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Abstract. Occupancy grid maps have been widely used for robot local-
ization. Despite the popularity, this representation has some limitations,
such as requirement of discretization of the environment, assumption of
independence between grid cells and necessity of dense sensor data. Sup-
pressing these limitations can improve the localization performance, but
requires a different representation of the environment. Gaussian process
occupancy map (GPOM) is a novel representation based on Gaussian
Process that enables the construction of continuous maps (i.e. without
discretization) using few laser measurements. This paper addresses a new
localization method that uses GPOM to estimate the robot pose in ar-
eas not directly observed during mapping and generally provides higher
accuracy compared to occupancy grid maps localization. Specifically, we
devised a novel likelihood model based on the multivariate normal proba-
bility density function and adapted the particle filter localization method
to work with GPOM. Experiments showed localization errors more than
three times lower in comparison with particle filter localization using
occupancy grid maps.

Keywords: Gaussian Process Occupancy Maps, Gaussian Process, Par-
ticle Filter Localization, Occupancy Grid Map, Sparse Laser Sensor Data.

1 Introduction

Localization is an important problem in mobile robotics because of its direct
impact on other robot tasks, such as path planning and environment mapping.
Most of the localization methods use a map of the environment as a reference to
correct the robot position. The basic idea is to find the position that maximizes
the correspondence between the current sensor data and the map. The occupancy
grid maps (OGMs) have been widely applied to this task due to its relative
simplicity to build and speed [10].

Despite the popularity of OGMs, they have some drawbacks. First, this rep-
resentation requires the discretization of the environment, thus the localization
precision is limited to the chosen map resolution. Second, independence between
grid cells is assumed. Therefore, the occupancy information of neighboring cells
is not taken into account during the construction of the map. As a result, for a
detailed map, OGMs require dense sensor measurements and intense exploration
of the environment.
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To overcome the limitations of OGM, O’Callaghan and Ramos [6] proposed
a novel mapping method named Gaussian Process Occupancy Map (GPOM)
that uses Gaussian Process (GP) to enable continuous representation of the
environment using a dependent model of the sensor measurements. With GPs,
the occupancy status of any place in the environment can be estimated; it is
possible to reconstruct non-observed areas, even from highly sparse sensor data.

In order to relax the requirement of a dense, accurate and high resolution
maps for localization, in this paper, we propose the use of GPOM representation
for robot localization. Another advantage of our approach is the possibility to use
low-resolution sensors which reduces the size of datasets allowing for lower cost
range sensors. As the existing localization methods are designed to work with
discrete maps, here we modify the popular Particle Filter localization (PFL)
to support continuous occupancy maps (GPOMs) instead. Specifically, a novel
observation likelihood model is proposed to update the particles. The main ad-
vantage of our approach is the use of occupancy uncertainty information returned
by the GP to incorporate the degree of accuracy of the map in the likelihood
model. In this way, the association of GPOM with PFL makes the localization
more robust to noisy measurements and enables an accurate localization in areas
not observed in detail during mapping.

Few studies have explored the use of alternative map representations for
robot localization. For instance, Yang and Wang [10] proposed OGM maps that
include the probability of each cell containing a moving obstacle. Then, this map
was used for localization in dynamic environments.Despite the lack of works
covering localization in continuous occupancy maps, there are others that apply
GP learning for localization. In [2], the authors used GP for SLAM problem
based on WiFi signal. [4] proposed the integration of GP with Bayesian filters
for blimp tracking. The work of [7] simulated a dense sensor measurement by
training a GP model from sparse laser data. In this, a new GP model is trained
for each new scan. A similar approach was adopted in [1], but cameras were used
to extract the features to build the GP model.

Differently from previous works, we are applying GPs to generate a more
detailed representation of the environment and enable the robot to precisely
localize at any location of the map with a reduced number of laser beams.

2 Gaussian Process Occupancy Maps (GPOMs)

A GP is a multivariate Gaussian distribution modeling the function space of a
dataset D = {xi, yi}Ni=1, where xi ∈ RD and yi ∈ R. The model is fully specified
by a mean function µ(x), and a covariance function k(x,x′). In the mapping
context, xi and yi corresponds respectively to a laser beam and its occupancy
status.

In GPs, given a query data point x∗ and the training dataset D, the posterior
y∗ is also a Gaussian:

p(y∗|D,x∗) = N (µ(x∗), σ(x∗)). (1)
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The mean and the variance of the posterior are represented respectively by
µ(x∗) and σ(x∗), which are obtained by:

µ(x∗) = k(x∗,x)T [k(x,x) + σ2
nI]−1y, (2)

σ(x∗) = k(x∗,x∗)− k(x∗,x)[k(x,x) + σ2
nI]−1k(x∗,x), (3)

where σn is the global noise value. The Gaussian Process of x∗ is denoted as
GP(µ(x∗), σ(x∗)).

