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Abstract
This paper proposes a novel technique for the automatic segmentation of dynamic objects, solely using information from
a single uncalibrated moving camera and without the need for manual labeling (or any human intervention, for that
matter). Matching pairs of sparse features are extracted from subsequent frames, and the resulting optical flow information
is divided into two classes (static or dynamic) using the RANSAC algorithm. This initial classification is then used to
incrementally train a Gaussian process (GP) classifier that is then able to segment dynamic objects in new images. The
GP hyperparameters are optimized online during navigation, with new data being gradually incorporated into the non-
parametric model as it becomes available while redundant data is discarded, to maintain a near-constant computational
cost. The result is a vector containing the probability that each pixel in the image belongs to a dynamic object, along with
the corresponding uncertainty estimate of this classification. Experiments conducted using different robotic platforms,
ranging from modified cars (driving at speeds of up to 50 km/h) to portable cameras (with a full six-degree-of-freedom
range of motion), show promising results even in highly unstructured environments with cars, buses and pedestrians as
dynamic objects. We also show how it is possible to cluster individual dynamic pixels into different object instances, and
then further cluster those into semantically meaningful categories without any prior knowledge of the environment. Finally,
we provide visual odometry results that testify to the proposed algorithm’s ability to correctly segment (and then remove)
dynamic objects from a scene, and how this translates into a more accurate motion estimate between frames.
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1. Introduction

A truly autonomous robot requires precise knowledge of
the environment around it in order to perform high-level
tasks such as path planning (Szoke et al., 2009), obstacle
avoidance (Nedevschi et al., 2004) and goal-oriented nav-
igation (Cheng and Zelinsky, 1998). The most common
way to address the problem of building a representation
of the environment around a robot is by generating a map
which contains the structures the robot will interact with
during navigation. However, the iterative nature of building
a map usually constitutes a challenge when dealing with
dynamic objects, since their position varies with time and
therefore cannot be estimated simply by continuous obser-
vation. Because of their unpredictability and overall impor-
tance in a scene, segmenting dynamic objects from a static
background is an important step in applications such as
collision warning and avoidance, surveillance, video min-
ing, driver assistant systems and tracking. Of all sensors,
cameras are becoming increasingly popular because they
are relatively inexpensive, small, information-rich, of easy

installation and have a wide field of view both horizontally
and vertically. The texture and color information provided
by visual sensors is also invaluable in situations where a
better characterization of objects is necessary, such as road
segmentation, lane detection and multi-tracking.

Machine learning techniques have been widely utilized
in computer vision applications (Sheikh and Shah, 2005;
Wang et al., 2011), and are known to provide robust mod-
els based on scarce and noisy datasets. This characteristic
makes them especially attractive in real-world scenarios,
where the same object may present itself in a wide vari-
ety of ways due to changes in scale, luminosity, viewpoint
and even shape. By optimizing a non-parametric model over
a large subset of examples (which could be obtained as a
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batch prior to the beginning of the navigation or during it,
in an online fashion), these techniques are capable of gener-
alizing over small variations in the object’s appearance and
extracting the properties that truly represent it, in a way that
classical parametric models greatly struggle with.

The main goal of this paper is to provide a framework
capable of segmenting dynamic objects from a static back-
ground using only a single uncalibrated camera placed
on top of a mobile platform, without the need for extra
sensors or any prior knowledge of the environment. We
introduce a novel self-supervised algorithm based on Gaus-
sian processes (GPs) (Rasmussen and Williams, 2006), a
non-parametric Bayesian technique used here to estimate
the probability that each pixel in an image belongs to a
dynamic object, based on optical flow information obtained
from sparse features matched between frames. The extrac-
tion of dynamic objects based on the consistency of the
motion field has already been explored in the literature
(Ibrahim et al., 2010; Han and DeSouza, 2011; Teutsch
and Kruger, 2012), and here we expand on this notion
from an unsupervised machine learning perspective. An ini-
tial classification is performed using the 7-point RANSAC
algorithm (Fischler and Bolles, 1981), and the results are
used as input for the GP to perform a second classifi-
cation on the entire image, along with the corresponding
uncertainty estimates. We show that this second layer of
classification is capable of greatly improving segmentation
results, by incorporating information from previous frames
and thus allowing the system to gradually learn the behav-
ior of structures around the vehicle. The GP hyperparam-
eters are optimized online during navigation as new data
becomes available, and the current non-parametric model
is constantly updated by adding relevant information and
removing redundant information, to keep the computational
cost roughly constant.

Once this segmentation is complete, the results can be
readily used in a wide range of applications. In particu-
lar, we introduce here a novel technique that is capable of
clustering individual dynamic pixels into different object
instances, based on a combination of optical flow, spatial
coordinates and color/texture information. These various
object instances, in turn, can also be clustered themselves,
creating different object categories, and we show here that
these categories contain semantically meaningful informa-
tion even when no prior knowledge of the environment is
available. In addition, we provide visual odometry results
that testify to the proposed algorithm’s ability to correctly
segment (and then remove) dynamic objects from a scene,
and how this translates into a more accurate motion estimate
between frames.

The rest of this paper is divided as follows: Section 2 pro-
vides a brief overview of different methods and techniques
for the segmentation of dynamic objects already available
in the literature. We then move on to Section 3, where the
proposed algorithm is introduced and its various stages are
discussed, along with how they connect to each other from

input (two subsequent frames) to output (dense pixel classi-
fication between static/dynamic classes). The next sections,
4 and 5, are devoted to explaining the theory behind each of
these steps, the former focusing on the extraction of image
information and the latter on GP classification. The vari-
ous experiments conducted to test the proposed algorithm
are presented and discussed in Section 6, and Section 7
concludes and presents future research directions.

2. Related work
Several applications of dynamic object detection assume a
static camera, which implies that any non-dynamic object
will maintain its position over time. In this scenario it is
possible to statistically model the background, essentially
‘filtering it out’, and treat any change in pixel intensity
as a potential dynamic object. In Wren et al. (1997) each
pixel of the image is modeled as a Gaussian distribution,
whose parameters are learned from observations in consec-
utive frames, and in Koller et al. (1994) a Kalman filter
is used in a similar fashion. When a uni-modal solution
is ill-suited (e.g. when the background changes in a pre-
dictable manner, such as trees swaying, fans rotating or
water flowing), a mixture of Gaussian models has been
applied with satisfactory results (Friedman and Russell,
1997; Stauffer and Grimson, 2000a; Ellis and Xu, 2001),
and in Stauffer and Grimson (2000b) and Stenger et al.
(2000) a hidden Markov model (HMM) is used to model the
background while exploiting spacial dependencies between
pixels. Other approaches forego pixel-wise locality in favor
of regional models of intensity, such as eigenvalue decom-
position (Oliver et al., 2000) and autoregressive moving
averages (Monnet et al., 2003; Zhong and Sclaroff, 2003).
A mixture of local and regional models is employed in
Toyama et al. (1999), and in Sheikh and Shah (2005) a fore-
ground model is explicitly maintained in order to improve
the detection of dynamic objects without using tracking
information.

In other applications, however, the visual sensor is
mobile, usually mounted on top of a robotic platform. In
this scenario it is impossible to separate background and
foreground solely by tracking pixel intensity changes, as
static objects will also experience relative motion due to
camera rotation and translation between frames. A straight-
forward way of segmenting this sort of image is to model
the ground plane and treat everything else as an object
(Zhao and Thorpe, 2000; Nedevschi et al., 2004; Soga
et al., 2005), however, this approach tends to fail in crowded
environments where the ground plane is not readily visi-
ble. A weaker ground plane constraint is presented in Ess
et al. (2009), where a coupling between object detection and
scene geometry is maintained using a Bayesian network.

