
Road Junction Detection from 3D Point Clouds

Danilo Habermann1, Carlos E.O. Vido2, Fernando S. Osório1, Fabio Ramos2

Abstract— Detecting changing traffic conditions is of primal
importance for the safety of autonomous cars navigating in
urban environments. Among the traffic situations that require
more attention and careful planning, road junctions are the
most significant. This work presents an empirical study of
the application of well known machine learning techniques to
create a robust method for road junction detection. Features
are extracted from 3D pointclouds corresponding to single
frames of data collected by a laser rangefinder. Three well
known classifiers—support vector machines, adaptive boosting
and artificial neural networks—are used to classify them
into ”junctions” or ”roads”. The best performing classifier is
used in the next stage, where structured classifiers—hidden
Markov models and conditional random fields—are used to
incorporate contextual information, in an attempt to improve
the performance of the method. We tested and compared these
approaches on datasets from two different 3D laser scanners,
and in two different countries, Germany and Brazil.

I. INTRODUCTION

For the last few years, research in unmanned ground
vehicles (UGVs) has been growing steadily, and the field un-
derwent great advances after the Defense Advanced Research
Projects Agency (DARPA) Grand Challenges. While the first
two (2004, 2005) took place in the unstructured terrain of the
Mojave desert, the third challenge (2007) was in urban, more
structured environment [1]. The introduction of UGVs into
urban environments can bring several benefits. Optimised
driving can help reduce fuel consumption, environmental
impact [2] and traffic accidents, as well as improve mobility
for handicapped individuals.

Despite the recent advances, safe autonomous urban nav-
igation remains a challenging task. Safety relies not only on
obstacle detection, but also on precise information about road
network structure. For instance, in order to determine the
safest speed and trajectory, the UGV must know the road’s
layout, such as whether there is a bend ahead and how sharp
it is [3].

Road junctions are another important feature that an
autonomous vehicle should be able to identify. They are
crucial for global trajectory planning and optimisation, since
they are usually the only places where a vehicle can change
trajectory. In addition to that, junctions are also important
for local planning: they typically concentrate vehicles and
pedestrians moving in multiple directions, which increases

1D. Habermann and F.S. Osrio are with Instituto de
Ciências Matemáticas e de Computação, University of São
Paulo, Brazil. danilo.habermann@gmail.com;
fosorio@icmc.usp.br

2C.E.O. Vido and F.T. Ramos are with the School
of Information Technologies, University of Sydney,
NSW 2008, Australia. kadu@it.usyd.edu.au;
fabio.ramos@sydney.edu.au

the risk of accidents. In fact, Australian traffic accident data
show that 44% of all accidents happen in junctions [4].

Navigating in unstructured and structured terrains are
separate tasks associated to different challenges, and the
same can be said of navigation near an intersection. Just
as off- and on-road navigation rely on different sets of algo-
rithms, junction detection systems can be used to determine
when to activate specific algorithms designed to handle large
quantities of pedestrians, predict the future position of nearby
vehicles etc. in order to avoid accidents.

Road network structure can be acquired using a combina-
tion of Global Positioning System (GPS) and detailed metric
maps. However, GPS localisation is not always precise—
especially in areas surrounded by tall buildings—and maps
are not always available. Without relying on this type of
information, sensorial data must be used. Previous work in
junction detection focuses on cameras and laser rangefinders.
Algorithms reliant on visual data alone may also face dif-
ficulties in low luminosity settings. Combining visual data
to rangefinder data helps overcome this difficulty, but at the
cost of higher computational complexity [3].

This work aims at developing a robust method for road
junction detection based only on data from a 3D point
cloud generated from a rangefinder, our main contribution
amounting to the experimental analysis of well known algo-
rithms. The method proposed is part of the Carina 2 project
[5], which, among other goals, aims at enabling GPS-less
robotic navigation. Within this context, junctions are also
used as landmarks that allow to determine the approximate
location of the agent within a topological road map. The
biggest hurdle of this approach is that rangefinders are
expensive equipment, but this tends to change as they become
increasingly popular in autonomous cars.