For GPOM, generally the Matérn 3/2 covariance function is employed [6] be-
cause it is less smooth compared to the squared exponential covariance function,
which is more convenient to represent the occupancy values in space:

k(x,x′) = σf

(
1 +

√
3 |x− x′|

l

)
exp

(
−
√

3 |x− x′|
l

)
, (4)

where σf and l are respectively, the signal variance and length-scale of the co-
variance function.

The main advantage of GP is its capacity of learning hyper-parameters for
both mean and covariance functions by maximizing the marginal likelihood of
the data. The hyperparameters of the covariance function, given by θ = {σf , l}
are obtained through the maximization of the log marginal likelihood function
[8]:

log p(y|x, θ) =
1

2
yTK−1y − 1

2
log |K| − n

2
log 2π, (5)

where K is the covariance matrix of the training dataset D with size n.
GPs were originally proposed to solve regression problems. Therefore, adap-

tations in the original formulation were made for classification problems, as in the
case of GPOM. For GP classification, the mean value resulted from regression is
squashed into [0, 1] interval using a sigmoid function. For this, the probabilistic
least squares function [8] is used:

p(occupancy|D,x∗) = Φ

(
αµ(x∗) + β

1 + α2σ(x∗)2

)
, (6)

where Φ is the cumulative Gaussian distribution and the parameters α and β
are obtained by leave-one-out cross-validation.

3 GPOMs for Large Environments

Considering the O(n3) cost of the GP prediction, the construction of GPOMs for
large areas involving millions of sensor measurements is computationally unfea-
sible. The major bottleneck in the Gaussian Processes regression is associated to
the matrix inversion K−1, which involves the solution of a large linear system.
In order to reduce the complexity, Cholesky decomposition can be applied to
update the inverted matrix as new measurements are obtained. This reduces the
matrix inversion complexity from O(n3) to O(n2).
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Despite reducing the GP complexity, depending on the amount of measure-
ments, Cholesky decomposition alone can be insufficient for suitable computation
times. Therefore, two other approaches are also employed: (a) reduced training
dataset and (b) GP committees. These methods are described in the following
sections.

3.1 Information Theoretic Compression of Training Data

When gathering sensor data there are generally redundant measurements that
could be eliminated to speed up the computation. Unnecessary data can be dis-
carded by adapting the information-theoretic compression of laser data method
proposed in [5]. The idea behind is to evaluate the mutual information between
the measurement and the existing dataset. Only laser readings that reduce the
uncertainty about the environment the most are kept in the dataset.

3.2 Mixture of Gaussian Processes

Instead of generating a single map, the environment can be split into smaller
regions and then produce a set of GPOMs. The strategy of using several GPs is
named mixture of GPs and its application for mapping was proposed in [3].

The first step of the mixture of GPOMs is to cluster the data (training
dataset) according to a distance measure. Here, k -means clustering was em-
ployed. Given the maximum number of measurements s that each GP expert
must handle, the number of clusters is set as k ≥ n

s . After clustering, each mea-
surement will be associated with a centroid {ci=1···k} and a GP expert {εi=1···k}.

When building a dense map, a set of test points D = {dj=1···m} must be
evaluated. A gating network evaluates which expert should be chosen to infer
the occupancy of test points. For a test point dj , we associate the expert εi
whose corresponding cluster ci is the closest to dj .

4 Particle Filter Localization for GPOM

After generating the GPOM, particle filter localization (PFL) uses the map
information to estimate the robot position. The standard PFL algorithm starts
by randomly distributing particles over the environment. The particle set is
represented by Sk =

{
sik
}n
i=1

, where n is the number of particles and k represents

the time stamp. Each particle sik stores the position xi
k = {xik, yik, θik} and the

importance weight wi
k of the particle. For each PFL iteration, Sk is updated

through an auxiliary particle set S′k. The following steps comprise the particle
set update:

1. Perform motion update from the probability p(xi
k|xi

k−1,uk), where u is the
robot motion.
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2. Compute the measurement update using the probability p(zk|xi
k,m), which

corresponds to the particle weight wi
k and also known as measurement like-

lihood function

wi
k = p(zk|xi

k,m), (7)

where, z and m correspond to the sensor measurement and the environment
map, respectively.

3. Choose randomly with replacement n particles from S′k. Particles of higher
weights have higher probability to be selected. The chosen particles replace
the current Sk set. The particle with the highest weight in Sk is chosen to
represent the robot position.