If a significant portion of the environment is assumed to
be static, the relative motion of static objects can be fil-
tered out by calculating the optical flow (Horn and Schunck,
1980; Namdev et al., 2012) of the image and using a vot-
ing method, such as RANSAC (Fischler and Bolles, 1981),
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to elect the most probable motion hypothesis. Any region
that does not comply with this constraint is assumed to
be dynamic, and can be tracked using classical approaches
such as extended Kalman filters (Welch and Bishop, 1995)
or particle filters (Van der Merwe et al., 2001) (robust data
association algorithms (Cox, 1993) and occlusion-handling
techniques (Ellis and Xu, 2001; Ess et al., 2009) are neces-
sary for dealing with very cluttered environments). If more
than one camera is available, a stereo triangulation can pro-
vide a 3D position estimate for matched features (Hartley
and Zisserman, 2004), incorporating extra information that
could be used to facilitate and improve object clustering
and tracking (Taluker and Matthies, 2004; Almanza-Ojeda
and Ibarra-Manzano, 2011). More accurate detection can
also be achieved by applying category-specific models to
separate the static background from already established
dynamic objects, either on a 3D point-cloud (Keck Jr et al.,
2006; Arras et al., 2007), directly on the camera images
(Dalal and Triggs, 2005; Leibe et al., 2008) or in a combi-
nation of both (Ess et al., 2007; Spinello et al., 2008). The
static background information can also readily be used to
improve visual odometry applications (Nister et al., 2006;
Guizilini and Ramos, 2012, Bak et al., 2014) since its opti-
cal flow values now solely reflect the camera’s own rotation
and translation.

Due to a steady increase in computational power and
storage capacity, many researchers are now moving away
from increasingly complex parametric models, designed
for a specific task based on a deep understanding of the
process at hand, and focusing instead on machine learn-
ing techniques (Bishop, 2006; Rasmussen and Williams,
2006). These techniques eliminate the need for an explicit
model of the underlying phenomenon by using training
data, containing examples of the problem it is trying to
solve, to learn the direct transformation between inputs and
outputs. In computer vision specifically, machine learning
techniques are beneficial due to the high-level dense nature
of image information, which poses a challenge to tradi-
tional parametric approaches. By allowing the system to
learn the underlying mapping between inputs and outputs,
instead of explicitly defining it, we may discover patterns
and correlations that are not readily apparent and can pro-
vide further insight into the nature of the task. Examples
of computer vision applications that have been addressed
using machine learning techniques include face recognition
(Guo et al., 2000), people detection and tracking (Spinello
et al., 2008), motion analysis (Wang et al., 2011), visual
odometry (Guizilini and Ramos, 2012), scene classification
(Maron and Ratan, 1998), 3D reconstruction (Saxena et al.,
2009) and denoising (Hammond and Simoncelli, 2007).

Learning strategies can be broadly divided into two cat-
egories, according to how available information is incor-
porated into the non-parametric model. Batch algorithms
have access to all training data before any inference is
done, and so all available information can be incorporated
simultaneously. Online algorithms receive new data during
the inference process, and so new information has to be

gradually incorporated into the non-parametric model as it
becomes available. While batch algorithms are usually more
robust, since the simultaneous processing of all information
allows for a better understanding of the underlying phe-
nomena, the resulting model is incapable of further learning
new patterns and behaviors. Online algorithms, on the other
hand, provide an iterative learning framework that never
ceases to refine the current model, adding relevant informa-
tion while removing redundant information. For this reason,
most current approaches rely on a combination of both,
with an initial model being generated using batch train-
ing data and then further refined in an online fashion using
new data collected during inference. In Dekel (2008) a
technique for online-to-batch conversion is presented which
maintains online efficiency in a batch environment. Kivinen
et al. (2003) explores an online extension to support vec-
tor machines (SVMs) (Cristianini and Shawe-Taylor, 2000),
discussing the kernel trick and the value of large margins
in classification. The incorporation of sparseness into an
online algorithm is presented in Csat and Opper (2002) and
Ranganathan and Yang (2008) as a way to address large
datasets in a timely manner. A technique for online boost-
ing is described in Yang and Belongie (2009), for both
regression and classification scenarios.

Another way of dividing different learning strategies
is related to the nature of information available to be
incorporated into the non-parametric model. Supervised
approaches (Vapnik, 1995; Mohri et al., 2012) require
ground-truth values for all observed examples of the under-
lying phenomenon, be it from another independent sensor
or provided manually, by hand-labeling. Semi-supervised
approaches (Chapelle et al., 2006; Zhu, 2006) are initial-
ized from a supervised standpoint, with a finite set of
observations paired with their respective ground-truth, and
this initial model is then incrementally refined by incor-
porating new unlabeled observations. Finally, unsupervised
approaches (Hinton and Sejnowski, 1999; Ghahramani,
2004) completely eliminate the need for ground-truth, rely-
ing instead solely on unlabeled data to generate a model of
the underlying phenomenon. Because there is no ground-
truth, it is impossible to generate a penalty/reward signal
to evaluate a potential solution, which arguably makes this
branch of online learning strategies the hardest one to solve.
A possible variation of unsupervised learning is called self-
supervised (Sofman et al., 2006), because it is capable of
self-generating ground-truth estimates during the training
process, thus enabling the use of supervised techniques in
an unsupervised manner.

We propose here a novel algorithm for the automatic seg-
mentation of dynamic objects that is self-supervised, which
means that it does not require any prior knowledge of the
environment surrounding the camera. There is no human
intervention at any stage of the proposed algorithm, and
no other sensor is required to provide ground-truth for the
segmentation process. This approach is particularly useful
because it can be readily applied to any sort of environ-
ment, by allowing the system to gradually learn different
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Fig. 1. Diagram of the proposed algorithm for the segmentation of dynamic objects.

patterns and react to gradual changes in structure behavior.
Also, the proposed algorithm is robust to camera motion,
being able to filter out ego-motion and retain only optical
flow information that is created by external movement (e.g.
dynamic objects). This is still an open problem in computer
vision, and allows the use of the proposed algorithm in a
much wider range of applications.

3. Algorithm overview

A diagram of the proposed algorithm for the self-supervised
segmentation of dynamic objects is depicted in Figure 1.
First of all, we can see that it receives as input a pair of
frames, IMG1 and IMG2, and returns as output a vector
Y12 containing the dense pixel classification between the
static/dynamic classes, along with the corresponding uncer-
tainty estimates �12. The algorithm can roughly be divided
into two stages: image information extraction and Gaussian
process framework, the former dealing with the extraction
of information from the input images and the latter dealing
with the GP classification of such information.

The first stage, image information extraction, starts by
generating the feature sets FTR1 and FTR2 from the input
images. These feature sets are then matched to generate
the matching set MTC12, which constitutes the sparse opti-
cal flow used to determine motion in different portions of
the environment around the vehicle. The RANSAC algo-
rithm (Fischler and Bolles, 1981) is then used, in conjunc-
tion with this matching set, to calculate the fundamental
matrix F12 between frames, which contains the geomet-
ric constraints that govern camera motion. Assuming that
most of the environment is static (an assumption that will
be further discussed later on), it is possible to calculate
the most probable motion hypothesis for the camera, that
solely reflects its translation and rotation between frames.
Any matching pair that does not comply with these con-
straints will, therefore, belong to a dynamic object, and this
information provides the initial classification R12 between
static/dynamic features. Additionally, the matching set also

undergoes a parametrization process, which generates the
input vector X12 used by the GP framework.

