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Abstract— Safe path planning is a crucial component in
autonomous robotics. The many approaches to find a collision
free path can be categorically divided into trajectory optimisers
and sampling-based methods. When planning using occupancy
maps, the sampling-based approach is the prevalent method.
The main drawback of such techniques is that the reasoning
about the expected cost of a plan is limited to the search
heuristic used by each method. We introduce a novel planning
method based on trajectory optimisation to plan safe and
efficient paths in continuous occupancy maps. We extend
the expressiveness of the state-of-the-art functional gradient
optimisation methods by devising a stochastic gradient update
rule to optimise a path represented as a Gaussian process. This
approach avoids the need to commit to a specific resolution
of the path representation, whether spatial or parametric. We
utilise a continuous occupancy map representation in order to
define our optimisation objective, which enables fast compu-
tation of occupancy gradients. We show that this approach is
essential in order to ensure convergence to the optimal path,
and present results and comparisons to other planning methods
in both simulation and with real laser data. The experiments
demonstrate the benefits of using this technique when planning
for safe and efficient paths in continuous occupancy maps.

I. INTRODUCTION
Motion planning is a basic building block in autonomous

robotics. Essentially, it is a decision making process that
ensures safe travel from the robot’s current configuration
to its goal. As safety is the primary objective, the planned
trajectory must avoid collision with obstacles. It is a pro-
lific branch of robotics that has been studied for decades,
producing a wide range of planning methods which can
be categorically grouped into two main branches; sampling-
based planning and trajectory optimisation.

Planning a safe path using a Occupancy Grid Map (OGM)
is typically done by sampling-based planners [1]. Most
planners break the planning process into two phases. First,
the planner finds a feasible, collision-free, crude path. Then,
the following step improves the resulting path by applying
certain heuristics.

Trajectory optimisers optimise an objective function such
as control cost or execution. However, there are no tra-
jectory optimiser implementations for path planning using
occupancy maps. The main challenge lies in the optimiser’s
need for contextual information anywhere along the path.
Gaps or non-informative gradients will cause the optimiser
to converge into a non-optimal and unsafe solution.

In this paper, we present a new planning paradigm using
occupancy maps. We utilise the recently introduced Hilbert
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maps [2] instead of OGMs. Hilbert maps provide a fast
and continuous linear discriminative model for occupancy
mapping. We take advantage of the fact that spatial gradients
of the occupancy can be calculated in closed form, and use
them in the functional gradient motion planner update cycle.
We present a novel path planner based on a Gaussian Process
(GP) path representation. Unlike other functional gradient
path planning techniques (e.g. [3],[4]), the proposed planner
does not commit to a predetermined resolution, whether
spatial or parametric. It replaces the regularisation of the step
size used in the functional gradient method with a stochastic
gradient approach. This is a key element in the planner’s
optimisation strategy as it allows a resolution-free gradient
update, which is required to ensure convergence.

The technical contributions of this paper are:
1) A novel path optimisation approach for continuous

occupancy maps. Effectively, this method extends pre-
vious work done on discrete cost maps to a continuous
environment representation.

2) A stochastic functional gradient motion planner based
on GP path representation. The stochastic samples allow
flexible support for the path, instead of an a-priori fixed
set used in previous work.

The remainder of this paper is organised as follows.
Section II surveys the work related to path planning using
occupancy maps. Section III reasons on the need for a
specific planner for occupancy maps and provides details
on the proposed method. Experimental results and analysis
for various simulation and real data scenarios are shown in
IV. Finally, Section V draws conclusions on the proposed
method.

II. RELATED WORK
Path planning using occupancy maps is commonly ap-

proached by sampling-based methods with several very
successful algorithmic families such as: Rapidly exploring
Random Trees (RRT), Probabilistic RoadMap (PRM), Visi-
bility Graphs (VG) and Space Skeletonisation [1]. Sampling-
based methods typically work by first building a graph repre-
sentation of the configuration space, where edges represent
valid connections. After the graph is built a valid path is
obtained using a search algorithm on the graph structure. The
visibility graphs method builds a graph where the nodes are
the vertexes of the obstacles [5]. Space skeletonisation uses
Generalised Voronoi Diagram (GVD) to compute safe paths
[6], [7]. PRM randomly samples the configuration space for
free space configuration and then uses a local planner to
find edges to connect these configurations to existing nodes
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[8]. Next a tree search method is used to determine the
path. Another successful and prolific method is RRT, which
randomly grows a tree rooted at the start configuration [9].
The main drawback of sampling based methods is that while
they are very successful in finding safe paths, there is no
explicit optimisation of an objective function, such as length
or smoothness.