The second step of PFL is the most crucial, because it directly affects the
localization robustness. Here we devise a new likelihood function to use together
with GPOM.

In our measurement likelihood function, occupancy and geometric informa-
tion are used. To calculate the occupancy, first the laser end point pose is cal-
culated from the laser range and the particle’s position:

pi
k = {xik + rjk cos(ajk + θik); yik + rjk sin(ajk + θik)}, (8)

where rjk and ajk denote the measurement zk range distances and beam angles,
respectively, and j denotes the beam index.

From a particle sik, occupancy mean µo and variance σo is obtained from
each laser beam end point through GP prediction:

occupancyj
k = GP(µo(pi

k),σo(pi
k)). (9)

However, using just the occupancy information can easily lead to ambiguous
positions. Therefore, it is also necessary to include geometric information of
the laser measurements into the likelihood model. We used the distance µr
between the particle to the first point along the laser beam direction which has
occupancy mean higher than 0.99. Essentially, a laser measurement is simulated
in the particles’ pose to determine how far the particle is to the obstacle. The
variance of the distance σr is given by the squared difference from the range
distance returned by the sensor and µr.

Thus, the following array of mean and variance values are obtained from a
single particle sik, given the map and measurement information:

µi
k =

[
µi

o

µi
r

]
k

σi
k =

[
σi
o

σi
r

]
k

, (10)

where µi
r and σi

r represent respectively the mean and variance of range mea-
surement error of the particle sik.

To calculate the observation likelihood, the normal distribution of the cur-
rent laser measurement is compared with the normal distribution obtained from
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the occupancy and geometric information of a particle. This is done by connect-
ing the measurement and the particle information in the multivariate normal
probability density function:

p(zk|xi
k,m,µ

i
k,Σ

i
k)=

1

2π
N
2 |Σ| 12

exp
1
2 (zk−µ)

TΣ−1(zk−µ), (11)

where, Σ is the covariance matrix with σ as the diagonal values and N is the µ
array size. For numerical stability, log(p(zk|xi

k,m)) is used to update the particle
weight wi

k. Here, zk is an array formed by the beam end point occupancy values

(sequence of ones) and the ranges returned by the laser sensor (rjk).

5 Results

For the validation experiments, we used laser data collected in simulated and in
real environments. In the simulated scenario, we tested the global localization
performance in maps with areas that was intentionally not observed and using
sparse laser readings. Experiments with real robots and noisy laser measurements
in larger areas were conducted using publicly available datasets from Freiburg1

and Rawseeds2 repositories. From the Freiburg repository we used the Seattle
and Belgioioso datasets, while from Rawseeds we used the Bicocca dataset. In all
experiments, distinct measurement sets were used for mapping and localization
tasks.

In the mapping stage, OGMs were generated with 0.10 m resolution cell which
can provide fine details of the scene. We used standard GPOM for all scenarios
except the Bicocca dataset which used the strategy for large maps. Here the
combination of PFL with OGM is named OGM-PFL and the combination of PFL
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(a) Mapping dataset (b) OGM (0.10 m res.) (c) GPOM

Fig. 1. Sparse laser dataset (a) used to build the OGM (b) and GPOM (c) representa-
tions. Few measurements were intentionally gathered from the central corridor. GPOM
could recreate the corridor area and reconstruct objects of the scenario (e.g. boxes on
the right side), as opposite to OGM.

1http://www2.informatik.uni-freiburg.de/~stachnis/datasets/
2http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/

http://www2.informatik.uni-freiburg.de/~stachnis/datasets/
http://www.rawseeds.org/home/category/benchmarking-toolkit/datasets/
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(b) OGM-PFL 0.10 m
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(c) GPOM-PFL

Fig. 2. Estimated poses (blue line) compared to ground truth (green line). Particles’
variance is represented by the ellipses. The OGM-PFL (b) variance increases around
the corridor, while the GPOM-PFL (c) variance stay low.

Map Mean ATE (m) S. Dev. ATE (m2) Ori. Error (rad)

OGM - Simulated 0.1095 0.9987 0.0238
GPOM - Simulated 0.0376 0.3330 0.0073

OGM - Seattle 0.3645 2.6835 0.0404
GPOM - Seattle 0.2612 2.9229 0.0351

OGM - Belgioioso 0.1939 2.1926 0.0304
GPOM - Belgioioso 0.1419 1.5198 0.0232

OGM - Bicocca 0.7410 5.5250 1.9680
GPOM - Bicocca 0.1194 0.2867 0.0252

Table 1. ATE, standard deviation and orientation error of the localization experi-
ments. The GPOM solution outperformed OGM in all scenarios.

with GPOM is named GPOM-PFL. We used the multivariate normal probability
density function of Equation 11 to evaluate the likelihod in the GPOM-PFL.
In all experiments we performed global localization using 1000 particles. The
localization results were evaluated through the Absolute Trajectory Error (ATE)
metric [9] that calculates the Euclidean distance between the estimated and
ground truth poses.