This paper is organised as follows: section II reviews
some related work in this field. Section III describes the
proposed method. Section IV conveys the results of the
experiments done using two real datasets, one collected
in São Carlos (Brazil) and one from the KITTI online
repository1. Lastly, section V exposes our conclusions and
future work perspectives.

II. BACKGROUND

The work of Jochem, T. M. [6] was one of the first
studies able to identify lanes and Y-junctions, using a video
camera and an Artificial Neural Network (ANN). In [7], data
from camera is fused with rangefinder data. Then techniques
from image processing and computational geometry are used

1http://www.cvlibs.net/datasets/kitti/



to extract a skeleton navigable region, thus providing the
intersections. In [3], a camera and lidar fusion method is
proposed for road intersection detection. A virtual predict
trajectory space for autonomous vehicles is constructed, and
lane information extracted beforehand is projected in this
space. The possible intersection branches are detected from
the fusion of lane information.

A crossroad detection method in rural areas using 3D
LIDAR data was proposed in [8]. The captured laser data is
stored in a binary occupancy grid and a distance transform
operator is applied. The presence of maximum value in the
center of this grid indicates a crossing. Once the crossing de-
tection is computed, the branches are extracted by iteratively
exploring the grid cells with values next to the maximum.

In [9], to detect the crossing as far as possible, an
admissible space is extracted by searching the free region
ahead the sensor. A simulated 2D rangefinder is used to trace
beams in the elevation map, inside the admissible space. The
data generated is analysed and its peaks are extracted through
a peak-finding algorithm. The number and position of peaks
are statistically processed to detect the crossroads. Similarly,
[10] and [11] also use a virtual rangefinder within a static
grid map. Data generated by this sensor is analysed by a
Support Vector Machine to identify the junctions. The main
drawback of the methods using simulated rangefinders is that
they rely on static maps, ignoring vehicles and pedestrians
that would exist in a real world scenario.

III. INTERSECTION DETECTION METHOD

During operation, 3D rangefinders create pointclouds at
regular intervals, which can be called frames. Each frame
contains a set of environment readings from a single location.
The objective of the algorithm is to classify a single frame
as a road junction or simple road. This is done in three steps:
feature extraction, initial classification using a conventional
classifier and refined classification using structural modelling
techniques to incorporate contextual information from the
neighbouring frames. The process is illustrated by the dia-
gram in Figure 1.

Fig. 1: Schematic representation of the algorithm

A. Feature Extraction
A laser rangefinder collects environmental data at a fre-

quency of 10Hz, in the form of a three-dimensional point-
cloud. Each point represents the position where a beam

emitted by the sensor hit an obstacle. A few examples can
be seen in Figure 2. Note that, while some frames have very
clear vertical cues—buildings, trees, guard rails etc—that
help the detection task, others have little beside the curbs
(Figure 2c).

Features are extracted from the pointcloud using the
method described by [12]. This method was chosen because
it generates features that do not change when the vehicle is
rotated. This is an important property, as the vehicle often
might change movement direction at junctions. The 41 fea-
tures extracted capture geometrical and statistical properties,
summarised in Table I.

TABLE I: Feature list

Property Associated Features

Volume 2

Average Range 2

Standard Deviation of Range 2

Sphericity 3

Centroid 3

Maximum Range 2

Distance 3

Regularity 1

Curvature 2

Range Kurtosis 2

Relative Range 4

Range Difference 6

Range Histogram 9

It is important to stress that the input data used is raw—
unlike the methods described on [9], [10], [11], we do not
remove cars, pedestrians or other dynamic obstacles.

B. Classification

The features are passed as input to an initial classifier,
and the goal is to yield output similar to what is illustrated
in Figure 3. The experiments performed compared three
conventional classifiers.
1) Artificial neural networks (ANNs) [13] are a nonlinear
statistical machine learning technique inspired by biological
neural networks, widely used for pattern recognition. They
are essentially directed graphs. This work uses feedforward
ANNs, which are also acyclical. The nodes (or neurons) are
organised in layers, and each receives as input the outputs
of all neurons in the layer immediately before it. Figure 4
shows an example of a simple ANN.

