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Abstract

Neuroscience studies of human decision-making abilities commonly involve sub-
jects completing a decision-making task while BOLD signals are recorded using
fMRI. Hypotheses are tested about which brain regions mediate the effect of past
experience, such as rewards, on future actions. One standard approach to this is
model-based fMRI data analysis, in which a model is fitted to the behavioral data,
i.e., a subject’s choices, and then the neural data are parsed to find brain regions
whose BOLD signals are related to the model’s internal signals. However, the
internal mechanics of such purely behavioral models are not constrained by the
neural data, and therefore might miss or mischaracterize aspects of the brain. To
address this limitation, we introduce a new method using recurrent neural network
models that are flexible enough to be jointly fitted to the behavioral and neural data.
We trained a model so that its internal states were suitably related to neural activity
during the task, while at the same time its output predicted the next action a subject
would execute. We then used the fitted model to create a novel visualization of
the relationship between the activity in brain regions at different times following
a reward and the choices the subject subsequently made. Finally, we validated
our method using a previously published dataset. We found that the model was
able to recover the underlying neural substrates that were discovered by explicit
model engineering in the previous work, and also derived new results regarding the
temporal pattern of brain activity.

1 Introduction

Decision-making circuitry in the brain enables humans and animals to learn from the consequences
of their past actions to adjust their future choices. The role of different brain regions in this circuitry
has been the subject of extensive research in the past [Gold and Shadlen, 2007, Doya, 2008], with one
of the main challenges being that decisions – and thus the neural activity that causes them – are not
only affected by the immediate events in the task, but are also affected by a potentially long history
of previous inputs, such as rewards, actions and environmental cues. As an example, assume that
subjects make choices in a bandit task while their brain activity is recorded using fMRI, and we seek
to determine which brain regions are involved in reward processing. Key signals, such as reward
prediction errors, are not only determined by the current reward, but also a potentially extensive
history of past inputs. Thus, it is inadequate merely to find brain regions showing marked BOLD
changes just in response to reward.

An influential approach to address the above problem has been to use model-based analysis of fMRI
data [e.g., O’Doherty et al., 2007, Cohen et al., 2017], which involves training a computational model
using behavioral data and then searching the brain for regions whose BOLD activity is related to the
internal signals and variables of the model. Examples include fitting a reinforcement-learning model
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to the choices of subjects (with learning-rates etc. as the model parameters) and then finding the
brain regions that are related to the estimated value of each action or other variables of interest [e.g.,
Daw et al., 2006]. One major challenge for this approach is that, even if the model produces actions
similar to the subjects, the variables and summary statistics that the brain explicitly tracks might not
transparently represent the ones the hypothetical model represents. In this case, either the relevant
signals in the brain will be missed in the analysis, or the model will have to be altered manually in
the hope that the new signals in the model resemble neural activity in the brain.

In contrast, here, we propose a new approach using a recurrent neural network as a type of model that
is sufficiently flexible [Siegelmann and Sontag, 1995] to represent the potentially complex neural
computations in the brain, while also closely matching subjects’ choice behavior. In this way, the
model learns to learn the task such that (a) its output matches subjects’ choices; and (b) its internal
mechanism tracks subjects’ brain activity. A model trained using this approach ideally provides an
end-to-end model of neural decision-making circuitry that does not benefit from manual engineering,
but describes how past inputs are translated to future actions through a successive set of computations
occurring in different brain regions.

Having introduced the architecture of this recurrent neural network meta-learner, we show how
to interpret it by unrolling it over space and time to determine the role of each brain region at
each time slice in the path from reward processing to action selection. We show that experimental
results obtained using our method are consistent with the previous literature on the neural basis of
decision-making and provide novel insights into the temporal dynamics of reward processing in the
brain.