The resulting pair ( X , R)12 moves on to the second stage,
Gaussian process framework, where it is decided whether
or not this information is relevant (and should therefore be
incorporated into the non-parametric model ( X , R)NP), or
redundant (and should therefore be discarded). This non-
parametric model is empty at the beginning of navigation
and the hyperparameters are selected randomly, indicating
that no prior knowledge of the environment is necessary. If
these hyperparameters are available (e.g. from a previous
run) they can be incorporated seamlessly. The GP hyperpa-
rameters are then updated according to this new informa-
tion, and the resulting optimized hyperparameters are used
in conjunction with the non-parametric model to generate
the final classification Y12 for each matching pair, along
with the corresponding uncertainty estimate �12. Since this
final classification does not require any optical flow infor-
mation, only image coordinates and color intensities, it can
be performed equally in any portion of the image, thus
allowing a dense classification that covers even featureless
portions of the scene. The result is a 2×h×w vector (where
h and w are, respectively, the image’s height and width res-
olution) containing values in the range [0, 1] that indicate
the probability that each pixel in the image belongs to a
dynamic object, along with the corresponding uncertainty
with regard to that estimate.

4. Image information extraction

The approach proposed here uses sparse optical flow infor-
mation from a pair of consecutive frames obtained using a
single uncalibrated camera configuration. A histogram filter
was applied to each frame to account for global luminos-
ity changes and allow for a proper representation of dark
areas. The initial feature extraction is performed using a
combination of both the scale-invariant feature transforma-
tion (SIFT) (Lowe, 2004) and the Shi–Tomasi corner detec-
tion (Tomasi and Tomasi, 1994) algorithms, with sub-pixel
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accuracy and frame-to-frame tracking, to ensure a high den-
sity of features throughout the entire image (Figure 2(a)).
Empirical tests show that the invariance properties of SIFT
features ensure robustness during the matching process,
whereas the Shi–Tomasi corner detector is particularly suit-
able for tracking over a series of frames. Any other similar
method could be readily applied, both for speed purposes
(Bay et al., 2006) or as a way to model different environ-
ment properties. The feature set from each frame is then
matched with the feature set from the subsequent frame
using 128-element SIFT descriptors, to generate the optical
flow information that determines motion in different por-
tions of the environment around the vehicle. The resulting
set is shown in Figure 2(b), where each match is represented
as a red line segment connecting the corresponding features
from each frame.

This optical flow information is then used in two differ-
ent ways: the initial RANSAC classification and the opti-
cal flow parametrization. The former produces the initial
classification between the static and dynamic classes that
serves as ground-truth for the GP framework, while the
latter produces the vectors that also serve as input for the
GP framework. The next two sections describe these two
stages in further detail, introducing the techniques utilized
and discussing these intermediate results.

4.1. Initial RANSAC classification

The initial RANSAC classification stage provides the
ground-truth used by the GP framework, thus eliminat-
ing the need for manual labeling or extra sensors that are
capable of providing such information directly. The RAN-
dom SAmple Consensus (Fischler and Bolles, 1981) is an
iterative algorithm used to estimate the parameters of a
mathematical model from a set of observed data which con-
tains outliers. For the application at hand, the mathematical
model is the fundamental matrix F that encodes the geomet-
ric constraints correlating the visual system between frames
(Hartley and Zisserman, 2004), and the outliers are the
dynamic objects in the environment, which generate opti-
cal flow that cannot be explained away by the camera’s own
translation and rotation. The RANSAC algorithm basically
elects a random sample from the available data, builds a
model and then tests all remaining data points against this
model, and the model with the highest number of inliers is
determined to be correct. If most of the environment is con-
sidered static, it is natural to expect that RANSAC should
elect the model that best represents a static environment,
and therefore any matching pair that does not comply with
these constraints should belong to a dynamic object. If most
of the environment is indeed not static, this hypothesis does
not hold and the algorithm will start to converge to a dif-
ferent motion model. We assume here that any violations of
this hypothesis will be temporary, and the learning aspect
of the proposed algorithm should allow it to recover from
local failures.

We can see in Figure 2(b) that there is a substantial num-
ber of false matches, mostly due to similarities in different
portions of the image, noise or occlusion. It is therefore nec-
essary to make a distinction between these false matches
(the real outliers) and dynamic features, that were correctly
matched but have an optical flow different than that gener-
ated by static features. We can also see in Figure 2(b) that,
even though a large portion of the environment is dynamic
(especially in the right column), there are still enough static
features to ensure that RANSAC will converge to a model
that represents a static environment, mostly in the street
and in the upper portions of the image. Once this model is
obtained, each matching pair is tested against it and a mea-
surement of error yn is calculated, based on the Euclidean
distance between the match and its corresponding epipolar
line (Figure 3). If the match falls precisely on the epipo-
lar line, the projection error is zero and its optical flow is
consistent with that of a static object, and the higher the
error is the further away the match is from the epipolar
line. This error estimate provides a metric for the determi-
nation of which features are dynamic and which are static,
and matching pairs with a projection error above a certain
threshold are discarded as outliers. This threshold is also
used to normalize the remaining projection errors to values
ranging in [0, 1], which indicate the probability that each
matching pair belongs to a dynamic object.

Examples of this initial RANSAC classification are
shown in Figure 4, where the projection error values were
converted to colors ranging from red (static objects) to
green (dynamic objects). In Figure 4(a) the vehicle is mov-
ing forward, generating a relative optical flow component
that also influences static features. Because of that, even
though most dynamic objects were correctly classified,
there are several portions of the image that are wrongly
classified as dynamic, especially towards the border where
the relative optical flow component of camera motion is
stronger. The street also contains several features that were
wrongly classified, mostly due to the lack of texture that
increases ambiguity during the matching process and with
it the chances of generating outliers. In Figure 4(b) the
vehicle is not moving, and so any optical flow detected is
solely due to the presence of dynamic objects. It is clear
that this scenario greatly facilitates RANSAC classifica-
tion, as now any feature that experiences motion between
frames can be safely considered dynamic. However, we can
also see several dynamic objects that are not represented
by any features, and thus are not detected by the algo-
rithm. We attribute this lack of representation to occlusion,
the presence of deformable objects and local luminosity
changes.

4.2. Optical flow parametrization

Even though the SIFT descriptor is highly effective in fea-
ture matching between frames, possessing several invari-
ance properties that promote a unique correspondence

 at University of Sydney on July 11, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


564 The International Journal of Robotics Research 34(4-5)

Fig. 2. Examples of the feature (a) extraction and (b) matching processes. In the left column the vehicle is moving forward, whereas in
the right column the vehicle is static (all optical flow is generated solely from dynamic objects).

Fig. 3. Examples of epipolar lines for the particular cases of (a) forward motion and (b) counter-clockwise rotation.

Fig. 4. Initial RANSAC classification, based on the image information presented in Figure 2. Each line segment has a color ranging
from red (static object) to green (dynamic object), and matching pairs considered outliers were discarded.
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between each pair, it does not serve as well in applications
that aim at generalization (Lowe, 2004), which is the case
in non-parametric modeling based on training data. Because
of this, a new descriptor that serves as the input vector xn for
the GP framework is introduced here and it is of the form

xn = {u, v, r, g, b, m}n (1)

In the equation above, ( u, v) are the pixel coordinates of
the matched feature in the image (as a convention, the first
frame is used for coordinate extraction). This information is
necessary in order to correctly model different motion pat-
terns throughout the image (e.g. the top portion of the image
is mostly static, whereas the right portion usually contains
motion contrary to the vehicle’s), and together comprise the
spatial component of the descriptor. The four other parame-
ters, {r, g, b, m}, are the color components and are calculated
by placing a w-by-w window centered on ( u, v) and extract-
ing the average of pixel intensities in this area (a seven-
by-seven window is used during experiments, to minimize
the influence of noise). The values of {r, g, b} are obtained
by applying this method to the red, green and blue chan-
nels respectively of the colored image, and m is obtained by
applying the same method to its monochromatic version.
This color information is necessary in order to correctly
model transitions between objects, delineating their bor-
ders and allowing the algorithm to ‘fill in the gaps’ where
no features were detected. Other relevant components may
be added seamlessly to the descriptor without any further
changes in the algorithm.