The objective of the learning algorithms for ANNs is to
adjust the weights on all the edges. Within each neuron, the
weighted inputs from the previous layer are then combined
and go through an activation function, which traditionally
constrains its output into [0;1] ∈ R. Sigmoid functions are
widely used for this purpose, although other functions are
possible.
2) Adaptive boosting (AdaBoost) [14] belongs to a family
of methods collectively called boosting, meta-algorithms that
combine the outputs of other learning algorithms (”weak



(a) (b)

(c) (d)

Fig. 2: Velodyne data frames. Colour relates to height. (a)
KITTI Y-junction with relatively few vertical cues; (b) KITTI
cross-junction rich in vertical cues; (c) São Carlos cross-
junction with almost no vertical cues; (d) São Carlos straight
road rich in vertical cues.

Fig. 3: Desired response for the classifier. Note that the
trajectory of the car does not influence the classification.

Fig. 4: Schematic representation of an ANN with the input
layer on the left, on hidden layer with three neurons and the
output layer with two neurons on the right.

classifiers”) to make predictions. Boosted classifiers usually
take the form

FT (x) =

T∑
t=1

ft(x), (1)

where ft are the weak classifiers, each producing an answer
that places input x into either the positive or the negative
class. The magnitude of ft is the confidence of each classifier
in the prediction, so the sum should favour the class to which

most classifiers are confident that the input belongs.
AdaBoost is a method to train boosted classifiers. Using

a training dataset D, each iteration t adds an extra layer to
a t− 1-layer classifier built in previous iterations, Ft−1. The
new layers are constructed by assigning a weight αt to a
candidate weak classifier’s hypothesis h, such that the error
Et is minimised:

Et =
∑
x∈D

E[Ft−1(x) + αth(x)]. (2)

This process discards classifiers that do not improve the
model’s predictive power, which helps avoid overfitting. It
may also improve execution time in relation to other boosting
methods with the same number of layers, since it can avoid
computing some.
3) Support vector machines (SVMs) [15] are a supervised
learning model that can be used for classification. The inputs
are represented as points in space, and the algorithm tries
to fit a hyperplane through the input space, making them a
non-probabilistic binary linear classifier. The hyperplane that
leaves the largest margin between both classes is the best fit.
Figure 5 provides a visual example to illustrate this concept.

(a) (b)

Fig. 5: SVM example in two dimensions. (a) Linear case. The
hyperplane is indicated in red, the margin between classes
indicated with black arrows. The support vectors are the
inputs that sit on the dashed line. (b) Non-linear case. A
kernel function must be used to create a feature space where
the classes are separable by a hyperplane. Once that’s done,
the task becomes the same as in the linear case.

Many applications, however, have classes that are not
linearly separable in the input space. To perform non-linear
classification, a kernel function can be used to perform
what’s known as the kernel trick, creating a feature space
where the classes are linearly separable.

C. Structured Classification

The sensor produces 10 frames every second, so it is
expected that a number of consecutive frames belong to the
same class—it is unlikely that in a fraction of a second the
vehicle can go in and out of a junction. However, since the
classifier is only aware of a single frame at a time, it does not
have access to this type of contextual information about the
studied phenomenon. As a result, the classifier might make
noisy predictions (see Figure 6).



Fig. 6: Prediction made by AdaBoost on a small subsample
of the KITTI dataset. There are only two junctions (higher
values in red), but due to noise, the classifier (in blue)
register six peaks, and the UGV would consider it passed
six junctions and miscalculate its position in a topological
map. Red: ground truth, blue: prediction.

We want the system to be reliable enough to be used
to determine the approximate position of the UGV in a
topological map. The behaviour shown in Figure 6 hinders
this application. To overcome this, we use structured models
that incorporate our prior knowledge about the system. Two
different approaches were tested to address this.
1) Hidden Markov Models (HMMs) [16] are a statistical
method that model a sequence of observations (called emis-
sions) by assuming they are the product of a sequence of
hidden states, which cannot be directly observed. They can
be interpreted as a special case of a directed probabilistic
graphical model. Figure 7 illustrates this using a simple
model.

Fig. 7: Schematic representation of an HMM. X are the
states, y the emissions, a the transition probabilities and b
the emission probabilities.