Optimisation is a widely used approach for finding feasible
paths, where the planned path is the local extrema of a
pre-defined arbitrary cost function. Loosely speaking, the
cost function captures the costs and penalties associated
with a configuration-space state, e.g. distance from obstacles.
Khatib pioneered the use of artificial potential field for col-
lision avoidance [10]. Covariant Hamiltonian Optimisation
for Motion Planning (CHOMP) utilises covariate gradients
from a precomputed obstacle cost to minimise the trajectory’s
obstacle and smoothness functionals [4]. The Stochastic
Trajectory Optimisation for Motion Planning (STOMP) plan-
ner uses noisy perturbations to perform optimisation under
constraints where the cost functional is non-differentiable
[11]. Both CHOMP and STOMP commit to a waypoint
representation which require to trade-off expressiveness with
computational costs. Mukadam et al. proposed the Gaussian
process motion planner which uses a Gaussian process gen-
erated by linear time varying stochastic differential equations
for path representation [12]. Marinho et al. perform trajectory
optimisation in a Reproducing Kernel Hilbert Space (RKHS)
[3]. However, all these methods fall short when planning
using occupancy maps as discussed in section III-C.

Hilbert maps are a scalable, fast approach for continuous
occupancy mapping that was recently presented in [2]. The
model works by a non-linear mapping of observations into
a high-dimensional feature space represented by a RKHS.
To ensure a linear incremental update the parameters of the
model are trained by optimising a convex objective function,
which ensures convergence to the global optimum.

Traditional occupancy grid maps discretise the map into
a fixed grid in order to estimate the occupancy posterior
[13]. In order to make computations tractable each cell is
considered as an independent random variable. The compu-
tational gains are substantial since the posterior calculation
can be done separately for each cell. The drawback is
the loss of spatial relationship between neighbouring cells.
To alleviate this problem, a non-parametric approach based
on Gaussian Processes (GPs) was proposed in [14]. The
Gaussian processes occupancy map (GPOM) produces prob-
abilistic occupancy posteriors based on sensor observations.
Using a parameterised covariance function, GPOM captures
spatial relationships, which enables continuous inference.
The computational complexity is its main limitation, as it
scales cubically with the number of observations.

Hilbert maps take the advantages of both OGM and
GPOM. It maps observations to a high-dimensional feature
vector, whose dot product approximate the radial basis
function (RBF) kernel. Similar to GPOM, the use of kernels
keeps spatial relationship which enables continuous infer-
ence. The computational complexity, on the other hand, de-

pends linearly on the number of features. The only downside,
compared with GPOM, is that posterior is a point value and
not probabilistic.

III. PATH PLANNING USING HILBERT MAPS

In this section we describe the proposed method, func-
tional gradient motion planning using Hilbert maps. First,
we describe the building blocks of our planner, Hilbert maps
and functional gradient motion planning. Then, we present
our algorithm which combines these components in a single
planner.

A. Hilbert Maps

In this section we briefly review the basics of Hilbert maps,
which we use as our continuous occupancy representation.
Building an occupancy map requires sensor (e.g. laser range
finder or sonar) inputs. The dataset, D = {xi, yi}N1 , contains
N observations, captured by the robot while moving through
the environment, where xi ∈ RD is a 2D or 3D position
and yi ∈ {−1,+1} represents observed occupancy at xi.

The discriminative model that predicts the occupancy at
a new query point, x∗, is based on the logistic regression
classifier (LR) model. Given a vector of parameters w the
probability of LR occupancy is given by:

p(y∗ = +1|x∗,w) =
1

1 + exp(−wTx∗)
. (1)

As occupancy is a binary random variable, the probability of
non-occupancy is given by p(y∗ = −1|x∗,w) = 1−p(y∗ =
+1|x∗,w). We note that (1) is the logit sigmoid function,
σ(zL) applied on the linear projection zL = wTx.