The final optical flow information set that represents
each frame is then of the form ( X , y)N

n=1, where X is a
D × N matrix containing the D = 6 descriptor values xn

for all N matched features and y is a 1 × N vector con-
taining the probability yn that each one of these features
belongs to a dynamic object. It is important to note that,
since this descriptor does not require matching informa-
tion between features in different frames, it is possible to
use it to parametrize any pixel in the image. The descrip-
tor xm generated from these pixels will not have a corre-
sponding ground-truth ym (obtained using RANSAC, which
requires matching information), and therefore cannot be
incorporated into the non-parametric model, however, it
can still be used during the inference stage that provides
the final static/dynamic classification. By performing this
inference on every pixel, a dense classification of the entire
image can be obtained, even though only sparse optical flow
information is readily available from each frame pair.

5. GP classification

From a machine learning perspective, the problem of
dynamic object segmentation can be seen as a binary clas-
sification problem, where each pixel in the image has a
certain probability of either belonging to a static or dynamic
object. We use here a GP (Rasmussen and Williams,

2006) to perform this classification based on initial ground-
truth results obtained according to the RANSAC algorithm
(see previous section). Descriptive information from sparse
matched features are used to optimize the hyperparame-
ters of a positive-definite kernel (the covariance function)
that characterizes the relationship between inputs, and the
resulting non-parametric model allows the classification of
the entire image as a smooth continuous function, along
with the corresponding uncertainty estimates.

5.1. Inference equations and covariance function

A GP is a non-parametric method in the sense that it does
not explicitly specify a functional model between inputs
and outputs. Instead, it uses information available in a train-
ing dataset � =( X , y) = {x, y}N

n=1 to learn the relationship
between different points in the input space, and then extrap-
olates this information to infer the output of new data in
a probabilistic manner. A GP model is entirely defined by
mean m( x) and covariance k( x, x′) functions:

f ( x) ∼ GP( m( x) , k( x, x′) ) (2)

Most implementations assume m( x) = 0 without loss of
generality by scaling the data appropriately, and k( x, x′)
is the covariance function, a positive-definite kernel whose
coefficients (the hyperparameters) are optimized to maxi-
mize a certain objective function. Inference for a single test
point x∗ given � is calculated as

f ∗ = k( x∗, X )T [K( X , X ) +σ 2
n I]−1y (3)

V( f ∗) = k( x∗, x∗) −k( x∗, X ) [K( X , X ) +σ 2
n I]−1k( x∗, X )

(4)
where σ 2

n quantifies the noise expected in observation y and
K is the covariance matrix, with elements Kij calculated
based on the covariance function k( xi, xj). Due to the non-
stationary behavior of a typical segmented image (abrupt
changes from a static to a dynamic object), the neural net-
work covariance function (Williams, 1998) was chosen here
to model the relationship between input points. The neural
network covariance function is derived from a neural net-
work with a single layer, a bias and H → ∞ hidden units.
If the hidden weights are assumed to be Gaussian distri-
butions with zero mean and covariance �, this covariance
function can be defined (Neal, 1996) as

k( x, x′) = σ 2
f arcsin

⎛
⎝ 2̃xT�x̃′√

( 1 + 2̃xT�x̃) ( 1 + 2x̃′T�x̃′)

⎞
⎠
(5)

where x̃ =( 1, x1, . . . , xD)T is an augmentation of x with
the constant value 1 (bias), and σ 2

f is a signal variance
used to scale the correlation between points determined by
the neural network covariance matrix � (the length-scale
matrix, here assumed diagonal with D+1 eigenvalues). The
expression also contains a sigmoid-like function, arcsin( x),
to model sharp transitions and non-linearities.
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5.2. Hyperparameter optimization

During the training stage, the hyperparameters of the
covariance function are optimized to minimize a certain
objective function, here chosen to be the log-marginal like-
lihood (Rasmussen and Williams, 2006) due to its ability to
balance data fit and model complexity, thus minimizing the
chance of over-fitting. The negative log-marginal likelihood
objective function is defined as follows:

ζ = ln p( y|X )=−1

2
log( |K|) −1

2
yTK−1y −N log( 2π ) (6)

The hyperparameter set θ to be optimized is composed
of the diagonal elements of � (length scales), the signal
variance σf and the noise level σn. Initially, the optimiza-
tion is conducted using a combination of stochastic maxi-
mization (simulated annealing), to avoid local minima, and
gradient-descent algorithms to reduce the influence of ini-
tial conditions. As new data becomes available during navi-
gation further optimization is necessary, however, since the
environment around the vehicle is assumed to change grad-
ually, only a few steps of gradient-descent are performed at
each iteration. This gradual optimization also dramatically
increases the final computational speed of the algorithm,
and empirical data shows that the hyperparameters tend to
converge to constant values after a certain period.

5.3. Probabilistic least-squares classification

While the predictive mean f ∗ is useful in determining the
most likely hypothesis, it can also be misleading if consid-
ered in isolation. One of the key advantages of a GP is its
ability to also calculate the variance V( f ∗) of each predic-
tion, which acts not only as a way of identifying areas with
high measurement uncertainty but also can be combined
with the predictive mean to generate a probability distribu-
tion that acts as a classifier for the entire input space. We use
here a method known as probabilistic least-squares classifi-
cation (Rasmussen and Williams, 2006), which ‘squashes’
the predictions through a sigmoid function with parame-
ters α and β determined using a ‘leave-one-out’ (LLO)
approach, for speed purposes. This sigmoid function is
introduced in Platt (2000), and the implemented version for
training its parameters is defined as

p( yi|X , y−i, θ ) = 


(
yi( αμi + β)

1 + α2σ 2
i

)
(7)

where 
( .) is the cumulative unit Gaussian, y−i refers to the
output values of all training data excluding the pair ( xi, yi),
μi and σi are the predictive mean f ∗ and variance V( f ∗) at
the point xi, and θ represents the optimized hyperparam-
eters of the covariance function. The training of α and β

can be performed by partitioning the original matrix K−1

to eliminate the influence of xi, thus eliminating the need
to recalculate the entire covariance matrix for each training

point (Wahba, 1990). The new expressions for the LLO pre-
dictive mean and variance are presented in equation (8), and
they allow the classification of each pixel in the image as a
static, dynamic or unsure object, according to user-defined
thresholds:

μi = yi − [K−1y]i

[K−1]ii
σ 2

i = 1

[K−1]ii
(8)

5.4. Incremental updates

One drawback of GPs is the cost of inverting K in equa-
tions (3) and (4), in order to respectively calculate the
predictive mean and variance. This inversion has a com-
putational complexity of O( N3), where N is the number
of points, and rapidly becomes the bottleneck in the algo-
rithm’s speed as the amount of available data increases.
Since ours is an online approach, where the non-parametric
model (represented as the covariance matrix K) is gener-
ated incrementally during navigation, it is necessary to find
a way to both incorporate and remove information from the
covariance matrix without having to completely recompute
it at every iteration. A common approach in GP litera-
ture (Scholkopf and Smola, 2002; Osborne et al., 2008) is
using the Cholesky decomposition to calculate the predic-
tive mean f ∗ and variance V( f ∗), instead of the covariance
matrix K directly. The Cholesky decomposition is useful for
solving linear systems with a symmetric, positive-definite
coefficient matrix, and produces more numerically stable
results than a straightforward matrix inversion. Assuming
that the covariance matrix K and the Cholesky matrix C are
defined (Smith et al., 2010) as