If a sequence of states and the emissions generated by
them are known (e.g., a labeled training set for a clas-
sifier), they can be used to calculate the emission matrix
(the probabilities of each of the states generating each of
the observations) and the transition matrix (the probability
of each state leading to each other state). If, instead, the
emission and transition matrices are known, they can be
used to calculate the sequence of states that generated the
observations.

HMMs make two independence assumptions: that each
state depends solely on the immediate previous state and
that each emission depends solely on the current state.
2) Conditional Random Fields (CRFs) [16] are a type of
undirected probabilistic graphical model trained discrimina-

tively. As opposed to Markov random fields, they model the
posterior probability of hidden variables given observations
directly, therefore being able to capture complex relation-
ships between observations and hidden states. CRFs have
been extensively used in speech recognition and computer
vision. Linear-chain CRFs are the main concern of this work.

Linear CRFs can be seen as a generalisation of HMMs
in which the transition probabilities—instead of being fixed
values—are a function of the observations. The dependence
of each state on the observations is given by a fixed set
of feature functions. The model is trained by learning these
functions and the conditional distributions between states
from the dataset. This can be then used to determine the most
likely states that would have generated a set of observations.

IV. EXPERIMENTS AND RESULTS

To measure the performance of the proposed method, two
separate real world datasets were used. One of them was
collected by members of the Carina 2 project in São Carlos,
Brazil, using a vehicle equipped with a Velodyne 32 laser
rangefinder, which takes 70 thousand readings per frame.
The other is from the KITTI repository [17], [18], [19],
and it was collected using a Velodyne 64 rangefinder, which
produces denser pointclouds with twice as many points per
frame. Both sensors operate at a frame rate of 10Hz. Table II
has some additional information about the datasets used. SC1
and SC2 are the training and test subsets sampled from the
São Carlos dataset, K1 and K2 are the training and test
subsets sampled from the KITTI dataset. They come from
the odometry benchmark set, K1 includes folders 00 to 07
and K2, folder 08. All four datasets are disjoint.

TABLE II: Dataset description

Dataset
SC1 SC2 K1 K2

Junctions 57 12 61 19

Frames 4150 892 5046 1834

Junction frames 2794 645 3323 1280

Road frames 1356 247 1723 554

Velodyne 32 32 64 64

Tests were done in two stages. First, to compare the
performance of the three base classifiers used, we train and
test the algorithm in each of the available datasets separately.
Once the best classifier is determined, we combine it to the
structural modelling techniques and test it in a disjoint dataset
to measure if the training generalises well.

The performance metrics used for the tests were accuracy,
precision and recall. If we take the number of true positives
(TP ), true negatives (TN ), false positives (FP ) and false
negatives (FP ), we have:

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

Precision =
TP

TP + FP
, (4)



Recall =
TP

TP + FN
. (5)

A. Training

The first step is to determine which base classifier has the
best performance. For this, all must be trained and tested
using a single dataset at each time.

For this work, we have used ANNs with two hidden layers.
To determine the number of neurons within each, several
configurations were tested, ranging between five and twenty
neurons per layer. The input layer has 41 neurons (one for
each feature), and the output layer has two (one for each
class, junction or road). All ANNs were trained using scaled
conjugated gradient and 10-fold cross validation.

We trained SVMs using two different kernels, polynomial
and linear. Both were able to learn the training set well, but
even with a small number of training iterations, the models
learned were not able to make good predictions on the test
sets. We interpret this as indication that, in this scenario, the
method is prone to overfitting.

Different configurations of AdaBoost were trained, chang-
ing the number of weak classifiers. For the São Carlos
datasets, the performance improvement was negligible above
50 weak classifiers. For the KITTI dataset, 100 weak classi-
fiers were used.

For the structured classification step, the HMM and CRF
algorithms take as input the labels generated by the first
round of classifiers. As such, their training set are the
predictions over the SC1 and K1 datasets. CRF was trained
with sets of 20 sequential frames.

B. Classification Performance

The best results obtained by each classifier are summarised
in Table III. In our tests, AdaBoost had the best overall
performance in both datasets, and proved itself more robust
and less prone to overfitting than the other classifiers used.