The linear projection of the basic LR classifier cannot
capture the complexity of a real environment. To support
a richer family of functions, Hilbert maps employ nonlinear
classification using approximate kernels. The kernel, k(·, ·),
defines a nonlinear, and potentially infinite dimensional,
mapping, Φ(x, ·) that projects the input into a high dimen-
sional RKHS. The inner product between two features is
then k(x,x′) = 〈Φ(x, ·),Φ(x′, ·)〉. To reduce model training
time, Hilbert maps replace the kernel with an approximation,
Φ̂(·) [15]. Φ̂(·) defines a finite feature vector where the dot
product of these features can, in expectation, approximate
the selected kernel; k(x,x′) ≈ Φ̂(x)T Φ̂(x′). Under these
assumptions, the predictive occupancy posterior becomes:

p(y∗ = +1|x∗,w) =
1

1 + exp(−wT Φ̂(x∗))

=σ(zNL),

(2)

where zNL denotes the nonlinear mapping achieved by the
feature vector.

There are several methods to generate features to approx-
imate a kernel [2]. For the RBF kernel defined by;

k(x,x′) = exp(−γ ‖ x− x′ ‖2) (3)

there are three different approximations; Random Fourier
features [16], the Nyström method [17] and the sparse
random features [18].



After the selection of the approximation method, param-
eters w need to be calculated. The objective function used
to estimate w is a regularised negative log-likelihood (NLL)
[2].

B. Functional Gradient Motion Planning

In this section, we describe functional gradient based op-
timisation methods used in path planning. We first introduce
the notation. A path, ξ : [0, 1] → C ∈ RD, is a function
that maps time, t ∈ [0, 1], into configuration space C. We
define an objective functional, U(ξ) : Ξ → R, that return a
real number for each path ξ ∈ Ξ. The objective functional
captures the path optimisation criteria, such as the path safety
and kinematic costs.

The objective functional, U(ξ), varies between the differ-
ent planning methods. However, it is typically a weighted
sum of two penalties; (i) Uobs(ξ) which penalises proximity
to obstacles; (ii) Udyn(ξ) that regulates either the curve shape
or motion dynamics:

U(ξ) = Uobs(ξ) + λUdyn(ξ). (4)

As obstacles are defined in the robot’s working space
W ∈ R3, estimating the obstacle cost functional is done
by mapping a path from configuration space into workspace
using a forward kinematic map, x. Given B ∈ R3, a set of
points on the robot, x (ξ(t), u) maps a robot configuration,
ξ(t) and body point u ∈ B to a point in the workspace
x : C × B → W . Then, the obstacle cost functional is
estimated by aggregating the workspace cost function, c :
R3 → R, along the trajectory and robot body points using a
reduce operator such as an integral or a maximum. The only
requirement is that the reduce operator can be approximately
represented by a sum over a finite set, T (ξ) = {t, u}i of time
ti and body points ui:

Uobs(ξ) ≈
∑

(t,u)∈T (ξ)

c (x (ξ(t), u)) . (5)

Udyn(ξ) is a secondary objective functional, which typi-
cally penalises based on kinematic costs or curve properties.
The exact choice depends on the implementation and path
representation used. In most cases the penalty deals with
the derivatives of the path, for example in [4] the squared
velocity norm was used as the dynamic penalty:

Udyn(ξ) =
1

2

∫ 1

0

∣∣∣∣∣∣∣∣ ddtξ(t)
∣∣∣∣∣∣∣∣2 dt. (6)

In [3], the optimisation regulariser was the L2 norm of ξ
which implicitly assumes the zero-line, connecting starting
point to the goal point, as the preferable solution. We will
show in section IV that such a regulariser is not suitable
when planning using occupancy maps.

Given the cost functional in (4), optimisation of ξ can be
performed by an iterative approach following the functional
gradient. The functional gradient update at each iteration is
derived from a linear approximation of the cost functional
around the current trajectory, ξn:

U(ξ) ≈ U(ξn) +∇ξU(ξn)(ξ − ξn) +O((ξ − ξn)2). (7)

Following [4], the optimisation update rule becomes

ξn+1 = arg min
ξ
U(ξn) + (ξ− ξn)T∇ξU(ξn) +

β

2
‖ξ− ξn‖2M .