K =
⎡
⎣ K11 k12 K13

kT
12 k22 k23

KT
13 kT

23 K33

⎤
⎦ C =

⎡
⎣ C11 c12 C13

0 c22 c23

0 0 C33

⎤
⎦
(9)

the resulting Cholesky matrix C′ obtained by marginalizing
(removing) the central row and column is given by

C′ =
[

C11 C13

0 γ ( CT
33C33 + cT

23c23)

]
(10)

where γ is the Cholesky update operator, readily available
in packages such as (Dongara et al., 1979; MATLAB, 2011)
and which exploits the special structure of cT

23c23 to attain
a computational complexity of O( n2). The marginalization
of K is obtained simply by removing its middle row and col-
umn. Similarly, if the covariance matrix K and the Cholesky
matrix C are defined as

K =
[

K11 K13

KT
13 K33

]
C =

[
C11 CT

13
0 C33

]
(11)
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the resulting Cholesky matrix C′ obtained by expanding
(adding) a central row and column is given by

C′ =

⎡
⎢⎣

C11 CT
11\k12 C13

0
√

k22 − cT
12c12

k23−cT
12C13

c22

0 0 γ ( CT
33C33 + cT

23c23)

⎤
⎥⎦
(12)

where the operator \ is used to indicate the solution of
c12 in the equation CT

11c12 = k12, obtained by the use of
backwards or forward substitution for the upper triangular
matrix C11. Again, the expansion of K is done directly by
incorporating the middle row k∗ = [kT

12, k22, k23] and col-
umn kT

∗ , obtained by calculating the covariance between x∗
and all training points xn (points before the middle are part
of k12, points after the middle are part of k23, and k22 is the
diagonal term of the new row and column).

5.5. Information selection

The feature extraction and matching techniques described
in Section 4 produce an average of around 7000 new fea-
tures per frame. It is impractical to incorporate all these new
data points into the GP framework at every iteration, as it
would create an exceedingly complex and computationally
prohibitive model after just a few iterations. Fortunately,
most of this information is redundant, since it describes
an environment that is only gradually changing due to
camera motion and the presence of dynamic objects, and
therefore can be safely discarded without compromising
model accuracy. Also, it is necessary to remove erroneous
information generated by RANSAC misclassifications, that
could skew results and compromise long-term accuracy. In
order to determine which data points should be incorpo-
rated and which should be removed from the GP frame-
work at each iteration, we impose a series of four filtering
steps over different subsets of the available data, designed to
remove redundant and unreliable information from the non-
parametric model. Each of these steps is described below in
more detail:

1. Density constraint on input data. As stated previ-
ously, an average of 7000 new data points are produced
at every iteration by the feature extracting and match-
ing techniques. Fortunately, most of this information
is redundant, since features tend to be clustered into
specific portions of the image and may share a sim-
ilar classification. This allows them to be safely dis-
carded without compromising results by performing a
nearest-neighbor search in the input space for each fea-
ture and discarding those whose classification is similar
to their closest neighbors, according to a certain dis-
tance threshold. This process is repeated until only one
feature of any given class remains in each portion of the
input space determined by the distance threshold, and
if any portion is represented by both classes then two
features are maintained, one for each class.

2. Inference on remaining input data. The next step con-
sists of performing inference on the remaining input
data points, which were not discarded by the density
constraint. This inference process provides a final GP
classification for these data points based on the cur-
rent non-parametric model (this step is skipped in the
first iteration), which is then compared to the initial
RANSAC classification. Data points that are correctly
classified (the GP classification is the same as the
RANSAC classification) are discarded, because their
position in the input space is already well-represented
and does not require more information to provide accu-
rate estimates. Those that were incorrectly classified
are assumed to be relevant and are incorporated into
the non-parametric model, increasing the amount of
information available for inference.

3. Inference on the non-parametric model. The next
step is to perform inference on the non-parametric
model itself. This time, data points that are incorrectly
classified are removed, thus decreasing the amount
of information available for inference. This step is
important in eliminating RANSAC misclassification
(outliers), as they are assumed to be a minority and
therefore less representative of their position in the input
space. The removal of such misclassifications allows
the non-parametric model to maintain consistency even
after long periods of navigation, essentially forgetting
old environment behaviors and adapting to new ones.

4. Density constraint on the non-parametric model.
Lastly, the density constraint is enforced on the non-
parametric model itself, removing data points with
similar classification that are close to each other accord-
ing to a certain distance threshold. As in the first step,
this serves as a way to decrease the amount of redun-
dant information available for the non-parametric model
while still maintaining its spatial distribution in the
input space.

Figure 6 shows the progression of the size of the non-
parametric model during navigation. It starts empty, without
any information, and at the first iterations a large num-
ber of data points are incorporated, because the algorithm
is still learning the different static and dynamic structures
of the environment. When the number of incorporated data
points reaches around 4000 the size of the non-parametric
model stabilizes, with roughly the same number of data
points being incorporated and removed at each iteration.
This is to be expected, since as a general rule the environ-
ment changes gradually with each frame, and the algorithm
is capable of learning new behaviors at the rate at which
it is forgetting old ones. When there is a sudden change
in the environment (e.g. the camera starts/stops moving, or
a previously dynamic object becomes static or vice versa)
there is a spike on the number of data points incorporated,
indicating that the environment has suddenly become more
complex and the algorithm is trying to learn this new con-
figuration. Once it has managed to do so, the size of the
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Fig. 5. Stages of information selection (red dots are features classified as static, and blue dots are features classified as dynamic). (a)
Initial input data points. (b) Input data points after density constraint. (c) Data points after inference that are incorporated into the non-
parametric model. (d) Non-parametric model data points after inference. (e) Non-parametric model after density constraint. (f) Final GP
classification of all input points, ranging from red (static) to green (dynamic).

non-parametric model stabilizes and returns to the 4000
level, which is maintained even after an undetermined long
period of navigation. This level can be adjusted by fine-
tuning the value for the distance threshold in the density
constraint, according to requirements in performance and
computational efficiency.

5.6. Pixel-by-pixel classification

In principle, the entire image can be classified using
the probabilistic least-squares classification technique
described in Section 5.3, by calculating the input vector for
each pixel in the image and performing GP inference based
on the current non-parametric model. However, inference
has a computational complexity of O( n2), with n being the

number of data points available, and for a 600 × 400 image
a total of 240,000 inferences would have to be performed.
Needless to say, these numbers make a dense classification
of the entire image infeasible for real-time deployment.

Since each inference is performed independently, shar-
ing the same covariance matrix K and ground-truth vector
y, one possible solution would be to parallelize the infer-
ence process, or to perform the matrix multiplications in
a graphics processing unit (GPU). Another solution pro-
posed here is pixel subsampling, in which only certain pix-
els are selected for inference and the remaining ones are
calculated based on their neighbors’ properties. For this par-
ticular application, a predetermined number of rows and
columns are skipped during inference (e.g. every other row
and column is skipped), and their classification is calculated
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Fig. 6. Number of data points maintained by the non-parametric model at each iteration. Note that this number stabilizes at around
4000, with spikes indicating moments in which there was a radical change in the environment (e.g. the camera started/stopped moving,
or a static object suddenly became dynamic or vice versa). As the algorithm learns these new behaviors, the number of data points
stabilizes and returns to the 4000 level.

using linear interpolation based on their nearest neighbors
both horizontally and vertically. This approach decreases
the computational complexity by a factor of r2, where r is
the number of rows (and columns) skipped, and by fine-
tuning this parameter it is possible to achieve the desired
computational complexity. It also has the added benefit of
blurring the borders of dynamic objects, thus providing a
‘safety zone’ that minimizes the chances of using false
information for visual odometry and filling in the gaps in
small patches where no texture is available.

