
Online Self-Supervised Segmentation of Dynamic Objects

Vitor Guizilini and Fabio Ramos
Australian Centre for Field Robotics, School of Information Technologies

University of Sydney, Australia
{v.guizilini;f.ramos}@acfr.usyd.edu.au

Abstract— We address the problem of automatically seg-
menting dynamic objects in an urban environment from a
moving camera without manual labelling, in an online, self-
supervised learning manner. We use input images obtained
from a single uncalibrated camera placed on top of a moving
vehicle, extracting and matching pairs of sparse features that
represent the optical flow information between frames. This
optical flow information is initially divided into two classes,
static or dynamic, where the static class represents features
that comply to the constraints provided by the camera motion
and the dynamic class represents the ones that do not. This
initial classification is used to incrementally train a Gaussian
Process (GP) classifier to segment dynamic objects in new
images. The hyperparameters of the GP covariance function
are optimized online during navigation, and the available self-
supervised dataset is updated as new relevant data is added
and redundant data is removed, resulting in a near-constant
computing time even after long periods of navigation. The
output is a vector containing the probability that each pixel
in the image belongs to either the static or dynamic class
(ranging from 0 to 1), along with the corresponding uncertainty
estimate of the classification. Experiments conducted in an ur-
ban environment, with cars and pedestrians as dynamic objects
and no prior knowledge or additional sensors, show promising
results even when the vehicle is moving at considerable speeds
(up to 50 km/h). This scenario produces a large quantity of
featureless regions and false matches that is very challenging
for conventional approaches. Results obtained using a portable
camera device also testify to our algorithm’s ability to generalize
over different environments and configurations without any
fine-tuning of parameters.

I. INTRODUCTION

A truly autonomous robot requires a precise knowledge
of the environment around it in order to perform tasks
such as path planning, obstacle avoidance and goal-oriented
navigation. The most common way to address the problem of
building a representation of the environment around a robot is
by generating a map which contains the structures the robot
will interact with during navigation. However, the iterative
nature of building a map usually constitutes a challenge
when dealing with dynamic objects, since their position
varies with time and therefore cannot be estimated simply by
continuous observation. Segmenting dynamic objects from a
static background is an important step in applications such as
collision warning and avoidance, surveillance, video mining,
driver assistant systems and tracking.

Of all sensors, cameras are becoming increasingly popular
because they are relatively inexpensive, small, information-
rich, of easy installation and have a wide field of view both

horizontally and vertically. The texture and color information
provided by visual sensors is also invaluable in situations
where a better characterization of objects is necessary, such
as road segmentation, lane detection and multi-tracking.

Non-parametric Bayesian techniques have been largely
utilized in computer vision applications [27], [23], and are
known to provide robust models based on scarce and noisy
datasets. This characteristic makes them specially attractive
in a real-world scenario, where the same object may present
itself in a wide variety of ways due to changes in scale,
luminosity, viewpoint and even shape. By optimizing a non-
parametric model over a large subset of examples, these
techniques are capable of generalizing over small variations
in the object’s appearance and extract the properties that truly
represent it, in a way that no specific model could hope to
achieve.

The main objective of this paper is to segment dynamic
objects from a static background using only a single uncal-
ibrated camera placed on top of a mobile platform, without
any prior knowledge of the environment or extra sensors. We
develop a novel self-supervised algorithm based on Gaussian
Processes (GPs) [21], a non-parametric Bayesian technique
used to estimate the probability that each pixel in a image
belongs to a dynamic object, based on optical flow informa-
tion obtained from sparse features. An initial classification
is performed using the 7-Point RANSAC algorithm [8], and
the results are used as input for the GP to perform a clas-
sification on the entire image, along with the corresponding
uncertainty estimates. The GP hyperparameters are optimized
online during navigation, as new data becomes available,
and the current model is constantly updated to incorporate
relevant information and remove redundant information as to
maintain the computational cost roughly constant.