TABLE III: Trained classifier results

Dataset Classifier Accuracy Precision Recall

SC2
ANN 0.7088 0.870 0.8100

AdaBoost 0.8700 0.6478 0.8466
SVM 0.7220 0.7854 0.4987

K2
ANN 0.8049 0.6606 0.6867

AdaBoost 0.9027 0.8736 0.8190
SVM 0.3626 0.8267 0.3009

C. Structured Classification Performance

In this section, we analyse whether we can improve the
predictions made by AdaBoost using HMMs or CRFs to
incorporate contextual knowledge.

Table IV has the results for the structured models. All three
methods show comparable performance, the fluctuations in
accuracy, precision and recall are small, and these metrics
seem to suggest a small performance loss for CRF. To further
investigate this effect, we analysed the receiver operating
characteristic (ROC) curves for these three methods. ROC

TABLE IV: HMM and CRF results

Dataset Classifier Accuracy Precision Recall

SC2
AdaBoost 0.8700 0.6478 0.8466

AdaBoost + HMM 0.8789 0.6680 0.8639
AdaBoost + CRF 0.8789 0.8145 0.7287

K2
AdaBoost 0.9027 0.8736 0.8190

AdaBoost + HMM 0.9104 0.8889 0.8285
AdaBoost + CRF 0.9044 0.8393 0.8484

curves show the performance of a binary classifier as the
discrimination threshold is varied, in terms of its true positive
rate (TPR) and false positive rate (FPR), with a larger area
under the curve indicating a better performance. The results
of this analysis are in Figure 8 and Table V.

False Positive Rate
False Positive Rate

False Positive Rate

(a) (b)

AdaBoost
Ada+CRF
Ada+HMM

AdaBoost
Ada+CRF

0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.8

0

0.2

0.4

0.6

0.8

1

0.8

0

ROC SC2 ROC K2

(a)

False Positive Rate
False Positive Rate

False Positive Rate

(a) (b)

AdaBoost
Ada+CRF
Ada+HMM

AdaBoost
Ada+CRF

0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.8

0

0.2

0.4

0.6

0.8

1

0.8

0

ROC SC2 ROC K2

(b)

Fig. 8: ROC curves. (a) São Carlos data; (b) KITTI data

TABLE V: ROC analysis

Dataset Classifier
Area under

the ROC curve
FPR for
TPR=0.9

SC2
AdaBoost 0.9433 0.3147

AdaBoost + HMM 0.9446 0.1907
AdaBoost + CRF 0.9143 0.2124

K2
AdaBoost 0.9662 0.1027

AdaBoost + HMM 0.9559 0.1074
AdaBoost + CRF 0.9350 0.1319

Again, all three methods performed well. The area under
the ROC curve, also a measure of accuracy, was higher than
0.9 for all three methods. CRF seems to have the worst
performance of the methods. Figure 9 presents the final
classification on both test datasets. Upon close inspection,
it reveals an interesting pattern.

In real world deployment, a proper road junction detection
algorithm must be able to accurately detect the number of
junctions the platform on which it runs has crossed. However
the width of each junction or its distance to the next one
might be unknown at the instant when the measurements are
taken, so an additional junction will be added to the count
whenever the classifier changes state. This change of state
can be seen as a peak on the class per frame graph. Therefore,



0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost (K2)

0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost+HMM (K2)

0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost+CRF (K2)

0 100 200 300 400 500 600 700 800 900

AdaBoost (SC2)

0 100 200 300 400 500 600 700 800 900

AdaBoost+HMM (SC2)

0 100 200 300 400 500 600 700 800 900

AdaBoost+CRF (SC2)

AdaBoost (SC2)

AdaBoost + HMM (SC2)

AdaBoost + CRF (SC2)

AdaBoost (K2)

AdaBoost + HMM (K2)

AdaBoost + CRF (K2)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost (K2)

0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost+HMM (K2)

0 200 400 600 800 1000 1200 1400 1600 1800

AdaBoost+CRF (K2)

0 100 200 300 400 500 600 700 800 900

AdaBoost (SC2)

0 100 200 300 400 500 600 700 800 900

AdaBoost+HMM (SC2)

0 100 200 300 400 500 600 700 800 900

AdaBoost+CRF (SC2)

AdaBoost (SC2)

AdaBoost + HMM (SC2)

AdaBoost + CRF (SC2)

AdaBoost (K2)

AdaBoost + HMM (K2)

AdaBoost + CRF (K2)

(b)

Fig. 9: Structured classification results. (a) São Carlos dataset; (b) KITTI dataset. Red indicates the ground truth.