An example of such interpolation is shown in Figure 7, in
which each pixel in the image is depicted by its probability
of belonging to a dynamic object. In Figure 7(a), only every
fifth pixel in each row and column is classified, providing an
outline of the final classification that is then completed via
interpolation as shown in Figure 7(b). The resulting proba-
bilistic classification can then be transformed into a discrete
classification between static/dynamic/unsure objects, based
on user-defined thresholds and the uncertainty estimates for
each pixel.

6. Experimental results

This section presents and discusses the experimental
results obtained using the proposed algorithm for the self-
supervised segmentation of dynamic objects. Initially, data
collected from a modified vehicle navigating in an urban
environment is used to generate a dense pixel-by-pixel clas-
sification, which serves to qualitatively validate the pro-
posed algorithm. These results are then compared with
traditional approaches for the segmentation of dynamic
objects, as a way to provide a quantitative measurement of

their accuracy in relation to well-established similar tech-
niques. The same algorithm is also tested, without any mod-
ification, using another dataset collected from a portable
camera device. This serves to show its ability to general-
ize over different camera configurations, environments and
vehicle dynamics.

Afterwards, visual odometry results obtained using the
semi-parametric coupled Gaussian processes (SPCGP)
framework (Guizilini and Ramos, 2013) are presented both
with and without the incorporation of the proposed algo-
rithm. These results testify to its ability in correctly seg-
menting dynamic objects, which can then be removed to
allow the use of a purely static background for visual odom-
etry purposes. Finally, a technique concerning the clus-
tering of dynamic pixels into different object instances is
introduced and discussed, along with results obtained using
the final GP segmentation from the urban dataset. It is
then shown how to further cluster these objects into dif-
ferent categories, which contain semantically meaningful
information regarding their members even though no prior
knowledge of the environment is taken into consideration.

6.1. Dynamic object segmentation

The segmentation proposed algorithm was tested in two
different circumstances: an urban environment, using data
collected with a modified vehicle equipped with a sin-
gle uncalibrated camera, and a pedestrian perspective,
using data collected with a portable camera device. The
urban environment results were then compared with other
approaches to dynamic object segmentation, as a way to
validate how our algorithm improves over already existing
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Fig. 7. Example of pixel subsampling. In (a), only every fifth pixel in each row and column is classified, providing an outline for the
final classification that is then completed in (b) using linear interpolation.

techniques. The portable camera device results, on the other
hand, testify to our algorithm’s ability to generalize over dif-
ferent environments and camera configurations without any
changes in parameters.

6.1.1. Urban scenario. The urban dataset is composed of
14, 500 images obtained at a rate of three frames per second
along a trajectory of roughly 10 km, in which the vehi-
cle interacted normally with pedestrians, cars and buses at
speeds of up to 50 km/h. During this trajectory the images
collected were subject to radical changes in luminosity, due
to cloud coverage and tall buildings, and also to a wide vari-
ation in structures and dynamic objects around the vehicle,
as it navigated through different portions of the city.

The algorithm was initialized without any training, using
random hyperparameters and an empty covariance matrix.
At each iteration a new set of features is selected and incor-
porated into the non-parametric model, and redundant fea-
tures are removed in order to keep the computational cost
within a certain boundary. The remaining data points are
used for training, initially using stochastic optimization to
avoid local minima and afterwards gradient-descent tech-
niques to deal with gradual changes in the environment
structure. The first few iterations of the algorithm were done
in less than a second per frame, however, as new infor-
mation was incorporated the computational time stabilized
at a few seconds per frame, mostly due to the frequent
inferences necessary to decide which data points should be
added/removed from the non-parametric model. This time
estimate was obtained in a Matlab implementation, using a
single CPU and no GPU acceleration. We are confident that
a proper optimization could generate great improvements in
speed, due to a high parallelization potential. Approxima-
tion techniques, such as sparse GPs (Csat and Opper, 2002;
Rasmussen and Williams, 2006), could also substantially
improve computational speed, since it is natural to assume
that distant features should have no impact in calculations.

The final GP segmentation results obtained based on the
initial RANSAC classification introduced in Figure 5 are
depicted in Figure 8. A dense classification was performed,
with inference being conducted using every fifth pixel in
each row and column to provide an outline of the entire

image, and the remaining pixels were classified using linear
interpolation for speed purposes. This process was done for
both the predictive mean (Figure 8(b)) and variance (Figure
8(c)) values, which indicate, respectively, the best hypothe-
sis for each probability distribution and the confidence with
regard to that hypothesis.

In Figure 8(b) we can see that the algorithm was indeed
able to correctly detect most of the dynamic objects in
the environment, segmenting them from the static back-
ground. Virtually all misclassifications given by the initial
RANSAC classification in Figure 4(a) were removed, espe-
cially on the top left and right corners of the image, and also
in the areas where the street was represented. We attribute
this to the selection process, which is capable of removing
outliers and detecting the correct tendency of each portion
of the image even in the presence of significant noise. Also,
virtually all the featureless regions in Figure 4(b) were cor-
rectly filled by the dense classification process provided
by the GP framework, allowing the complete delineation
of all dynamic objects and their boundaries in relation to
the static background. Empirical tests suggest that 1.5 s
(five frames) is enough time for the proposed algorithm
to learn the behavior of an object in the environment, be
it a new dynamic object or a static object that suddenly
became dynamic (or vice versa). Note that this response
time decreases if the behavior in question has already been
observed previously (e.g. new dynamic objects appearing
where they usually do), which is the case most of the time.

Another key benefit of using the GP framework for seg-
mentation is its ability to calculate the uncertainty inherent
in each estimate, thus providing a measurement of vari-
ance for each pixel alongside the predictive mean. In the
context of object detection, this variance can be used to
determine which portions of the image are most likely to
be correctly classified and which require more information
before a final classification can be made, forming the basis
for active learning (Dima, 2006; Settles, 2010). Examples
of such variance are shown in Figure 8(c), with darker areas
representing lower uncertainty values and lighter areas rep-
resenting higher uncertainty values. It is clear that most of
the variance is concentrated in the borders of the image,
which is to be expected since this region is where the feature
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Fig. 8. Examples of the final GP classification results, based on the initial RANSAC information depicted in Figure 4. (a) Original
images. (b) Predictive mean, defined by a number ranging from 0 (black, static object) to 1 (white, dynamic object). (c) Predictive
variance, normalized to values ranging from 0 (lowest) to 1 (highest).

density is lowest (lots of features disappear and appear
between frames due to vehicle motion) and also where new
objects are detected for the first time. As we move to the
central portions of the image new objects and features are
gradually incorporated into the non-parametric model and
the variance decreases.

More examples of the predictive mean obtained using the
proposed algorithm are shown in Figure 9. (A video show-
ing the evolution of the predictive mean and variance in
more detail during navigation can be found in Extension
1.) These results were obtained in the same run, meaning
that the non-parametric model, starting empty and with ran-
dom hyperparameters, had to constantly adapt to changes
in the environment in order to learn the characteristics of
each individual frame. The information selection process
described in Section 5.5 was used to keep computational

complexity manageable during navigation, and the number
of data points maintained in each iteration for the first 1000
frames is depicted in Figure 6. From these images note that
even though the vehicle experienced radical changes in both
local and global luminosity, environment structures and a
wide range of different dynamic objects, it was still capable
of providing accurate segmentation results.