II. RELATED WORK

Several applications of dynamic object segmentation as-
sume a static camera, which implies that any non-dynamic
object will maintain its position over time. In this sce-
nario the traditional approach [23] is to statistically model
the background, essentially ”filtering it out”, and treat any
change in pixel intensity as a potential dynamic object. In
other applications, however, the visual sensor is mobile, usu-
ally mounted on top of a robotic platform, and therefore it is
impossible to separate background and foreground solely by
tracking pixel intensity changes, as static objects will expe-



(a) Feature set (b) Matching set (c) Initial RANSAC classification (green indicates
dynamic objects and red indicates static back-
ground

Fig. 1: Stages of the feature parametrization.

rience relative motion due to camera rotation and translation
between frames. A straightforward way to segment this sort
of image is to model the ground plane and treat everything
else as an object [24], however this approach tends to fail in
crowded environments where the ground plane is not readily
visible. A weaker ground plane constraint is presented in
[6], where a coupling between object segmentation and scene
geometry is maintained using a Bayesian network.

If a significant portion of the environment is assumed
static, the relative motion of static objects can be filtered out
by calculating the optical flow [11] of the image and using
a voting method, such as RANSAC [8], to elect the most
probable motion hypothesis. Any region that does not comply
to this constraint is assumed to be a dynamic object, and
can be tracked using classical approaches such as Extended
Kalman Filters or Particle Filters (robust data association
algorithms [2] and occlusion-handling techniques [6] are
necessary to deal with very cluttered environments).

If more than one camera is available, a stereo triangulation
can provide a 3D position estimate for matched features
[10], incorporating extra information that could be used to
facilitate and improve object clustering and tracking [1]. A
more accurate segmentation can also be achieved by applying
category-specific models to separate the static background
from already established dynamic objects, either on a 3D
point-cloud [12], directly on the camera images [5], [13] or in
a combination of both [7]. The static background information
can also be used to improve visual odometry applications
[18], [9], [6], since its optical flow values now reflect solely
the camera’s own rotation and translation.

III. OPTICAL FLOW EXTRACTION

Our approach uses sparse optical flow information ob-
tained from consecutive pairs of frames during vehicle
navigation. A histogram filter was applied to each frame
to account for global luminosity changes and allow for
a proper representation of dark areas. The initial feature
extraction is performed using a combination of both the SIFT
(Scale-Invariant Feature Transformation) [15] and corner
detection [25] algorithms, to ensure a high density of features
throughout the entire image (Fig. 1a). This feature set is

matched with the feature set from the subsequent frame using
128-element SIFT descriptors, and the resulting set is shown
in Fig. 1b, where each match is represented as a line segment
connecting the corresponding features from each frame. This
sparse optical flow information is then classified according
to the RANSAC algorithm [8], an iterative non-deterministic
method used to estimate the parameters of a mathematical
model from a set of observed data which contains outliers.
In this context the mathematical model is the Fundamental
Matrix [10], defined as a 3× 3 matrix F that optimizes the
equation

uT
2 Fu1 = 0, (1)

where ui = {u, v, 1} represents the normalized image coor-
dinates of each feature in frame i. The projection of a feature
u1 in frame 2 is a line with coefficients Fu1 (the epipolar
line), and symmetrically the projection of a feature u2 in
frame 1 is a line with coefficients FT u2. Assuming that most
of the environment is static, the RANSAC algorithm should
elect the Fundamental Matrix that best represents camera
motion, and therefore any feature whose match coincides
with the epipolar line in that frame should belong to a static
object. The further away the corresponding match is to the
epipolar line, the higher the chance that it belongs to a
dynamic object, and this distance allows for a probabilistic
classification of features, ranging from 0 (the corresponding
match coincides with the epipolar line) to 1 (the furthest
away a corresponding match may be from the epipolar line
before it is discarded as false).

An example of this classification is presented in Fig. 1c,
where each matched pair is depicted with a color ranging
from red (static) to green (dynamic). While it is clear that
the RANSAC classification was able to correctly segment
most of the dynamic objects in the scene (the car in front of
the camera and the ones to its right), there is a substantial
amount of static matches that were mistakenly classified as
dynamic, specially in the lower portions of the image where
the street is represented. These mistakes are mostly due to
false matches caused by poor texture, since the street lacks
of visual cues that allow for an unambiguous association
between descriptors.

