational resources available.

log p(z|X, θ) = − 1
2z
TK(X,X)−1z

− 1
2 log |K(X,X)| − N

2 log(2π),
(16)

where N is the total number of training points across the all
data sets and the other terms are as defined before.

IV. EXPERIMENTS

Experiments were conducted on simulated data, multiple
large scale single sensor data (RIEGL laser scanner) as well
as multiple multi-sensor data (RIEGL laser scanner and GPS
data) taken from real mining scenarios. These experiments
demonstrate the fundamental concept (MOGP/DGP), demon-
strate simultaneous elevation and color modeling, data fusion
using multiple uni/multi-modal data. Cases of overlapping
and non-overlapping data were also addressed. The exper-
iments can be found in full in [24]. This paper will only

present the data fusion experiments so as to serve the two
objectives of this paper - demonstrate nonstationary NN-DGP
based data fusion and provide a preliminary demonstration of
the superior modeling capabilities of this kernel (in the con-
text of data fusion) over the stationary kernel used in [15]. A
more comprehensive comparison including cross-validation
experiments (as in [1]) is currently being performed. The
mean squared error (MSE) between the prediction and the
ground truth (from data set) is used as the performance
metric. Data sets were split into three parts - training, test and
evaluation. The first part was used for learning the GP model,
the second part was only used for MSE computation and
finally, the first and third parts together (essentially, all data
not in the second part) were used to perform GP regression
at the MSE test points as well as any other query points.

A. Multiple overlapping single sensor data

Fig. 1. West Angelas dataset of 3 overlapping RIEGL laser scans. Each
scan had on an average about 500,000 points spread over about 1.8 x 0.5
sq km.

For this experiment, a large scale real world dataset
comprising of 3 scans taken using a RIEGL LMSZ420 laser
scanner at the West Angelas mine in Western Australia was
used. Each scan had on an average about 500,000 points
spread over about 1.8 x 0.5 sq km. The scans were over-
lapping to different extents. The objective of this experiment
was to fuse the 3 scans to produce a more complete picture
of the West Angelas mine. Figure 1 depicts the 3-scan
dataset. Figure 2 shows the output obtained on applying
the GP fusion methodology detailed in this report. The
Mean Squared Error (MSE) was computed across a set of
10000 points, from the 1st data set, after each fusion step.
These points may be selected uniformly, but patch-testing
([1] and [15]) is a more challenging and useful performance
metric - hence 20 uniformly selected points along with 500
neighboring points each were used. Table I depicts the checks
that were performed and corresponding results obtained.
The uncertainty remains same or marginally less with each
successive fusion step. Hence, the required condition for data
fusion occurs. Further, it was observed that the MSE of the
tested samples also decreased with each successive fusion
step. This justified the use of data fusion in the context.
The MSE values in parenthesis represent the values obtained
for the same test conducted using a stationary Squared



Fig. 2. Output of GP Fusion applied to the West Angelas dataset. The test data comprised of 1 Million points. The figure shows the surface map produced
from the elevation output. Note the distinctive step like form on the side walls and the clearly visible roads into the pit.

Exponential kernel (SQEXP). Inline with the findings in [1],
a non-stationary NN kernel based DGP produces superior
performance compared to an SQEXP kernel based DGP.

TABLE I
GP FUSION USING NN-DGP: WEST ANGELAS DATA (3 SCANS, 500000

POINTS PER SCAN OVER 1.8 X 0.5 SQ KM, 5000 TRAINING POINTS PER

SCAN, 10000 TEST POINTS - 20 PATCHES OF 500 POINTS EACH)

Scans Mean Squared Mean change
Error (MSE) (sq m) in variance

Scan 1 only 0.4281
(0.8651)

Scans 1 & 2 0.4265 -3.38e-5
(0.6145) (no cases of increase

in uncertainty)
Scans 1,2 & 3 0.4245 -1.73e-5

(0.5762) (no cases of increase
in uncertainty)

Note: MSE values obtained using a stationary SQEXP-DGP for the same
test are provided in parenthesis for comparison.

B. Multiple multi-modal data sets

This experiment demonstrates data fusion of multiple
multi-sensor data (RIEGL laser scanner and GPS survey)
acquired from a large mine pit. Three data sets of the same
area and of different characteristics were acquired from Mt.
Tom Price mine in Western Australia. The first was a dense
wide area (2146.6 m x 2302.1 m x 464.3 m) RIEGL laser
scan comprising of over 850,000 points. The second was
sparse GPS Survey having only about 34,530 points spread
over 1437.2 m x 1879.5 m x 380.5 m. The third data set was
a dense (about 400,000 points) RIEGL laser scan spread over
a relatively smaller area as compared to the first scan (1416.6

Fig. 3. The three Mt. Tom Price mine data sets (GPS survey and two
laser scans) overlaid on one another for a clearer picture of the site in
consideration. The points in blue represent Laser scan 1, the points in red
represent the second laser scan and finally, the points in green represent the
GPS data.

m x 2003.4 m x 497.8 m). Figure 3 depicts the three data
sets overlaid on each other to clarify the overall picture of
the terrain in consideration.