2 Related work

There are at least four types of previous approach. In type one, which includes model-based fMRI
analysis and some work on complex non-linear recurrent dynamical systems [Sussillo et al., 2015],
the models are trained on the behavioral data and are only then applied to the neural data. By contrast,
we include neural data at the outset. In a second type recurrent neural networks are trained to perform
a task [e.g., to maximize reward; Song et al., 2017], but without the attention that we give to both the
psychological and neural data. A third type aims to uncover the dynamics of the interaction between
different brain regions by approximating the underlying neural activity (see Breakspear [2017] for
review). However, unlike our protocol, these models are not trained on behavioral data. A fourth
type relies on two separate models for the behavioral and neural data but, unlike model-based fMRI
analyses, the free parameters of the two models are jointly modeled and estimated, e.g., by assuming
that they follow a joint distribution [Turner et al., 2013, Halpern et al., 2018]. Nevertheless, similar to
model-based fMRI, this approach requires manual model engineering and is limited by how well the
hypothesized behavioral model characterizes its underlying neural processes.

3 The model

3.1 Data

We consider a typical neuroscience study of decision-making processes in humans, in which the data
include the actions of a set of subjects while they are making choices and receiving rewards (DBEH)
in a decision-making task, while their brain activity in the form of fMRI images is recorded (DfMRI).

Behavioral data include the states of the environment (described by set S), choices executed by the
subjects in each state, and the rewards they receive. At each time t 2 T i subject i observes state
si

t 2 S as an input, calculates and then executes action ai
t (e.g., presses a button on a computer

keyboard; ai
t 2 A and A is a set of actions) and receives a reward ri

t (e.g., a monetary reward;
ri
t 2 <). The behavioral data can be described as,

DBEH = {(si
ti , a

i
ti , r

i
ti) |i = 1...NSUBJ, t

i 2 T i}. (1)

The second component of the data is the recorded brain activity in the form of 3D images taken by
the scanner during the task. Each image can be divided into a set of voxels (NVOX voxels; e.g., 3mm
x 3mm x 3mm cubes), each of which has an intensity (a scalar number) which represents the neural
activity of the corresponding brain region at the time of image acquisition by the scanner. Images
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Figure 1: Architecture of the model. The model has a RNN layer which consists of a set of GRU cells,
and receives previous actions, rewards and the current state of the environment as inputs (NCELLS is
the number of cells in the RNN layer). The outputs/states of the RNN layer (ht) are connected to a
middle layer (shown by red circles) with the same number of units as there are voxels (NVOX); the
outputs of the units ut are weighted sums over their inputs. Each component of ut is convolved
with the HRF signal and is compared to the bias-adjusted intensity of its corresponding voxel in
fMRI recordings (yt). Voxels are shown by the squares overlaying the brain, and three of them are
highlighted (in blue) as an example of how they are connected to the units in the middle layer. The
outputs of the GRU cells are also connected to a softmax layer (the green lines), which outputs the
probability of selecting each action on the next trial (in this case, EYE and HAND are the available
actions). LBEH refers to the behavioral loss function and LfMRI refers to the fMRI loss function. The
final loss function is denoted by L(⇥), which is a weighted sum of the fMRI and the behavioral loss
functions. ⇥ contains all the parameters.

are acquired at times 0, TR, 2TR, . . . , (NACQ � 1)TR, where TR refers to the repetition time of the
scanner (time between image acquisitions), and NACQ is the total number of images. Let yi,v

t denote
the intensity of voxel v recorded at time t for subject i. The fMRI data will take the following form:

DfMRI = {yi,v
t }, t = 0, TR, 2TR, . . . , (NACQ � 1)TR, i = 1 . . . NSUBJ, v = 1 . . . NVOX. (2)

3.2 Network architecture

Actions taken by a subject at each point in time are affected by the history of previous rewards,
actions and states experienced by the subject. Aspects of this history are encoded in neural activity in
a persistent, albeit mutating, form, and enable subjects’ future choices to benefit from past experience.
This process constitutes learning in the task; we aim to recover it by jointly modeling the behavioral
and neural data. We first describe the network architecture and then explain how it can be interpreted
to answer the questions of interest.

RNN layer. The model (Figure 1) is a specific form of recurrent neural network (RNN). The recurrent
layer consists of a set of NCELLS GRU cells [Gated recurrent unit; Cho et al., 2014]; cell c outputs
its state hc

t at time t. We define ht as the state of the whole RNN network (ht = [h1
t , . . . , h

NCELLS
t ]>).