580 600 620 640 660 680 700 720
0

0.5

1
Ground Truth

580 600 620 640 660 680 700 720
0

0.5

1
AdaBoost

580 600 620 640 660 680 700 720
0

0.5

1
AdaBoost+HMM

580 600 620 640 660 680 700 720
0

0.5

1
AdaBoost+CRF

AdaBoost

AdaBoost + HMM

AdaBoost + CRF

Fig. 10: Results for a subsample of the São Carlos dataset,
illustrating possible types of detection error. After structural
modelling, the first junction was misclassified. Pure Ad-
aBoost, however, misclassified a road between the second
and third junctions. Red indicates the ground truth.

the frame-by-frame analyses made on Tables III to V might
not fully measure the success of the methods analysed.

To exemplify this, Figure 10 contains a sample of the
SC2 dataset. It comes from a region with three junctions, as
can be seen in the ground truth. For this region, AdaBoost
registered 8 peaks, while HMM and CRF both had 2. This
graph, however, evidences something more important: even
if AdaBoost had the best performance on a frame-by-frame
analysis, it still has very noisy readings that were eliminated
by the smoothing effect of the structural models. On the other
hand, they smoothed out a peak that should have been in the
final result.

To indirectly measure how each method would perform on
the task of localising an UGV inside a topological map, we
propose four separate metrics that identify the phenomena
observed in Figure 10:
True Detections per Junction (TDJ): a detection is true
when a single peak appears within a junction. The result
is divided by the number of peaks in the ground truth. In
Figure 10, all methods have TDJ = 2/3—AdaBoost has three
peaks within the second junction, the other two failed to
detect the first.
Noisy Detections per Junction (NDJ): when multiple peaks
happen inside a single junction. The result is divided by the
actual number of junctions. In Figure 10, this happened for



AdaBoost in the second junction, for which NDJ = 1/3.
False Negatives per Junction (FNJ): a detection is false
when no peaks appear within the length of the junction. The
result is divided by the number of peaks in the ground truth.
In Figure 10, this happened for both structured models in the
first junction.
False Detections (FD): when a peak happens outside a
junction. This is kept In Figure 10, this only happened for
AdaBoost between the two last junctions.

Table VI contains analyses of these metrics for both test
datasets. By these standards, we can clearly observe that the
incorporation of a structured model improves on the results
obtained. By smoothing out noisy and false detections, both
methods obtained considerably better results. CRF’s biggest
advantage was in reducing noisy detections.

TABLE VI: Separate metrics

Dataset Classifier TPJ NDJ FNJ FD

SC2
AdaBoost 0.4166 0.3333 0 12

AdaBoost + HMM 0.9167 0.0833 0.0833 1
AdaBoost + CRF 0.9167 0 0.0833 0

K2
AdaBoost 0.6842 0.3684 0 20

AdaBoost + HMM 0.8421 0.0526 0.0526 4
AdaBoost + CRF 0.8947 0 0.1053 4

V. CONCLUSION

In this work, we presented a road junction detection
method for urban areas. The pointcloud collected using
a rangefinder goes through three steps: feature extraction,
classification and structural modelling. We have compared
the performance of ANNs, SVMs and AdaBoost for the
second step, and of HMMs and CRFs for the last.

AdaBoost was considered the best classifier, as it managed
to learn the training set without overfitting, generalising well
to the test set. On a frame-by-frame analysis, subsequent
use of CRF and HMM do not seem to improve from the
results obtained by AdaBoost itself. However, Figure 9 shows
that both methods remove a lot of the classification noise,
generating an output that allows to more clearly detect the
start and end of a road junction.