The objective was to demonstrate the benefits of GP data
fusion using these data sets. The sparse GPS data is first
modeled alone, then fused with the first laser data set and
then the pair are fused with the third laser data set. The



Fig. 4. Output of GP Fusion algorithm applied to the Tom Price data sets (GPS data and the two laser scanner data sets). The test data comprises of 1
million points. The surface map of the output elevation map is depicted in the image.

results of the fusion process are summarized in Table II. The
results indicate the mean squared error (MSE) and average
change of uncertainty for a set of test points (200 points with
50 neighbors each) from the first data set over successive
steps of the fusion process. Figure 4 depicts the surface
map obtained after fusing the GPS data with the two laser
scanner data sets. As shown in Table II, the uncertainty de-
creases with each successive fusion step. Thus, the required
condition for fusion occurs. Further, it is observed that the
MSE also reduces with each fusion step. This justifies the
benefits of data fusion in such a context. The MSE numbers
in parenthesis represent the values obtained for the same

test conducted using a stationary Squared Exponential kernel
(SQEXP). Inline with findings in [1], an NN kernel based
DGP produces superior performance compared to an SQEXP
based DGP. Note that (1) larger test patches were used for
the West Angelas mine data set as it is denser/flatter than the
GPS data of the Mt. Tom Price data set (2) the reduction in
MSE is less pronounced in the NN-DGP than the SQEXP-
DGP; this is attributed to the superior modeling capability
of the NN kernel based GP of the first data set and (3) the
MSE values would be significantly reduced by performing
the MSE computation over 10000 uniformly sampled points
rather than patches (as each point would have supporting



data in its vicinity) and may also improve with further
optimization.

TABLE II
GP FUSION USING NN-DGP: MT. TOM PRICE DATA - GPS DATA (2500
TRAINING POINTS), LASER SCAN 1 & 2 (5000 TRAINING POINTS) WITH

10000 TEST POINTS (200 PATCHES OF 50 POINTS EACH)

Fusion sequence Mean Squared Average change
(Data Sets) Error (sqm) in variance

GPS data only 41.49 -
(99.84)

GPS data & 40.93 -0.0236
Laser data 1 (93.33) (no cases of increase

in uncertainty)
GPS data, 40.28 -0.0096

Laser data 1 & (89.38) (no cases of increase
Laser data 2 in uncertainty)

Note: MSE values obtained using a stationary SQEXP-DGP for the same
test are provided in parenthesis for comparison.

V. CONCLUSION

This paper demonstrated the use of the multi-
output/dependent Gaussian processes (MOGP’s or DGP’s)
to fuse multiple multi-modal large scale terrain data sets.
A key contribution of this work is the derivation and
use of non-stationary (neural network) kernels in the
context of modeling multi-task problems using dependent
Gaussian processes. Real sensor data (GPS surveys and
laser scans) taken from multiple mining scenarios were
used to demonstrate the approach. The GP data fusion
problem was cast as a conditional estimation using several
Dependent GP’s. The formalism could also be used to
simultaneously model multiple aspects of the terrain as
demonstrated in [15]. The proposed DGP based on the non-
stationary (neural-network) kernel performed significantly
better than the stationary squared exponential kernel based
DGP ([15]) in fusing multiple terrain data sets. The scale
of the experiments represents a distinctive feature of this
work, enabled by the use of GP approximations in both
learning and inference. The paper thus demonstrated a
generic method of performing GP data fusion.
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APPENDIX

DERIVATION OF THE CROSS-COVARIANCE FUNCTION FOR THE
NEURAL NETWORK KERNEL

The process convolution approach [18] formulates a GP as a white noise
source convolved with a smoothing kernel. Noisy observations are obtained
by adding another white Gaussian noise N(0, σ2) to the convolution output.
The work [17] was based on this work and applied it in the case of multi-
output or dependent GP modeling using stationary squared exponential
kernels. This derivation seeks to derive the auto and cross covariance
functions for one non-stationary kernel - the neural network (NN) kernel.
The following derivation is inspired from both [18] and [17]. The derivation
is outlined below and given in more detail in the technical report version
of this paper [24].