(8)
where the term ‖ξ − ξn‖2M = (ξ − ξn)TM(ξ − ξn) is
the squared norm with respect to a metric tensor M and
β is a regularisation factor. A closed form solution of (8)
is obtained by differentiating the right hand side of (8)
with respect to ξ and setting to zero. The update rule then
becomes:

ξn+1(·) = ξn(·)− 1

β
M−1∇ξU(ξn)(·). (9)

Given (4) the update rule can also be expressed as:

ξn+1(·) = ξn(·)−
1

β
M−1 [∇ξUobs(ξn(·)) + λ∇ξUdyn(ξn(·))] . (10)

C. GP Paths using Hilbert maps

In this section we discuss the shortcoming of the cur-
rent functional gradient methods when planning paths in
occupancy maps. We then propose a method that utilises a
continuous GP path representation combined with stochastic
sampling to solve this problem using Hilbert maps.

Occupancy maps create several challenges for gradient
based path planners. Most importantly, gradient information
in an occupancy map is not necessarily useful. The ob-
stacle cost functional defined in (5) requires a workspace
cost function, c(x(ξ(t), u)). Most trajectory optimisers work
with a precomputed cost map, which produce noiseless and
informative gradients anywhere in the map. Estimation of
the obstacle cost in an occupancy map is more challenging.
While the occupancy map (or blurred map if using OGM) can
act as c(x(ξ(t), u)), the obstacle cost is only defined well in
observed areas of the map. Occluded or unreachable regions
of the map are labelled as unknown with a probability of
occupancy of 0.5. While the spatial gradient of occupancy
”pushes” trajectory away from obstacles, the direction might
be wrong as it might push the trajectory into unobserved,
unsafe regions, as shown schematically in Fig. 1.

Fig. 1. The occupancy gradient is not necessarily useful for trajectory
optimisers. The occupancy, depicted in red, drops with the distance from
the obstacle. However, following the occupancy gradient (green and red
arrows) does not guarantee safety as it might pull (red arrows) the planner
into unobserved, unsafe regions of the map.



The other challenge arising from planning with trajec-
tory optimisers using occupancy maps is that all planners
commit to a specific path parametrisation to solve (9).
Waypoint parametrisations, as used by [4], [11], [19], have
to find a balance between expressiveness and computational
complexity. The more recent work in functional gradient
motion planning in RKHS [3] and the Gaussian process
motion planner [12], [20] define a parametric support with
finite resolution for their path representation. These methods
produce highly expressive trajectories. However, given the
finite resolution of the support, as the optimisation process
deforms the trajectory, the spatial density of the support
points changes. As a result some areas in the workspace have
low support density, which result in a low update rate. This
problem is exacerbated when using occupancy maps as some
regions in the map have no informative gradients. To prevent
corrupted optimisation process, such uninformative updates
are rejected, reducing even further the effective density of
the support.

Our approach uses Hilbert maps to produce the obstacle
functional gradient. We combine a flexible stochastic gradi-
ent approach to generate support to form an expressive path
based on an iterative GP representation.

1) Hilbert maps as cost functional: Most functional gra-
dient motion planners perform optimisation using a well-
defined, and usually precomputed, cost map based on the
distance to obstacle edges. In our approach, the spatial cost
function c(x(ξ(t), u)) is the Hilbert occupancy map, which is
estimated by (2) along the trajectory and robot body points.
Although Hilbert maps do not form a tangible grid as OGM,
querying the spatial occupancy gradient is as straightforward
as querying and occupancy grid. By applying the chain rule,
the Euclidean space gradient of (2) around a query point, x∗

becomes:

∂

∂x∗
p(y∗ = +1|x∗,w) =

∂σ(zNL)

∂zNL

∂zNL
∂x∗

≈ σ(zNL)(1− σ(zNL))wT ∂

∂x∗
Φ̂(x∗).

(11)

Here we used the fact the the derivative of LR is given by
∂
∂xσ(x) = σ(x)(1− σ(x)).

2) GP Path: GPs provide a principled way to represent
smooth trajectories. The GP model requires a small set
of support points, which define waypoints in configuration
space the path should follow. GP regression provides us
with a complete solution that allows querying the model at
any given time and handles boundary conditions we wish to
impose. Unlike other GP-based motion planners [12], [20],
the method presented here does not require a predefined
support, but rather learns and builds the trajectory support
while optimising the path.

A GP path is defined as a vector-valued (multiple output)
GP [21]:

ξ(t) ∼ GP(µ(t),K(t, t′)), t, t′ ∈ [0, 1]. (12)

Here, µ(t) ∈ RD is the vector-valued mean function of t
and K(t, t′) ∈ RD × RD is a positive matrix-valued kernel

between ξ(t) and ξ(t′) with a corresponding kernel matrix
for two different time instances, K(t, t′):

K(t, t′) =

k1,1(t, t′) k1,2(t, t′) . . . k1,D(t, t′)
...