This state summarizes the past history of the inputs to the network and is updated as new inputs are
received according to a function that we denote by f ,

ht = f(at�1, rt�1, st,ht�1; ⇥), (3)

depending on parameters ⇥. We aim to train the parameters of this dynamical system to approximate
the underlying neural computations in the brain that translate previous inputs to future actions during
the task.

fMRI layer. To establish a correspondence between the underlying RNN and neural activity, one
training signal for ⇥ comes from requiring the activity of each voxel at each point in time to be
described as a (noisy) linear combination of GRU cell states (shown by the red connections in Figure 1).
We denote the weights of this linear combination as W 2 <NVOX⇥NCELLS , and ut as a vector of size
NVOX representing predicted neural activity at each voxel at time t. Thus,

ut = Wht. (4)

3



For training the model, the predicted neural activity is compared with the actual activity recorded by
the scanner. However, neural activity is not instantly reflected in the intensity recorded by the scanner,
but is delayed according to the haemodynamic response function (HRF; Figure S3). To correct for
this delay, elements of ut are first convolved with HRF [Henson and Friston, 2007], and after adding
a bias term b, are compared with the intensities of the corresponding voxels, to form the following
loss function,

LfMRI(⇥) =
X

t

kut ~ HRF + b � ytk2 , t 2 {0, TR, . . . (NACQ � 1)TR}, (5)

in which ⇥ is the model parameters (W and RNN parameters), yt is a vector of size NVOX containing
the recorded activity of each voxel at time t. Symbol ~ is the convolution operator. The above
loss function can be thought of as the logarithm of a Gaussian likelihood function. Note that in this
case the convolution operator acts on the output of the network, and so this is not a conventional
convolutional neural network, in which convolutions act on the input.

Behavioral layer. To ensure that the RNN also captures the behavioral data, a second training signal
for ⇥ comes from requiring it to produce actions similar to those of humans. This is achieved by
connecting the output of the RNN network to a softmax layer in Figure 1 (shown by the green lines),
in which the weights of the connections determine the influence of each cell on the probability of
selecting actions. Denoting by ⇡t(a) the predicted probability of taking action a at time t, we define
the behavioral loss function as:

LBEH(⇥) = �
X

t2T 0

log ⇡t(at), (6)

in which T 0 refers to the timesteps at which the subject was allowed to execute an action.

Training. We define the overall loss function as the weighted sum of the behavioral and fMRI loss
functions,

L(⇥) =
NSUBJX

i=1

LBEH(⇥; Di) + �LfMRI(⇥; Di), (7)

with parameter � determining the contribution of the fMRI loss function, and Di denoting the data of
subject i. Note the above loss function can be thought of as the logarithm of the multiplication of a
Gaussian likelihood function (for the fMRI part) – with � being related to the level of noise/variance
in the likelihood function – and a multinomial likelihood function (for the behavioral part).

3.3 Interpreting the model

We seek to understand how the inputs to the network (previous rewards, actions, states) affect future
actions through the medium of the brain’s neural activity. Although different methods have been
suggested for investigating the way the inputs to a neural network determine its outputs, the most
fundamental quantity is the gradient of the output with respect to the input, which represents how
much the output changes by changing the input (as used, for instance, by Simonyan et al. [2013] in
the context of an image classification task).

Inspired by this, we defined two differential quantities relating rewards, actions and brain activity to
each other. There are at least two ‘layers’ to this: off- and on-policy. In the off-policy setting, which
is conventionally studied in model-based imaging, there is a fixed sequence of inputs, whose effects
on future predicted probabilities and neural activities we determine. In the on-policy setting, which is
used in settings such as approximate Bayesian computation [Sunnåker et al., 2013], future choices,
and thus future inputs are also affected by past inputs. For the present, we consider the simpler,
off-policy setting. This allows us to look, for instance, at the brain regions involved in mediating the
effect of the reward that subject i actually received at, say, time t1 on the predicted probability of
the action that the subject actually executed at, say, time t2. For convenience, we drop notation for
the fixed inputs for the subject; and indeed for the subject number (since we fit a single model to the
whole group).

The first measure represents the behavioral effects of reward on future actions, which can be calculated
as the gradient of the predicted probabilities of actions at each time t2 with respect to the input
received at time t1. For the case of binary choices, which are the focus of the current experiment, with
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EYE and HAND as the two available actions in the task, we only needed to calculate the probability
for one of the actions. Let ⇡t2 denote the probability of taking action EYE at time t2. The effect of
reward at time t1 on the action at time t2 can be calculated as follows,

d⇡r
t1,t2 =

@⇡t2

@rt1

.