For the simulated dataset, we first built the maps using the training data,
composed by 22 measurements with 17 laser beams each (less than 1

10 of the
standard laser range sensors). The obtained OGM and GPOM are illustrated in
Figure 1. Higher occupancy probabilities are associated to values closer to 1.0.
Even with sparser measurements, GPOM could reconstruct the scenario with
richer details than OGM. For example, it could estimate the occupancy of non-
observed areas (the narrow corridor) and reconstruct some objects (boxes on the
right side).

Using these maps, the OGM-PFL and GPOM-PFL methods were evaluated
using the test data shown in Figure 2(a). This dataset contains 221 scans, each
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(a) OGM Seattle (b) OGM Belgioioso

(c) GPOM Seattle (d) GPOM Belgioioso

Fig. 3. Mapping results of the Freigburg dataset.(a)-(b) occupancy grid maps and
(c)-(d) Gaussian process occupancy maps.

with 80 laser beams. The ATE and absolute orientation error values are in Ta-
ble 1. GPOM-PFL delivered results almost three times lower than OGM-PFL.
Figure 2(b–c) shows the estimated poses (blue line) and particle variance (el-
lipses) for both approaches. We can notice that OGM-PFL produces higher
errors around the narrow corridor, as opposite to GPOM-PFL.

For the Seattle and Belgioioso datasets, we performed the same mapping
and localization experiments. These environments are larger compared to the
simulated dataset and can test the mapping and localization performance using
noisy laser measurements. During mapping, 241 and 132 measurements from
Seattle and Belgioioso datasets were used, respectively. Each measurement con-
tains 22 laser beams. Mapping results are presented in Figure 3. The GP based
mapping reconstructed fine details of a relatively large scenario using just few
laser measurements. Localization was performed using 1 degree resolution laser
sensor. Numerical results for localization are presented in Table 1. Note that
GPOM-PFL delivered lower ATE and orientation errors.

As the Bicocca dataset is the largest environments, GP calculation becomes
very time consuming. To address this, a mixture of 10 GP experts was used
to reduce the computational cost. After information theoretic compression, the
mapping dataset is formed by 796 poses and a total of 8327 laser beams. The
obtained OGM and GPOM are presented in Figure 4.
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The localization result for the Bicocca dataset is presented in Table 1. It is
possible to notice a much lower ATE and orientation errors for GPOM-PFL.
Figure 4 (c–d) illustrate the estimated pose for each approach. Differently than
OGM-PFL, GPOM-PFL resulted in poses that more closely matched the ground
truth along all trajectory.

(a) OGM (0.10 cm resolution) (b) GPOM

-20

0

20

40

60

80

100

-60-40-20020

Estimated Pose
Ground Truth
Variance

(c) OGM-PFL
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(d) GPOM-PFL

Fig. 4. (a–b) OGM and GPOM generated from Rawseeds’ Biccoca dataset. (c–d) Lo-
calization results of OGM-PFL and GPOM-PFL using the bicocca dataset.

6 Conclusion and Future Works

We proposed the combination of GPOM with PFL to improve localization in
situations where the data is sparse or when there are occlusions. The advantage
of GPOM is the possibility to predict the occupancy at any position in space
from a set of sparse measurements. To make GPOM work together with PFL, we
modeled a likelihood function based on multivariate normal probability density
function that uses the occupancy mean and variance, and the range information
of each measurement. With this, all the information retrieved from the map can
be combined into a single model by considering dependence between all data
points.

We run experiments in two datasets: one obtained from a simulated envi-
ronment; and three obtained from real world environments. GPOM-PFL re-
sults were compared with the standard version of PFL. In all experiments the
GPOM-PFL obtained ATE and orientation errors at least 65% more accurate
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than conventional PFL. From these results we can say that GPOM-PFL can
handle noisy sensor data, does not need dense sensor measurements or high-
frequency odometer data. It also showed the possibility to provide an accurate
pose estimation while traversing areas with less sensor information in the map.
GPOM-PFL demonstrated to be a promising localization solution compared to
approaches based on discrete maps.

Despite the favorable results of GPOM-PFL, experiments in other datasets
are still required, such as in dynamic environments and outdoor environments.
The GP method is also known to be computationally expensive due to the O(n3)
cost for inverting a matrix. Solutions for reducing the computational time must
be explored, and understanding the trade-off between speed and accuracy of
localization is an interesting venue for future work.
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