. . .
...

kD,1(t, t′) kD,2(t, t′) . . . kD,D(t, t′).


(13)

Each element in K, kd,d′(t, t′) represents the effect joint
[ξt]d at time t has on joint [ξt′]d′ at t′.

Updating the model requires conditioning the GP model
with waypoint observations. The term observations here is
used loosely, and means the states, ξo(to) at time to that the
trajectory must pass through. By conditioning the GP with
these observations we can compute the maximum a posteriori
(MAP) path at any query time, t∗:

ξ̄(t∗) = µ(t∗)+K(t∗, to)K(to, to)−1(ξo(to)−µ(to)). (14)

The choice of to differentiates this work from other GP path
representations, such as [12], [20]. While in previous work
to was fixed a-priori, in this work to is learned online.

There are several advantages of using GPs to represent
the path. First, we do not need to discretise the path. Instead
a finite set of N points, {toi , ξoi (toi )}Ni=1, serve as the curve
support, which can be queried for its MAP value at any given
time t∗ using (14). Second, the mean function µ provides
an explicit prior, which can be exploited by initialising the
optimisation with a rough path from a fast path planning
method. Finally, boundary conditions can be imposed by
treating them explicitly as observations. Besides the obvious
boundary conditions at the start and goal points one can
define must-visit waypoints along the trajectory or define the
robot’s direction by including derivative observations [22].

3) Stochastic Gradient: A drawback of other functional
gradient motion planners is that they either utilise a spatial
parameterisation or commit to a finite parametric resolution
to represent and update the path. In both cases, this may
lead to gaps in the sampling of the objective functional. To
overcome this we adopt a resolution-free sampling method.
Since the functional objective of (4) can be approximated
by a sum of individual points along the path, optimisation
of the objective can be performed using stochastic gradient
descent (SGD) [23]. From (4)-(6), we define an empirical
objective functional that approximates the real objective:

Û(ξ) =
∑
t,u

Uobs (ξ(t, u)) + λUdyn (ξ(t, u)) −−−−→
n→∞

U(ξ).

(15)
A consequence of (15) is that minimising the objective

requires reasoning over many points all along the curve. Such
a process, which effectively resembles batch optimisation,
is computationally infeasible. The approach taken by other
trajectory optimisation methods (e.g. [3], [12]) is to estimate
Û(ξ) with a finite resolution support. However, it is clear
from (15) that while this is computationally attractive, such
an approach cannot guarantee convergence to the optimum.

The stochastic functional gradient path planner utilises
SGD to ensure convergence [24]. SGD randomly selects a



mini-batch from the dataset and then updates the solution in
small steps, based on the gradient computed from that mini-
batch. In a similar fashion, our method uses random samples
[t∗, u∗ξn(t∗)] as stochastic training points. The update rule
of 9 is then replaced by:

ξn+1(·) = ξn(·)− ηnA−1∇ξU(ξn(t∗), u∗) (16)

where ηn > 0 is the step size parameter and can be either
constant or asymptotically decaying. Matrix A can be seen
as a preconditioner that may help accelerate convergence
rate, and in many cases is set to the identity matrix [24].
Note the difference between (9) and (16) where the constant
regulariser β is replaced by 1

ηn
.

Using SGD ensures the convergence, in expectation, of the
empirical objective in (15) to the optimal objective, while
keeping computational cost per iteration low [24].

4) Planning on Hilbert Maps Algorithm: To finalise the
stochastic functional gradient path planning algorithm, we
need to define the functional gradient of Uobs and Udyn. For
a general functional of the form F(ξ) =

∫ b
a
v(t, ξ, ξ′)dt, the

gradient is given by:

∇Fξ(ξ) =
∂v

∂ξ
− d

dt

∂v

∂ξ′
. (17)

Applying (17) to Uobs at a sampled time t∗ and for robot
body point u∗ yields;

∇Uobs(ξ(t∗), u∗) =
∂

∂ξ(t)
x(ξ(t∗), u∗)∇xc (x (ξ(t∗), u∗)) .

(18)
Here, J(t∗, u∗) ≡ ∂

∂ξ(t)x(ξ(t∗), u∗) is the workspace Jaco-
bian. ∇x emphasises that this is a Euclidean gradient of the
cost function c.