This sparse optical flow information will serve as input for



the GP framework described in the next section. Even though
the SIFT descriptor is highly effective in feature matching
between frames, possessing several invariance properties, it
does not serve as well in applications that aim for generaliza-
tion, which is the case in non-parametric modelling based on
training data. Because of this, each matched feature receives
a new descriptor x composed of its image coordinates (u, v)
and the average of its intensity values (IM , IR, IG, IB) in a
surrounding window for each RGB color and for the corre-
sponding monochromatic M transformation (as a convention,
we use the first frame for these calculations). The coordinate
parameters are useful in modelling how different regions of
the image react to changes in optical flow values, and the
intensity parameters are useful in modelling the different
objects in the same region of the image and their boundaries
(other relevant parameters may be added seamlessly without
any further changes in the algorithm).

The final sparse optical flow information that represents
each frame is then of the form (X, y), where X is a D ×
N matrix containing the D = 6 descriptor values xn =
{u, v, IM , IR, IG, IB}n for all N matched features and y is
a 1 ×N vector containing the probability yn that each one
of these features belong to a dynamic object, according to
the RANSAC algorithm.

IV. GAUSSIAN PROCESS CLASSIFICATION

From a machine learning perspective, the problem of
dynamic object segmentation can be seen as a self-supervised
classification problem, where each pixel in the image has a
certain probability of either belonging to a static or dynamic
object. We use a Gaussian Process [21] to perform this
classification based on initial results obtained according to
the RANSAC algorithm (see previous section). Descrip-
tive information from sparse matched features are used to
optimize the hyperparameters of a positive-definite kernel
that characterizes the relationship between inputs, and the
resulting non-parametric model allows the classification of
the entire image as a smooth continuous function, along with
the corresponding uncertainty estimates.

A. Inference Equations and Covariance Function

A Gaussian Process is a non-parametric method in the
sense that it does not explicitly specify a functional model
between inputs and outputs. Instead, it uses information
available in a training dataset Λ = (X, y) = {x, y}Nn=1 to
learn the relationship between different points in the input
space, and then extrapolates this information to infer the
output of new data in a probabilistic manner. A GP model
is entirely defined by a mean m(x) and covariance k(x, x′)
functions:

f(x) ∼ GP(m(x), k(x,x′)). (2)

Most implementations assume m(x) = 0 without loss of
generality by scaling the data appropriately, and k(x, x′) is
a positive-definite kernel (the covariance function) whose
coefficients (the hyperparameters) are optimized to maximize

a certain objective function. Inference for a single test point
x∗ given Λ is calculated as:

f∗ = k(x∗,X)T [K(X,X) + σ2
nI]−1y (3)

V(f∗) = k(x∗, x∗)
− k(x∗,X)[K(X,X) + σ2

nI]−1k(x∗,X),
(4)

where σ2
n quantifies the noise expected in observation y and

K is the covariance matrix, with elements Kij calculated
based on the covariance function k(xi, xj). Due to the non-
stationary behaviour of a typical segmented image (sudden
changes from a static to a dynamic object), we choose
here the neural network covariance function [28] to model
the relationship between input data. The neural network
covariance function is derived from a neural network with
a single layer, a bias and H → ∞ hidden units. If the
hidden weights are assumed to be Gaussian distributions with
zero mean and covariance Σ, this covariance function can be
defined [17] as:

k(x, x′) = σ2
f arcsin

 2x̃T Σx̃′√
(1+2x̃T Σx̃)(1+2x̃′

T
Σx̃′)

 ,

(5)
where x̃ = (1, x1, . . . , xD)T is an augmentation of x with the
constant value 1 (bias), and σ2

f is a signal variance used to
scale the correlation between points determined by the neural
network covariance matrix Σ (here assumed diagonal with
D+ 1 eigenvalues). The expression also contains a sigmoid-
like function, arcsin(x), to model sharp transitions and non-
linearities.