The proposed algorithm for the segmentation of dynamic
objects was compared with other approaches to dynamic
object segmentation, and the results are presented in Fig-
ure 10. These results were obtained based on information
from 200 hand-labeled images randomly selected from the
14,500 images available for testing. The dotted line repre-
sents the initial RANSAC classification results, the black
line indicates the proposed algorithm, and the red line indi-
cates the proposed algorithm but with a square-exponential
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Fig. 9. Final segmentation results. Each pixel is defined by a number ranging from 0 (black, static object) to 1 (white, dynamic object).
These results were obtained in the same run as the non-parametric model constantly adapts to new environment characteristics, without
any prior information and without any human intervention.

covariance function, instead of the neural network covari-
ance function. The blue line indicates results obtained using
SVMs (Cristianini and Shawe-Taylor, 2000) as the self-
supervised classification method instead of GPs, and the
green line indicates the optical flow classification (OFC)
results obtained based on Namdev et al. (2012).

The OFC uses motion potentials based on geometry to
build a graph-like structure from dense optical flow and
feature tracking (the SLAM component was not imple-
mented here, as it can be equally applied to any method-
ology). This graph is then clustered together and nodes

with similar potentials become motion segments that gener-
ate a single structure. The receiver operating characteristics
(ROC) curves for each of these approaches are shown in
Figure 10(a), where it is possible to see that the pro-
posed algorithm outperforms the others in all threshold
levels, and in particular that it improves over the ini-
tial RANSAC classification by a significant margin. It is
also possible to see the importance of covariance function
selection, since the same algorithm performed significantly
worse when the square-exponential covariance function was
used.
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Fig. 10. Comparison of the proposed algorithm for the segmentation of dynamic objects with other similar approaches. (a) ROC curves
for each approach. (b) Area under the ROC curves for each approach in different frames. NN: neural network kernel; Sq Exp: squared
exponential kernel.

Figure 10(b) depicts the area under the ROC curve for
each subsequent frame at the beginning of navigation,
indicating how accuracy changes as new data is incor-
porated into the non-parametric model. As expected, the
OFC approach does not improve over time, since it is not
based on learning techniques, using instead individual
information from each frame. The accuracies of the
three other approaches increase steadily over time, with
occasional drops that indicate moments in which there
was a significant change in the environment (e.g. the
camera started/stopped moving, or a new object entered
the camera’s field of vision), and the proposed algorithm
consistently outperforms the other two. It is interesting
to note that, at the beginning of navigation, the OFC is
the best solution, since there has been no time for the
non-parametric model to learn the environment character-
istics. However, after a few frames the proposed algorithm
improves and becomes the best solution, while the OFC
oscillates heavily at each iteration.

As a purely visual-based algorithm, the proposed frame-
work is highly sensitive to the quality of images pro-
vided by the camera system. A histogram filter was applied
to account for global luminosity changes, however, local

shadow, especially from tall buildings nearby, could trick
the algorithm into thinking that large portions of the envi-
ronment were dynamic. Shadow removal techniques (Fin-
layson et al., 2002) could in principle eliminate this issue,
and also increase the number of static features available for
correct model estimation by RANSAC. Other challenges,
such as heavy rain, darkness or severe occlusion, could
also compromise performance, as they would with any
other vision-dependent approach. As a machine-learning-
based algorithm, the proposed framework is able to adapt
to gradual changes in the environment, increasing response
time and performance with previously modeled objects and
learning the behavior of new ones as they are introduced.
However, this can lead to the learning of wrong patterns
(e.g. if most of the field of view is covered by a dynamic
object, such as a truck), which could also compromise per-
formance. Once these false patterns are removed, though,
the algorithm should be able to recover and forget this
model in favor of the correct one.

6.1.2. Portable camera device. The same algorithm, with-
out any further modifications, was also tested with images
obtained using a portable camera device (Figure 11(a)),
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as a way to qualitatively explore its ability to general-
ize over different configurations and environments. The
non-parametric model was initialized empty from ran-
dom hyperparameters, and the shakiness of the camera
posed a challenge to the RANSAC algorithm, since now
the baseline between frames was much smaller and its
motion unconstrained by 2D vehicle dynamics. The results
obtained using this configuration are presented in Figure
11(b), where it is possible to see that again there is a wide
variation in luminosity and structures encountered during
navigation, and the algorithm was still capable of correctly
segmenting most of the dynamic objects in each scene.

Still, it is possible to see some shortcomings in these
results, mostly due to the presence of shadows, which
are classified as dynamic objects because of the purely
visual nature of the segmentation technique. Also, far-away
dynamic objects are usually undetected, due to low relative
speeds that are dismissed as noise. Sudden changes in tex-
ture and color tend to generate gaps in the segmentation
results, because the high-dimensional input vector used by
the GP relies both on spatial coordinates and color intensity
information. However, it is worth emphasizing that these
results were obtained without any human intervention what-
soever, based solely on non-labeled image information col-
lected iteratively from a single uncalibrated camera during
navigation.

6.2. Improvements in visual odometry

We present here one possible application of the proposed
algorithm for the self-supervised segmentation of dynamic
objects, in the field of autonomous navigation. Visual
odometry, in its standard derivation, requires a static envi-
ronment in order to provide motion estimates between
frames, since in this particular scenario all optical flow gen-
erated by features will be solely due to the camera’s own
translation and rotation. If dynamic objects are present,
there will be a component of error in optical flow infor-
mation that can skew results, especially in an incremen-
tal implementation of visual odometry. Unfortunately, most
real environments will contain dynamic structures (or at
least the possibility of dynamic structures), so it is neces-
sary to deal with this error component in optical flow infor-
mation before visual odometry can truly provide accurate
localization estimates.

The most intuitive solution to this problem is simply to
remove the dynamic portion of the environment, leaving
only the static background to be used during visual odom-
etry calculations, and this is exactly what the proposed
segmentation algorithm is capable of doing. An example
of the influence of dynamic objects in visual odometry is
presented in Figure 12(a), where the SPCGP framework
(Guizilini and Ramos, 2013) was used in the aforemen-
tioned urban dataset to provide an estimate of the trajectory
navigated by the vehicle. In the visual odometry estimates
(red line) it is possible to see several sharp turns, caused

mostly by the presence of dynamic objects when the vehicle
was not moving (e.g. at a traffic light, with vehicles cross-
ing its path) that tricked the system into thinking the vehicle
was rotating. There is also a systematic drift caused by a
larger optical flow in one portion of the image (the opposite
lane, where vehicles were moving towards the camera with
a higher relative velocity), that skews results and over time
compromises localization estimates.

Localization results obtained after incorporating the pro-
posed segmentation algorithm, using the same dataset but
discarding the dynamic features in each frame, are depicted
in Figure 12(b). As expected, there is still some residual
drift caused by the incremental nature of visual odometry
estimates, however, virtually all sharp turns are removed,
allowing the system to recover the overall trajectory shape
in great detail. It is worth noting that no extra information
was added, since the same dataset used for visual odome-
try was also used for dynamic object segmentation, without
any manual labeling or human intervention whatsoever. The
same results, now using the full SPCGP framework (with
online updates and a semi-parametric model, as described
by Guizilini, 2013), are presented in Figure 13.

6.3. Dynamic object clustering

The segmentation algorithm, as described in the previous
section, does not make any distinctions in regard to different
dynamic objects. Each pixel is probabilistically classified
between the static and dynamic classes, based solely on
the current non-parametric model, and each classification
is individual. However, by exploiting optical flow patterns
and spatial coordinates/colour information from different
matched features it is possible to determine the boundaries
from each specific dynamic object. It is natural to assume
that a (non-deformable) object would have features that
share a similar optical flow distribution, and that this dis-
tribution changes gradually during navigation. This would
allow the tracking of dynamic objects over time, as a way
to increase robustness and decrease ambiguity in object
segmentation.