We opted to use the squared velocity norm integral, as
shown in (6), as the dynamic penalty Udyn. Using the L2

norm such as in [3] is less attractive as it implicitly defines
a favourable simple mean solution which requires tuning of
regularisation coefficients for different scenarios. With (6),
the functional gradient can be easily computed as:

∇Udyn(ξ(t∗)) = − d2

dt2
ξ(t∗). (19)

Again, as ξ(t) is represented by a GP, computing the deriva-
tive is straight-forward. The update rule at time t∗ and robot
body point u∗ can now be summarised from (16), (18), and
(19) as:

ξn+1(t∗) = ξn(t∗)−

ηnA
−1
(
J(t∗, u∗)T∇xc (x (ξ(t∗), u∗)) + λ

d2

dt2
ξ(t∗)

)
.

(20)

The algorithm for path planning using Hilbert maps is
shown in Algorithm (1). The algorithm accepts an optional
initial solution to start optimisation with, otherwise a straight
line trajectory is used initially. This initial path is then used
as the mean function of the GP path.

Algorithm 1: Functional gradient path planning using
Hilbert maps

Input: H: Hilbert Occupancy Map.
ξ(0), ξ(1): Start and Goal states.
Psafe: No obstacle Threshold.
ξinitial(t): Initial solution (optional).
K: covariance function for GP path.

Output: ξmin(t)
// Use prior guess/solution if

available
if ξinitial then

µ0 ← ξinitial
else

µ0 ← (ξ(1)− ξ(0)) t+ ξ(0)
end
ξ0 ← GP0 ∼ GP(µ0,K)
n = 0
while ξ not converged do

// Stochastic sampling
(tsup, usup)← Draw mini-batch randomly
foreach (t∗, u∗) ∈ (tsup, usup) do

Pocc ← H(x(ξn(t∗), u∗)) Eq. (2)
if Pocc ≤ PSafe then

ξn+1(t∗)← update rule Eq. 20
ξn(t)← update GP with (t∗, ξn+1(t∗))

end
end
// Update boundary conditions
ξn(t)← update: (0, ξ(0)), (1, ξ(1))
ξn+1(t)← GP(ξn(t),K)
n = n+ 1

end

At each iteration, a mini-batch (tsup, usup) is drawn
randomly. For each point t∗ ∈ tsup and u∗ ∈ usup the corre-
sponding state ξn(t∗) is computed from the active GP path
model, ξn(t). To perform the functional update, the Hilbert
map is queried at x(ξ(t∗), u∗), and the probability of occu-
pancy Pocc is obtained. Functional updates may only happen
if the occupancy is within safe limits, i.e. free from obstacles.
Using (20) new states ξn+1(t∗) are computed and the path
model ξn(t) is updated with the new path observations.
To enforce a valid path the boundary conditions are then
incorporated into the GP model as additional observations.
Finally, a new path model is initialised with the previous
model as its mean function ξn+1(t) ∼ GP(ξn(t),K).

IV. RESULTS

In this section, we evaluate the performance of the stochas-
tic functional gradient path planner in simulation and with
real data and provide comparisons to other methods.

A. Simulations

In this section we compare the proposed method with the
functional gradient motion planner in RKHS [3], as both
methods are related. We show that while [3] provides a



flexible path representation, changes are needed in order to
perform optimisation in occupancy maps.

Most trajectory optimisers assume full knowledge about
the location of obstacles and precompute offline a cost field,
c(x) in workspace W which penalises the proximity to
obstacles, for example [25]:

c(x) =


−d(x) + 1

2ε d(x) < 0
1
2ε (d(x)− ε)2 0 ≤ d(x) ≤ ε
0 otherwise

, (21)

where d(x) is the distance of x to the boundary of the
nearest obstacle and ε is a minimal safety buffer from
obstacles. An example of path planning with a precomputed
cost field based on [3] is shown in Fig. 2: 2a depicts the
iterative optimisation process and 2b shows the optimal path.
These noiseless obstacles result in a cost gradient that is
well-defined anywhere in the workspace, including inside
obstacles. As the gradient is precomputed, evaluating the
update rule is also computationally efficient, leading to fast
convergence at a local minima. However, planning using
occupancy maps adds several challenges to this optimisation
process. The cost field, and more importantly its spatial
gradients, are not necessarily informative. In addition, as
the map is generated by laser observations, all predictions
are noisy. As a result, the assumptions at the core of the
functional gradient-based planner are no longer valid and a
change to the planning process is required.