B. Hyperparameter Optimization

During the training stage, the hyperparameters of the co-
variance function are optimized as to minimize a certain cost
function, here chosen to be the log-marginal likelihood [21]
due to its ability to balance data fit and model complexity,
thus minimizing the chance of over-fitting. The hyperpa-
rameter set θ to be optimized is composed of the diagonal
elements of Σ (length-scales), the signal variance σf and the
noise level σn. Initially, the optimization is conducted using
a combination of stochastic maximization (simulated anneal-
ing), to avoid local minima, and gradient-descent algorithms
to reduce the influence of initial conditions. As new data
becomes available during navigation further optimization is
necessary, however since the environment around the vehicle
is assumed to change gradually, only a few steps of gradient-
descent are performed at each iteration. This approach also
dramatically increases the final computational speed of the
algorithm, and empirical data shows that the hyperparameters
tend to converge to constant values after a certain period.

C. Probabilistic Least-Squares Classification

While the predictive mean f∗ is useful in determining
the most likely hypothesis, it can also be misleading if
considered in isolation. One of the key advantages of a



Gaussian Process is its ability to also calculate the variance
V(f∗) of each prediction, that acts not only as a way of
identifying areas with high measurement uncertainty but also
can be combined with the predictive mean to generate a
probability distribution that acts as a classifier for the entire
input space. We use here a method known as Probabilistic
Least-Squares Classification [21], which ”squashes” the pre-
dictions through a sigmoid function with parameters α and
β determined using a ”Leave-One-Out” (LLO) approach, for
speed purposes. This sigmoid function is introduced in [20],
and the implemented version for training its parameters is
defined as:

p(yi|X, y−i, θ) = Φ

(
yi(αµi + β)

1 + α2σ2
i

)
, (6)

where Φ(.) is the cumulative unit Gaussian, y−i refers to the
output values of all training data excluding the pair (xi, yi),
µi and σi are the predictive mean f∗ and variance V(f∗) at
the point xi, and θ represents the optimized hyperparameters
of the covariance function. The training of α and β can
be performed by partitioning the original matrix K−1 to
eliminate the influence of xi, thus eliminating the need of
recalculating the entire covariance matrix for each training
point [26]. The new expressions for the LLO predictive mean
and variance are presented in Eq. 7, and they allow the
classification of each pixel in the image as a static, dynamic
or unsure object, according to user-defined thresholds:

µi = yi −
[K−1y]i
[K−1]ii

σ2
i =

1

[K−1]ii
. (7)

D. Incremental Updates

One drawback of Gaussian Processes is the cost of in-
verting K in Eqs. 3 and 4, in order to respectively calculate
the predictive mean and variance. This inversion has a com-
putational complexity of O(n3), where n is the number of
points, and rapidly becomes the bottleneck in the algorithm’s
speed as the amount of available data increases. Since ours
is an online approach, where the non-parametric model
(the covariance matrix K) is generated incrementally during
navigation, it is necessary to find a way to both incorporate
and remove information from the covariance matrix without
having to completely recompute it at every iteration.

A common approach in GP literature [19], [22] is using
the Cholesky decomposition to calculate the predictive mean
f∗ and variance V(f∗) in Eqs. 3 and 4, instead of K
directly. The Cholesky decomposition is useful for solving
linear systems with a symmetric, positive-definite coefficient
matrix, and produces more numerically stable results than
a straightforward matrix inversion. It works by obtaining a
lower triangular matrix L, called the Cholesky factor, such
that LTL = K. The marginalization (removal) of the second
row and column of a hypothetical 3 × 3 covariance matrix

is calculated as:

K=

 K1,1 k1,2 K1,3

kT
1,2 k2,2 k2,3

KT
1,3 kT

2,3 K3,3

 L=

C1,1 c1,2 C1,3

0 c2,2 c2,3
0 0 C3,3



L′=

[
C1,1 C1,3

0 γ(CT
3,3C3,3 + cT2,3c2,3)