This clustering of dynamic pixels is conducted according
to the following iterative process, which takes place after
the final GP classification:

1. A random feature is selected on the image, forming the
core of a new dynamic cluster.

2. All its neighbors within a certain radius are checked.
Features with an optical flow pattern whose magni-
tude/orientation are similar within a certain threshold
are added as part of the same dynamic cluster.

3. Step 2 is repeated for all the newly added features,
gradually increasing the size of the current dynamic
cluster.

4. When there are no new features to be added, the pro-
cess stops and the current dynamic cluster is determined
as a new object instance. Step 1 is repeated for a new
random feature that still does not belong to any cluster.
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Fig. 11. Dynamic object segmentation results in different frames using a portable camera device.

Fig. 12. Localization results in a highly dynamic environment using the SPCGP approach. (a) Without dynamic object removal. (b)
With dynamic object removal.

 at University of Sydney on July 11, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


576 The International Journal of Robotics Research 34(4-5)

Fig. 13. Visual odometry results using dynamic object removal and the SPCGP framework (Guizilini, 2013).

5. When all features already belong to a cluster, a merg-
ing process is conducted to join clusters whose mag-
nitude/orientation average are similar within a certain
threshold, and their features share an overlapping area in
the image. This step is important to reduce the number
of sub-clusters of a single object, due to small variations
in color and optical flow distribution.

6. Once the merging process is done, filtering is con-
ducted to remove clusters with a number of features
that fall below a certain threshold. This step is impor-
tant as it removes small clusters generated by noise in
the segmentation algorithm.

7. Each cluster is expanded to include pixels that do not
contain matched features with optical flow information,
according to the dense classification created by the GP
framework. Each feature in each cluster is expanded
to include its neighboring dynamic pixels, in a pro-
cess that is repeated until there are no more pixels
to expand to. If the same pixel is neighbor to two
different clusters, a linear combination of color infor-
mation and Euclidean distance to the nearest matched
feature is used to determine which cluster it should be
incorporated in.

Once all dynamic objects are obtained (Figure 14), the
next step is to further divide them into different categories,
according to the object each one represents (in an urban
environment, mostly cars and pedestrians). This is done
using data collected from 1000 consecutive images, all seg-
mented according to the algorithm described previously, for
a total of 2077 objects. Each object is described using a
histogram for each one of its color components (red, green

and blue), divided into six bins. These histograms are nor-
malized to have an unitary sum, to account for objects of
different sizes. These descriptors are then categorized using
k-means (Kanungo et al., 2002), a clustering method which
aims to partition n observations into k clusters, where each
observation belongs to the cluster with the nearest mean.
For the experiments presented here, we selected 8 as the
number of clusters to be formed, as a way to minimize the
impact of random objects that do not fall within any other
category.

Figure 15 shows the results for the three clusters with the
most samples, obtained using the method described above,
along with some examples belonging to the other five clus-
ters. It is important to note that these categories do not
imply any knowledge of the environment, and were gen-
erated based solely on the dynamic objects collected during
navigation. Nevertheless, we can see a clear pattern present
in each one of them, indicating that k-means was able to
correctly cluster these dynamic objects into semantically
meaningful categories. Figure 15(a) contains mostly pedes-
trians, Figure 15(b) contains mostly cars and other vehicles,
and Figure 15(c) contains mostly shadows from pedes-
trians. Other clusters include mostly partial objects: ones
which were not merged into a single group for some reason,
shadows from static objects, ones which were classified as
dynamic due to the learning nature of the self-supervised
algorithm, and other sporadic misclassifications. Tests were
conducted using different numbers of clusters, and while a
higher number did not show any significant improvement,
smaller numbers show a merging between different clusters
that affected results.
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Fig. 14. Different object instances obtained during the iterative clustering process.

To provide quantitative evaluation, a ground-truth dataset
was generated by manually labeling 250 dynamic objects
as being in one of these three main categories and a fourth
one, comprising the remaining five clusters. Several differ-
ent clustering algorithms were tested (see Table 1) based on
both accuracy percentage and V-measure, as described by
Rosenberg and Hirschberg (2007). The accuracy percent-
age values were calculated as the ratio of correctly labeled
objects to the size of the entire ground-truth dataset, and
V-measure values are proportional to the desirable cluster-
ing properties h (homogeneity) and c (completeness). From
these results we can see that k-means outperforms other
similar techniques, with an accuracy of roughly 71% to 28%
obtained with random clustering. A confusion matrix show-
ing the k-means results is presented in Table 2, where we

can see how the clustering errors are distributed in differ-
ent categories. As expected, pedestrians and shadows are
more easily mistaken for each other, whereas pedestrians
and cars have a small overlap. Also as expected, the five
remaining categories (labeled as others) share a similar
error overlap with the other three categories, indicating that
they do not possess any specific characteristic that could be
semantically meaningful.

7. Conclusion and future work

This paper presented a novel approach to dynamic object
segmentation using a single mobile uncalibrated camera,
based on self-supervised learning and without human inter-
vention of any sort. Sparse matched features were sorted
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Fig. 15. Clustering results for different dynamic objects. (a) Pedestrians. (b) Vehicles. (c) Pedestrian shadows. (d) Examples of objects
that do not belong to any of the three main categories.

Table 1. Performance values for clustering with different tech-
niques.

Clustering Accuracy V-measure
Method (%) 2hc

(h+c)

k-means (Hartigan and Wong, 1979) 71.3 0.46
Fuzzy c-means (Bezdek, 1981) 65.8 0.31
Shadows (Gupta and Chen, 2011) 59.4 0.29
Hierarchical
(Gibbons and Chakraborti, 2003) 55.7 0.24
Random 28.2 0.07

Table 2. Confusion matrix for the clustering results.

Cars Pedestrians Shadows Others

Cars 58 3 2 8
Pedestrians 4 43 11 6
Shadows 4 7 21 8
Others 2 3 5 15

according to the RANSAC algorithm to generate an ini-
tial classification between a static background and dynamic
foreground objects. This initial classification was then
refined using a GP, a non-parametric Bayesian inference
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technique, in an online manner. Experiments conducted
in an urban scenario, with data collected from a vehi-
cle navigating at speeds of up to 50 km/h while inter-
acting with pedestrians, cars and buses, show promising
results that outperform other similar segmentation algo-
rithms and influence visual odometry localization estimates
positively. Tests conducted with a portable camera device
testify to the proposed algorithm’s ability to generalize to
different environments and visual systems, and. Lastly, a
technique for the clustering of dynamic pixels into dif-
ferent object instances, and the further clustering of these
object instances into semantically meaningful categories,
was introduced and discussed.

Since it relies purely on visual information, the pro-
posed algorithm also segments shadows as part of dynamic
objects, which could be readily addressed by incorporating
shadow-removal techniques into the framework. Also, the
algorithm’s ability to segment far-away dynamic objects is
limited because of their small relative sizes and low rela-
tive speeds, which poses a challenge to feature extraction
and increases the chances of an initial RANSAC misclas-
sification. The incorporation of object-tracking techniques
could address this problem, where the algorithm follows
each specific object over a sequence of frames and learns its
visual information at different scales and viewpoints. The
clustering of dynamic pixels into distinct objects and cate-
gories allows for the self-supervised creation of a library
of dynamic objects, extending the initial binary classifi-
cation to a more semantically meaningful territory. This
dynamic object library can be used to improve the seg-
mentation algorithm itself, creating the possibility of a
‘potentially dynamic’ class, where a certain object is inher-
ently dynamic but is currently stationary (e.g. a parked
car). Future work will focus on algorithm speed, explor-
ing assumptions such as sparsity to decrease computational
costs and enable real-time model updating and inference.
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Appendix: Index to Multimedia Extension

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Type Description

1 Video Real-time results obtained using
the proposed algorithm in an urban
environment
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