(a) Optimisation Pro-
cess

(b) Final Path

Fig. 2. RKHS motion planning [3] in a precomputed cost field calculated
according to (21). Obstacle potential costs and their spatial gradients
are well-defined anywhere in the workspace. Dashed lines illustrate the
obstacles boundaries. Star and pentagon mark the start and goal points,
respectively. (a) paths generated during the RKHS optimisation process. (b)
shows the optimal path.

Constructing a Hilbert map for a simulated environment
of randomly placed obstacles is achieved by generating an
occupancy dataset. The dataset D = {xi, yi}N1 is created by
randomly placing occupied observations, yi = +1, on the
boundaries of all obstacles and free observations yi = −1
outside obstacles. There are no laser points inside obstacles.
After the dataset is created, the map model is fitted. Fig. 3
depicts a Hilbert continuous occupancy map generated for
the environment shown is Fig 2. Using the continuous map
representation, the occupancy and its gradient can be queried
at any location.

Fig. 4 shows an attempt to plan a path in an occupancy
map using the functional gradient method described in [3]

with various support size (N = 5, 50, 100, 200). The cyan
line depicts the optimal path after the algorithm has con-
verged. Clearly, the resulting path is unsafe regardless of
the size of support, N , used in the optimisation process.
As expected, increasing the size of support lead to a more
expressive path. Yet, even with N = 200 the resulting path
was not safe. The reason lies in the lack of informative
gradient in the occupancy map and the finite parametric
resolution of the path representation. As the optimisation
process deforms the curve, the spatial density of the support
changes too. Consequently, there is less support around
critical areas of the map such as the boundaries of obstacles.
Increasing resolution even further will not alleviate this prob-
lem since we have no a-priori knowledge of the number of
required support points. Inadvertently, increasing the number
of support points create unnecessary jerks in the curve, as a
response to noisy occupancy gradient, as shown in Fig 4.

Fig. 3. Continuous occupancy Hilbert map for the environment shown in
Fig 2. The map shows the probability of occupancy, p(y∗ = +1|x∗,w)
as in (2). Note that the optimal path of in Fig. 2 passes through the gap
between obstacles 4 and 7. In the Hilbert map, such a path is considered
invalid as it passes occupied or unsafe area.

Fig. 4. RKHS motion planning [3] fails to plan using Hilbert maps. The
individual plots compare the effect the size of the path support N has. The
final path is depicted in cyan, while the cyan star and pentagon mark the
start and goal points, respectively. The RKHS motion planner does not find
a valid solution since it represents the path with a parametric resolution,
which leads to gaps in the sampling of the objective functional.

Our stochastic functional gradient method does not com-
mit to a specific parametric resolution, rather it randomly
selects points along the curve during the optimisation. Fig. 5a
shows in cyan the average path planned using the occupancy



map of Fig 3. Since the optimisation objective balances
an obstacle cost with a penalty on the trajectory shape,
the optimal path is collision-free and smooth. Finding a
path relies on generating enough samples to instantiate a
gradient update, especially in areas of high importance such
as obstacles boundaries. Fig. 5b shows the convergence of
the optimisation process to the minima of the objective, by
plotting the maximum occupancy along the trajectory at each
iteration. The maximum occupancy along the path drops
steadily as the optimisation progresses. However, it cannot
drop further than 0.4, since the predictive occupancy between
obstacles 2 and 4 is approximately that number. Yet, Fig. 5b
provides empirical evidence for the expected optimality of
the stochastic process.

(a) Average optimal path
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Fig. 5. Stochastic functional gradient motion planner results. (a) Average
path over 10 repetitions. The trajectory is depicted in cyan while the
star and pentagon marker indicate the start and goal points, respectively.
The average path follows the mid line between obstacles, which reduces
the obstacle cost. (b) Shows the convergence of the stochastic functional
gradient motion planner. The maximum occupancy along the trajectory is
plotted as a function of the iterations. Data shown is the average over 10
repetitions. The P = 0.5 dashed red line marks the threshold for a valid
trajectory. Note that the maximum occupancy does not reduce to zero, as
the continuous occupancy map predictions for the gap between obstacles
1,2 and 4 are approximately 0.4.