]
,

(8)

where γ is the Cholesky update defined in [16], which
exploits the special structure of cT2,3c2,3 and is of complexity
O(n2). Similarly, the incorporation of a new point x∗ into
a 2 × 2 covariance matrix is calculated as shown in Eq. 9,
where K3,3 = k(x∗, x∗) and c3 is the solution of the linear
system Lc3 = k1,2:

K =

[
K1,1 k1,2

kT
1,2 K2,2

]
L =

[
C1,1 C1,2

0 C2,2

]

L′ =

 C1,1 C1,2 c3C2,2

0 chol(K3,3 − cT3 c3)

 .
(9)

E. Feature Filtering

The feature extraction and matching techniques described
in the previous section produce an average of around 7000
features per frame, and it is impractical to incorporate all
these new points to the GP framework at every iteration,
as it would create an exceedingly complex and computa-
tionally prohibitive model after a few iterations. Fortunately,
most of this information is redundant, since it describes an
environment that is only gradually changing due to camera
motion and the presence of dynamic objects, and therefore
could be safely discarded without compromising model accu-
racy. Also, it is necessary to discard erroneous information
generated by RANSAC misclassifications, that could skew
results. In order to determine which data points should be
incorporated and removed from the GP framework at each
iteration, we impose a series of filtering steps over different
subsets of the available data, designed to remove redundant
and unreliable information from the non-parametric model:

1) A density constraint is imposed on the input informa-
tion, discarding points whose classification is similar
to their closest neighbours according to a certain
distance threshold. This step decreases the amount of
data available for potential incorporation to the non-
parametric model, while still maintaining its spacial
distribution on the input space.

2) An inference is performed on the remaining new data
points, classifying them according to the current non-
parametric model (all new data points are added at the
first iteration of the algorithm). All those incorrectly
classified are added to the covariance matrix K and
its corresponding Cholesky decomposition L, increas-
ing the amount of information in the non-parametric
model. Those correctly classified are discarded, since



(a) Current model (b) New feature set

(c) Filtered feature set (d) Added feature set

0 100 200 300 400 500 600 700 800 900 1000
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Number of features in the GP model

Image frame

N
um

be
r o

f f
ea

tu
re

s

(e) Number of features used by the non-
parametric model

Fig. 2: Online non-parametric model update. On figures (a)-(d) red dots indicate a static classification and blue dots indicate
a dynamic classification, according to the RANSAC algorithm.

their position on the input space is already well-
defined.

3) An inference is performed now on the non-parametric
model itself, removing data points that were incorrectly
classified even after their incorporation. This step is
important in eliminating RANSAC misclassifications,
as they are assumed to be a minority and therefore less
representative of their position on the input space.

4) Finally, we apply the density constraint also on the
non-parametric model, removing data points with simi-
lar classification as their closest neighbours. As in Item
1, this step decreases the amount of data available for
the non-parametric model while still maintaining its
spatial distribution on the input space.

In combination, these four steps comprise around 35% of
the total computational time of the algorithm, mostly due to
the inference steps necessary to determine which data points
are incorrectly classified and which ones share a similar
classification that of its neighbours. However, empirical tests
show that they reduce the amount of information processed
by the algorithm by a factor of 10, by discarding redundant
data points that would dramatically increase computational
time (a GP is of complexity O(n3), and the online update
is of complexity O(n2)).

Since we are dealing with a finite-size input space (the
D-dimensional descriptive vector representing each matched
feature is limited by image size and intensity values satu-
ration), as navigation continues the number of data points
forming the non-parametric model eventually stabilizes at
around 4000 (see Fig. 2e). Sudden increases in data point in-
corporation indicate changes in environment structure, where
the algorithm has to learn the behaviour of new objects and
adapt to changes in old ones (i.e. a stationary car starts
moving), however these spikes soon cease and the non-
parametric model returns to its original stable size.

V. EXPERIMENTAL RESULTS

The proposed algorithm was tested in both an urban sce-
nario, using data collected from a modified vehicle equipped
with a single uncalibrated camera, and from a pedestrian
perspective, using data collected from a portable camera
device. The urban scenario results were compared with
other approaches to automatic dynamic object segmentation,
as a way to validate how our algorithm improves over
already existing techniques, and the portable camera device
results are used to show how our algorithm is capable of
generalizing over different environments and configurations
without fine-tuning its parameters.