Further testing is needed to determine whether the method
presented in this work can be reliably trained and tested with
data coming from different parts of the world. The ability to
perform well under these conditions is a feature we believe is
important in the future of autonomous cars, as it would allow
manufacturers to prescind from owning training grounds or
datasets from every country where they market their vehicles.

This work can be extended in several ways. One aspect
observed is that classification is much harder in regions with
low urban density, because they typically have less vertical
information (see Figure 2c). A lot of the previous work on
this field relies on obstacles being above a set height for

detection, which leads us to conclude this is an inherent
difficulty of the field. In the future, we plan to make the
algorithm more robust against this situation by incorporating
methods for curb detection and discrimination between X, Y
and T junctions, as described in [20].

REFERENCES

[1] C. Ilas, “Perception in autonomous ground vehicles,” in Interna-
tional Conference on Electronics, Computers and Artificial Intelligence
(ECAI), 2013.

[2] T. Luettel, M. Himmelshach, and H.-J. Wuensche, “Autonomous
ground vehicles - concepts and a path to the future,” in Proceedings
of the IEEE, Centennial Issue, 2012.

[3] Y. Nie, Q. Chen, T. Chen, Z. Sun, and B. Dai, “Camera and lidar fusion
for road intersection detection,” in IEEE Symposium on Electrical and
Electronics Engineering (EEESYM)., 2012.

[4] Road safety in new south wales: Statistical statement for the
year ended in 31 december 2012. [Online]. Available: http:
//roadsafety.transport.nsw.gov.au/downloads/crashstats2012.pdf

[5] L. C. Fernandes, J. R. Souza, G. Pessin, P. Y. Shinzato, D. Sales,
C. Mendes, M. Prado, R. Klaser, A. C. Magalhães, A. Hata, D. Pigatto,
K. C. Branco, V. G. Jr., F. S. Osorio, and D. F. Wolf, “Carina intelligent
robotic car: Architectural design and applications,” Journal of Systems
Architecture, vol. 60, no. 4, pp. 372 – 392, 2014.

[6] T. Jochem, D. Pommerleau, and C. Thorpe, “Vision-based neural
network and intersection detection and traversal,” in Intelligent Robots
and Systems, 1995.

[7] P. Mukhija, S. Tourani, and K. Krishna, “Outdoor intersection detec-
tion for autonomous exploration,” in IEEE Conference on Intelligent
Transport Systems, 2012.

[8] A. Mueller, M. Himmelsbach, T. Luettel, F. von Hundelshausen, and
H.-J. Wuensche, “Gis-based topological robot localization through
lidar crossroad detection,” in International IEEE Conference on In-
telligent Transportation Systems, 2011, pp. 2001–2008.

[9] C. Tongtong, D. Bin, L. Daxue, and L. Zhao, “Lidar-based long range
road intersection detection,” in International Conference on Image and
Graphics (ICIG), 2011, pp. 754–759.

[10] Q. Zhu, L. Chen, Q. Li, M. Li, A. Nüchter, and J. Wang, “3d lidar
point cloud based intersection recognition for autonomous driving.” in
Intelligent Vehicles Symposium. IEEE, 2012, pp. 456–461.

[11] Q. Zhu, Q. Mao, L. Chen, M. Li, and Q. Li, “Veloregistration
based intersection detection for autonomous driving in challenging
urban scenarios,” in International IEEE Conference on Intelligent
Transportation Systems (ITSC), 2012, pp. 1191–1196.

[12] K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos, “Learning to
close loops from range data.” I. J. Robotic Res., vol. 30, no. 14, pp.
1728–1754, 2011.

[13] C. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[15] B. Schölkopf and A. J. Smola, Learning with Kernels. MIT Press,
2001.

[16] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009.

[17] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure and
evaluation benchmark for road detection algorithms,” in International
Conference on Intelligent Transportation Systems (ITSC), 2013.

[18] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[19] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[20] A. Hata, D. Habermann, D. Wolf, and F. Osório, “Crossroad detec-
tion using artificial neural networks,” in International Conference on

Engineering Applications of Neural Networks (EANN), 2013.