This is a straightforward application of backpropagation (calculated using automatic differentiation),
noting again that we consider the inputs received by the network between t1 and t2 to be fixed. d⇡r

t1,t2
can be thought as capturing how much the probability of taking action EYE at time t2 increases as the
results of increasing the magnitude of reward earned at time t1.

The second measure relates behavioral and fMRI data by exploiting the informational association
between the predicted neural activity ut and the state of RNN, ht. First, note that, at each time t, ht

is a Markov state for the RNN, in that given ht, RNN outputs after time t are independent of their past.
Thus, we can decompose:

@⇡t2

@rt1

=
NCELLSX

k=1

@⇡t2

@hk
t

@hk
t

@rt1

, for any t 2 {t1 + 1 . . . t2}, (8)

as the effect changing rt1 has on the predicted RNN state hk
t at time t, times the effect that a change

in hk
t has on the action probability ⇡t2 at t2. Now, consider the case that W>W is non-singular (note

that NVOX � NCELLS). This implies that there is a one-to-one mapping between the RNN state and
predicted neural activity:

ht = (W>W )�1W>ut . (9)

Thus, we can rewrite equation 8 in terms of the effect changing rt1 has on the predicted neural
activity uv

t in each voxel at time t times what a change in uv
t implies about a change in ⇡t2 , operating

implicitly via what the change in uv
t tells us about a change in ht. We can write this as,

@⇡t2

@rt1

=
NVOXX

v=1

@⇡t2

@uv
t

@uv
t

@rt1

, t = t1 + 1 . . . t2. (10)

Note that this is a correlational relationship – the direction of causality is from ht to ut. Nevertheless
the individual terms in this sum:

d⇡ur
v,t1,t,t2 =

@⇡t2

@uv
t

@uv
t

@rt1

, for any t 2 {t1 + 1 . . . t2}, (11)

combine the influence that voxel uv
t at time t receives from the reward at time t1 (which is @uv

t /@rt1 ),
with the covariation between the voxel activity and the action at time t2 (which is @⇡t2/@uv

t ). This
quantifies the intermediation of voxel uv

t between the reward at t1 and the action at time t2.

We make two remarks: (i) The joint fitting of the model to both the behavioral and fMRI data was
important that, if there are behaviorally equivalent solutions, then the one that can fit the neural data
should be chosen; and (ii) for equation 10 to hold it is necessary for the state of the network to be
fully determined by the neural activity (ut). This can hold in the case of GRU cells (provided that the
hidden units do not partition into separate behavioral and neural groups). In contrast, in LSTM cells
[Long short-term memory; Hochreiter and Schmidhuber, 1997], the cell states and cell outputs are
different and are both required to determine the outputs in the next time-step, and therefore in the
case of LSTM cells equation 10 does not hold.

4 Results

In this section we aim to show how the above measures can be used to study the neural substrates of
decision-making in the brain.
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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we calculated d⇡ur for every voxel and every time-step between t1 and t2, and masked out the voxels
that were not in the top one percent. By focusing only on the 99th percentile of |d⇡ur|, we hoped to
limit our analysis to the circuitry known to be involved in decision-making. The resulting voxel maps
are shown in Figure 3(c) for the case of HAND action corresponding to the inputs shown in panel
(a), and Figure 3(d) shows the time-course of changes in d⇡ur. See Figure S1(c,d) for EYE action
corresponding to the inputs shown in panel (b).

The results show that, for each action, the top 1% of voxels contain three key cortical and subcortical
brain regions known to be critically involved in reward-processing and decision-making, i.e., (i)
striatum (associative aStr; or ventral, vStr), (ii) anterior cingulate cortex (ACC) and (iii) supplementary
motor area (SMA) [Rangel and Hare, 2010, Wunderlich et al., 2009]. We first note that these
anatomical regions are among the same anatomical regions that Wunderlich et al. [2009] also
identified as involved in decision-making in this task (see Figure S4 for the time course of changes in
d⇡ur for the voxel coordinates reported in Wunderlich et al. [Table S3; 2009]).