A. Urban Scenario

The urban dataset is composed of 14500 images ob-
tained at a rate of 3 frames per second in a trajectory of
roughly 10 km, in which the vehicle interacted normally
with pedestrians, cars and buses at speeds of up to 50 km/h.
During this trajectory the images collected were subject to
global changes in luminosity, due to cloud coverage and tall
buildings, and also to a wide variation of structures around
the vehicle, as it was driven around different portions of the
city.

The algorithm was initialized without any training, using
random hyperparameters and an empty covariance matrix.
At each iteration a new set of features is selected and
incorporated into the non-parametric model, and redundant
features are removed in order to keep the computational cost
within a certain boundary. The remaining data points are used
for training, initially using stochastic optimization to avoid
local minima and afterwards gradient-descent techniques to
deal with gradual changes in the environment structure. The
first few iterations of the algorithm were done in less than
a second per frame, however as new information is incor-
porated the computational time stabilized at a few seconds



Fig. 3: Automatic dynamic object segmentation results. Each pixel has a color ranging from black (static) to white (dynamic),
according to its probability of belonging to either class.

per frame, mostly due to the frequent inferences necessary
to decide which data points should be added/removed from
the non-parametric model. Approximation techniques, such
as Sparse Gaussian Processes [4] or Subset of Regressors
[21] would substantially improve computational speed, since
it is natural to assume that distant features should have no
impact in calculations.

The classification results obtained in different instants
of navigation are presented in Fig. 3,where lighter areas
represent dynamic objects. The inference was conducted
at every 5th pixel of the image, both horizontally and
vertically, and the intermediary pixels were calculated ac-
cordingly using linear interpolation. These results testify to
the algorithm’s ability to correctly segment dynamic objects
from a static background with high precision, even when
dealing with a crowd or in situations where the camera is
moving at relatively high speeds. The GP framework was
able to remove virtually all the false matches related to
the street on the lower portions of the image, which was
a major concern during the RANSAC classification (see
Fig. 1c). We attribute this success to the descriptor used
to represent each feature in the input space, that contains
color intensity information in addition to coordinate values,
and this information allowed the non-parametric model to
correctly correlate street features and reclassify the outliers
as part of a static object.

Finally, the proposed algorithm was compared with three
other approaches to dynamic object segmentation and the
results are presented in Fig 4, (based on information from
100 hand-labelled images collected in different instants of
navigation). The dotted line represents the initial classifica-
tion results obtained using RANSAC, the black line indicates

the proposed framework, and the red line indicates the
same framework but with the neural network covariance
function substituted by the square-exponential. The blue line
represents the use of Support Vector Machine (SVM) [3]
as the self-supervised classification method instead of GPs,
and the green line are the Optical Flow Classification (OFC)
results obtained based on [14].

The ROC curves for each approach are shown in Fig.
4a, where it is possible to see that the proposed method
outperforms the others in all threshold levels, and in partic-
ular that it improves on the initial RANSAC classification
results by a significant margin, without incorporating any
extra information. It is also possible to see the importance
of covariance function selection, since the same framework
performed significantly worse when the square-exponential
covariance function was used. Fig 4b depicts the area under
the ROC curve for each frame at the beginning of navigation,
indicating how accuracy changes as new data is incorporated
to the model.

As expected, the OFC does not improve over time, since it
is not based on learning techniques, using instead individual
information from each frame. The accuracy of the three other
approaches increase steadily over time, with occasional drops
that indicate moments where there is a significant change
in the environment (the camera started moving, or a new
object entered its field of vision), and the proposed approach
constantly outperforms the other two. It is interesting to see
that at the beginning of navigation the OFC is the best
solution, since there was no time for the non-parametric
model to learn the environment characteristics, but after a few
frames the proposed method improves and becomes the best
solution, while the OFC oscillates heavily at each iteration.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves with different methods

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

False Positive Ratio (1−Specificity)

 

 