B. Real data

The map for this experiment was generated using the
Intel-Lab dataset (available at http://radish.sourceforge.net/).
This map contains many rooms and dead-ends that might
challenge the optimiser. We compared the optimal trajectory
of our proposed method with two other standard planning
methods; RRT∗ [26] and PRM∗ [27] using implementations
from the Open Motion Planning Library (OMPL) [28].

Fig. 6 shows a comparison between the different methods.
Both RRT∗ and PRM∗ generate a path from start to goal.
The path consists of waypoints (states) the robot should
pass through. The list of waypoints provides a very sparse
representation of the path that requires additional resources
in order to transform into robot actions. In contrast, the
proposed stochastic functional motion planner provides a
detailed and smooth path represented by a function of t.
Furthermore, the paths generated by RRT∗ and PRM∗ might
follow close to walls or overshoot the corner leading to
a higher risk of collision, and longer paths. The paths of
our stochastic planner tend to follow the mid line between
obstacles and perform smooth turns resulting in shorter and
safer trajectories.

(a) SFGMP (b) RRT∗

(c) PRM∗
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Fig. 6. Comparison of path planning methods on a continuous occu-
pancy map of Intel-Lab; (a) stochastic functional gradient motion planner
(SFGMP), (b) RRT∗ and (c) PRM∗. Each image shows five repetitions
of path planning with each method. SFGMP paths are smooth and follow
the mid lines between walls. RRT∗ and PRM∗ produce paths that move
the robot dangerously close to walls at times. (d) shows convergence of
the stochastic functional gradient motion planner. The maximum occupancy
along the trajectory is plotted as a function of the iteration. Data shown is
the average over 5 repetitions. Red and green dashed lines mark the average
performance of RRT∗ and PRM∗ respectively. Our proposed stochastic
planner significantly outperforms the other methods. Note that the maximum
occupancy does not reduce to zero, as the the continuous occupancy map
predictions for the end point is approximately 0.35.

Table I and Fig. 6d provide a quantitative comparison
between our stochastic functional gradient motion planner
(SFGMP), RRT∗ and PRM∗. The objective of the optimi-
sation is to minimise the obstacle cost. Fig. 6d shows the
reduction of the maximum occupancy along trajectory as
the optimisation progresses. After converging to the optimal
solution, the safety of the path of the proposed method is
significantly better than that of the other two methods. The
results in Table I summarises the expected performance. The
maximum occupancy along the path, which indicates the path
safety, is 0.36 for the proposed method and 0.42 and 0.48

http://radish.sourceforge.net/


for PRM∗ and RRT∗, respectively. Furthermore, the penalty
term, Udyn, in the objective in (15) leads optimisation to
prefer shorter paths. Consequently, the path generated by our
method outperforms the other sampling-based methods.

TABLE I
PERFORMANCE COMPARISON

SFGMP RRT∗ [26] PRM∗ [27]

Maximum occupancy 0.36± 0.02 0.44± 0.03 0.46± 0.03
Path length [m] 20.90± 0.10 21.50± 0.10 22.50± 0.50

V. CONCLUSIONS

This paper introduced a novel method for path optimi-
sation using occupancy maps. Sampling-based techniques
are the prevalent method for path planning using occupancy
maps. Although these techniques are flexible and have a
high success rate in finding safe paths, optimising additional
properties of the path such as length and execution time
are not part of their reasoning. Trajectory optimisers, on the
other hand, are designed for that purpose. Yet, the current
implementations of trajectory optimisers require a finite res-
olution in the trajectory support and rely on having access to
a well defined cost potential field. However, neither of these
requirements are met by occupancy maps. Gradients obtained
from the map’s occupancy are noisy and not necessarily
informative, which limits the choice of trajectory support,
especially when the resolution is finite.

The planning method used in this paper employs stochastic
optimisation to enhance the expressiveness of the basic
functional gradient motion planner. It removes the need to
commit to an a-priori parametric resolution, which allows our
planner to better handle obstacles. The GP paths used in the
planner provide a structured and flexible representation that
can easily incorporate prior knowledge or initial solutions,
such as coarse paths generated by a sampling based method.

Future areas of work include improving convergence rates
which could be approached by targeting under-sampled areas
of the curve by biasing the stochastic sampling. Using
the variance prediction provided by the GP path, one can
employ a Bayesian optimiser to direct the sampling toward
unexplored regions. Another avenue for improvement is to
take advantage of modern multi-core systems by parallelising
the optimisation.
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