Given N outputs Yi(s) which are modeled using NN-GP’s using smoothing
kernel ki(s, α) and are characterized by additive Gaussian white noise
Wi(s) = N(0, σ2

i ),

Yi(s) = Ui(s) + Wi(s) (17)

Ui(s) =

∫
S
ki(s, α)X(α) dα (18)

so that, the covariance between two outputs Yi(s) and Yj(s) is given by

CYij (xa, xb) = CUij (xa, xb) + σ2
i δijδab (19)

CUij (xa, xb) = E {Ui(xa)Uj(xb)} (20)

= E

{∫
ki(xa, α).X(α)dα

∫
kj(xb, β).X(β)dβ

}
=

∫ ∫
ki(xa, α) kj(xb, β) E {X(α)X(β)} dαdβ(21)

=

∫ ∫
ki(xa, α) kj(xb, β) δ(α− β) dαdβ (22)

=

∫
ki(xa, α) kj(xb, α) dα (23)

The order of the integration and expectation is changed in Equation 21
because

∫
| ki(xa, α) |2 dα <∞ for all i subject to the condition that the

NN kernel is applied in a bounded neighborhood of data. Thus, the various
ki(xa, α) are finite energy kernels and corresponding to stable linear filters
so long as they are applied locally. X(α) and X(β) are Gaussian white
noise processes which will covary only when α = β and hence Equations
22 and 23.
The NN kernel is given by

kNN (x, x′,Σ) =

1

(2π)
d+1
2 |Σ|

1
2

∫
erf(αT x̃) erf(αT x̃′) exp(− 1

2
αTΣ−1α) dα

(24)

This can be evaluated analytically (see appendix of [21]) to give

kNN (x, x′,Σ) =
2

π
arcsin

 2x̃Σx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′

T
Σx̃′)


(25)

Let the smoothing kernel for the NN kernel be defined as

k(x, α) =
1

(2π)
d+1
4 |Σ|

1
4

erf(αT x̃) exp(−
1

4
αTΣ−1α) (26)

This is a non-stationary smoothing kernel as it relies on the dot product
of x and α.Given a latent process (a Gaussian white noise process) X(s),
N-outputs U1(s) . . . UN (s) and N smoothing kernels ki(s), the auto-
covariance and cross-covariance functions between the ith and jth outputs
is given by Equation 23 as

CUij (x, x
′,Σi,Σj) =

∫
S
ki(x, α) kj(x

′, α) dα (27)

S represents the domain of the data. For instance, S εRp, p-dimensional
real data. Using Equations 26 and 27, the auto-covariance and cross-
covariance functions two NN-GP’s can be derived (through simple algebraic
manipulation) as

CUii = kNN (x, x′,Σi) (28)

CUij = 2
1
2 |Σi|

1
4 |Σi + Σj |−

1
2 |Σj |

1
4 kNN (x, x′,Σij) (29)

where
Σij = 2 Σi (Σi + Σj)

−1 Σj

and

kNN (x, x′,Σ) =
2

π
arcsin

 2x̃Σx̃′√
(1 + 2x̃TΣx̃)(1 + 2x̃′

T
Σx̃′)





Proof for PSD property of auto/cross covariance function:
Given M data sets X1, X2, ..., XM (or tasks, if multiple outputs are
modeled simultaneously), the covariance matrix of the observations, that
is used for GP regression is given by

KY (X1, . . . , XM ) =


CY11 CY12 . . . CY1M
CY21 . . . . . . CY2M

...
...

...
...

CYM1 . . . . . . CYMM

 (30)

KY (X1, . . . , XM ) =


CU11 CU12 . . . CU1M
CU21 . . . . . . CU2M

...
...

...
...

CUM1 . . . . . . CUMM


+

σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

...
0 . . . . . . σ2

M


(31)

In the RHS of Equation 31, the second matrix is PSD ie. > 0. The
objective is to prove the LHS is PSD. Hence, the first matrix in the RHS
needs to be shown to be PSD. The individual CUij are given by Equation
26. Consider the expression

Q = (A1, A2, . . . , AM )


CU11 CU12 . . . CU1M
CU21 . . . . . . CU2M

...
...

...
...

CUM1 . . . . . . CUMM




A1

A2

...
AM


where Ai are sets or arbitrary real numbers. This results in

Q =
M∑
i=1

M∑
j=1

AiCijAj
T

Assuming that the ith data set has Ni data, the above expression
becomes

Q =
M∑
i=1

M∑
j=1

Ni∑
p=1

Nj∑
q=1

apiCij(xpi, xqj)aqj

Substituting Equation 29 in above expression,

Q=

M∑
i=1

M∑
j=1

Ni∑
p=1

Nj∑
q=1

apiaqj2
1
2 |Σi|

1
4 |Σi+Σj |−

1
2 |Σj |

1
4 kNN (x, x′,Σij)

This is of the form

Q =
M∑
i=1

M∑
j=1

Ni∑
p=1

Nj∑
q=1

a′pia
′
qjkNN (x, x′,Σij)

for some real a′piand a′qj . Now, Q > 0 because k(x, x′,Σij) is
the NN kernel / covariance function (between x and x′, for some set of
hyperparameters Σij ) and is by definition PSD. Hence the first matrix
in Equation 31 is PSD and hence the covariance matrix produced by the
auto/cross covariance function derived above is PSD. �
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