GP Classification (NN)
GP Classification (SP Exp)
Support Vector Machine (SVM)
Optical Flow Classification
RANSAC Classification

(a) ROC curves

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frame Number

Ar
ea

 u
nd

er
 R

O
C

 C
ur

ve

Area under ROC Curves over a Sequence of Frames

 

 

GP Classification (NN)
GP Classification (Sq Exp)
Support Vector Machine (SVM)
Optical Flow Classification

(b) Classification accuracy during navigation

Fig. 4: Comparison between different methods of dynamic object segmentation. The SVM Classification was obtained using
the same framework presented here but with Support Vector Machine [3] instead of Gaussian Processes, and the Optical
Flow Classification was based on [14].

B. Portable camera device

The same algorithm, without any further modifications,
was also tested in images obtained using a portable camera
device (Fig. 5), as a way to qualitatively explore its ability
to generalize over different configurations and environments.
The non-parametric model was initialized empty from ran-
dom hyperparameters, and the shakiness of the camera
posed a challenge to the RANSAC algorithm, since now
the baseline between frames is much smaller and its motion

Fig. 5: Portable camera device.

is unconstrained by two-dimensional vehicle dynamics. The
results obtained using this configuration are presented in
Fig. 6, where it is possible to see that again there is a
wide variation in luminosity and types of structures, and the
algorithm was still capable of correctly segmenting most of
the dynamic objects in each scene.

Still, it is possible to see some deviations on the segmen-
tation results, mostly caused by the presence of shadows,
which are classified as dynamic objects because of the purely
visual nature of the segmentation technique, and the non-
detection of far-away dynamic objects, due to their low
relative speeds that are dismissed as noise. Sudden changes
in texture and color also generate gaps in the segmentation
results, because the high-dimensional input vector used by
the GP uses both spatial coordinates and color intensity infor-
mation. However, it is worth emphasizing that these results
were obtained without any human intervention whatsoever,
based solely on non-labelled image information collected
from a single uncalibrated camera.

Fig. 6: Experiments with the portable camera device.



VI. CONCLUSION

This paper presented a novel approach to automatic dy-
namic object segmentation with a single mobile uncalibrated
camera, based on self-supervised learning. Sparse matched
features were sorted according to the RANSAC algorithm to
generate an initial classification between a static background
and dynamic foreground objects, and this initial classifica-
tion was refined in an online self-supervised manner using
a Gaussian Process, a non-parametric Bayesian inference
technique. Experiments were conducted in an urban scenario,
with data collected from a modified vehicle navigating at
speeds of up to 50 km/h and interacting with pedestrians, cars
and buses, and show promising results, with the proposed
algorithm outperforming other dynamic object segmentation
approaches.

Since it relies purely on visual information, the algorithm
also segments shadows as part of dynamic objects, which
could be readily addressed by incorporating shadow-removal
techniques into the framework. Also, the algorithm’s ability
to segment far away dynamic objects is limited because
of their small relative size and low relative speeds, which
difficults the process of feature extraction and increases
the chances of an initial RANSAC misclassification. The
incorporation of object tracking techniques could address this
problem, where the algorithm follows each specific object
over a sequence of frames and learn its visual information
in different scales and viewpoints. Furthermore, the learning
aspect of this framework could also in principle allow the
self-supervised creation of a library of segmented objects,
extending the initial binary classification into a more se-
mantically relevant territory. Additionally, the introduction
of a library of segmented objects creates the possibility
of a ”potentially dynamic” class, where a certain object is
inherently dynamic but is currently stationary. Future work
will focus on algorithm speed, exploring assumptions such as
sparsity to decrease computational cost and allow real-time
model update and inference.

REFERENCES

[1] ALMANZA-OJEDA, D.-L., AND IBARRA-MANZANO, M.-A. 3d
visual information for dynamic objects detection and tracking during
mobile robot navigation. Recent Advances in Mobile Robotics (2011).

[2] COX, I. J. A review of statistical data association techniques for
motion correspondence. International Journal of Computer Vision
(IJCV) (1993).

[3] CRISTIANINI, N., AND SHAWE-TAYLOR, J. An Introduction to
Support Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press, 2000.