Secondly, we can see that not only are the identified regions consistent with the neural substrates
of decision-making based on previous work, but the temporal order of engagement of these regions
is also consistent with their functional role in decision-making. It has been argued that activity in
subregions of the striatum reflect reward prediction-errors [O’Doherty et al., 2004] and that these
errors serve to update action-values in the ACC [Dayan and Balleine, 2002, Wunderlich et al., 2009,
Seo and Lee, 2007, Walton et al., 2004], which in turn must be compared in the SMA to determine
the best action before a decision can be made [Wunderlich et al., 2009]. Such prior work has argued
that these different decision-making signals are carried by separate regions in a corticostriatal loop,
which is assumed to participate in a time course of events leading to action-selection [Balleine and
O’Doherty, 2010, Hare et al., 2011].

Here we show for the first time the temporal dynamics between these critical regions in the striatum,
anterior cingulate cortex and motor areas leading to action-selection. Figure 3(d) shows the time
course of each region’s d⇡ur between the reward at 9.2 s (t1) and the next response at 12.8 s (t2).
Note that since we took the probability of taking the EYE action as the reference, negative values
of d⇡ur indicate a region’s role in selecting the HAND action. At reward receipt (9.2 s), d⇡ur of the
ventral striatum begins below the zero baseline and then (negatively) peaks at 9.8 s, as it mediates
the effect of reward prediction-errors on the subsequent hand response. The value of d⇡ur for the
anterior cingulate then (negatively) peaks after 10.4 s, consistent with its role in updating action
values with the new errors before the next response. Finally d⇡ur for the large cluster in the motor
area (including the supplementary motor area) controlling motor responses such as the HAND action,
negatively peaks at the time of the action (12.8 s), which marks the end of the decision process in the
current task.

As part of our supplementary material, Figure S1(d) shows the time dynamics between the striatum,
anterior cingulate and motor areas controlling EYE choices – corresponding to the inputs shown in
panel (b). Here positive values of d⇡ur indicate a region’s role in selecting the EYE action. At reward
receipt (9.2 s) the associative striatum is involved immediately in mediating the effect of reward on
the subsequent action-selection. Then at 11 s the involvement of the anterior cingulate peaks before
a region in the motor area nearest the supplementary eye field peaks at the time of action (12.8 s).
In sum, changes in d⇡ur over this time period mirror those for the HAND action, and are consistent
with the hypothesized roles of these regions in the varying decision stages of the reward-learning task
used here.

5 Discussion

We have introduced a new neural architecture for investigating the neural substrates of decision-
making in the brain. Unlike previous methods, our approach does not require manual engineering and
is able to learn computational processes directly from the data. We further showed that the model can
be interpreted to uncover the temporal engagement of different brain regions in choice and reward
processing. Besides being used as a standalone analysis tool, this approach can inform model-based
fMRI analyses to investigate whether the model correctly tracks the brain’s internal mechanism. That
is, if a brain region is found to be important in the current analysis, but not using the model-based
fMRI analysis, this could mean that the model used to extract neural information is not representing
all of the relevant neural signals involved in decision-making and requires further modification.
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Figure 3: (a,b). The graphs show the effect of reward on actions in terms of d⇡r. The choice states
(between EYE and HAND actions) are shown by the grey shaded area. In the left panel, action HAND
(shown by ‘H’) was selected and in the right panel action EYE (shown by ‘E’) was selected at all
of the choice states. The outcome of each choice (reward/no reward) was delivered in red shaded
area. The first choice was rewarded, as shown by ‘R’ in the graph, but the other choices were not
followed by any reward. The blue bars show the effect of reward received after the first choice on
the subsequent choices (d⇡r). (c). Voxel maps and the time-course of changes in d⇡ur in cortical
and subcortical brain regions between reward of the HAND action at 9.2 s and the response at 12.8 s
shown by the red arrow in panel (a). Voxels below the 99th percentile of voxels were masked to reveal
only the top one percent of voxels shown here. (d) The time courses of each region calculated from
the maximum voxel in that region at each time point (smoothed), selected within an anatomical mask
from wfu_pickatlas. y-axis represents d⇡ur and is scaled by 100 for visualization. ACC: anterior
cingulate cortex; vStr: ventral striatum; PMC: primary motor cortex. See Figure S1 for the voxel
maps and time course changes relating to the EYE action.
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