[4] CSAT, L., AND OPPER, M. Sparse on-line gaussian processes. Tech.
rep., Massachusetts Institute of Technology, 2002.

[5] DALAL, N., AND TRIGGS, B. Histograms of oriented gradients
for human detection. Conference on Computer Vision and Pattern
Recognition (2005).

[6] ESS, A., LEIBE, B., SCHINDLER, K., AND GOOL, L. V. Moving
obstacle detection in highly dynamic scenes. International Conference
on Robotics and Automation (ICRA) (2009).

[7] ESS, A., LEIBE, B., AND VAN GOOL, L. Depth and appearance for
mobile scene analysis. International Conference on Computer Vision
(2007).

[8] FISCHLER, M. A., AND BOLLES, R. C. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM (1981).

[9] GUIZILINI, V., AND RAMOS, F. Semi-parametric models for visual
odometry. In Proc. Int. Conference on Robotics and Automation
(ICRA) (2012).

[10] HARTLEY, R. I., AND ZISSERMAN, A. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

[11] HORN, B. K. P., AND SCHUNCK, B. G. Determining optical flow. AI
Memo No. 572 (1980).

[12] JR., M. K., DAVIS, J., AND TYAGI, A. Tracking mean shift clustered
point clouds for 3d surveillance. Proceedings of the 4th ACM
International Workshop on Video Surveillance and Sensor Networks
(2006).

[13] LEIBE, B., LEONARDIS, A., AND SCHIELE, B. Robust object detec-
tion with interleaved categorization and segmentation. International
Journal of Computer Vision (2008).

[14] LIU, C. Beyond Pixels: Exploring New Representations and Appli-
cations for Motion Analysis. PhD thesis, Massachusetts Institute of
Technology, 2009.

[15] LOWE, D. G. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision (2004).

[16] MATLAB. version 7.13 (R2011b). The MathWorks Inc., 2011.
[17] NEAL, R. M. Bayesian Learning for Neural Networks. Springer-

Verlag New York Inc., 1996.
[18] NISTER, D., NARODITSKY, O., AND BERGEN, J. Visual odometry

for ground vehicle applications. Journal of Field Robotics (January
2006).

[19] OSBORNE, M. A., ROBERTS, S. J., ROGERS, A., RAMCHURN, S. D.,
AND JENNINGS, N. R. Towards real-time information processing
of sensor network data using computationally efficient multi-output
gaussian processes. Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (2008).

[20] PLATT, J. C. Probabilities for SV Machines. Advances in Large
Margin Classifiers, 2000.

[21] RASMUSSEN, C. E., AND WILLIAMS, K. I. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[22] SCHOLKOPF, B., AND SMOLA, A. J. Learning with Kernels. The
MIT Press, 2002.

[23] SHEIKH, Y., AND SHAH, M. Bayesian modelling of dynamic scenes
for object detection. Transactions on Pattern Analysis and Machine
Intelligence (2005).

[24] SOGA, M., KATO, T., OHTA, M., AND NINOMIYA, Y. Pedestrian
detection with stereo vision. IEEE Proceedings on the International
Conference on Data Engineering (2005).

[25] TOMASI, S., AND TOMASI, C. Good features to track. In IEEE
Computer Vision and Pattern Recognition Conference (CVPR) (1994).

[26] WAHBA, G. Spline models for observational data. Conference Series
in Applied Mathematics (1990).

[27] WANG, L., ZHAO, G., CHENG, L., AND PIETIKŁINEN, M. Machine
Learning for Vision-Based Motion Analysis: Theory and Techniques.
Advances in Pattern Recognition, 2011.

[28] WILLIAMS, C. K. I. Computation with infinite neural networks.
Neural Computation (1998).


	Introduction
	Related Work
	Optical Flow Extraction
	Gaussian Process Classification
	Inference Equations and Covariance Function
	Hyperparameter Optimization
	Probabilistic Least-Squares Classification
	Incremental Updates
	Feature Filtering

	Experimental Results
	Urban Scenario
	Portable camera device

	Conclusion
	References

